Contents of this page:
The Cantor Set // Cantor Kümesi
Part of the 2018 Aratatil Yüksel Onaran Lise-Lisans-Lisansüstü Programı at the Nesin Mathematics Village, January 15–21, 2018.
Lecture notes, edited January 29, 2018: 58 pages, size A5, 12 point type.
- Başlık:
- Cantor Kümesi/The Cantor Set
- Eğitmen:
- Prof. David Pierce
- Kurum:
- MSGSÜ
- Tarih:
- 15-21 Ocak 2018
- Önkoşul:
- Kalkülüs
- Seviye:
- İleri seviye lisans, lisansüstü
- İçerik:
- Doğal sayılar kümesi, sayılabilir bir kümedir, ama Cantor Teoremi`ne
göre bu kümenin kuvvet kümesi sayılamazdır. Tihonov Topolojisi altında
bu kuvvet kümesi, elemanları gerçel sayı olan Cantor Kümesi`ne
homeomorftur. Özel olarak Cantor Kümesi tıkızdır. Bunlar ve ilgili
teoremleri kanıtlayacağız, örneğin Heine-Borel Teoremi, mantık için bir
tıkızlık teoremi, ve Stone Temsilcilik Teoremi.
- Başlık:
- Sonlu Cisimler/Finite Fields
- Eğitmen:
- Prof. David Pierce
- Kurum:
- MSGSÜ
- Tarih:
- 22-28 Ocak 2018
- İçerik:
- Toplama ve çarpma işlemleri altında tamsayılar, verilen pozitif bir modüle göre, değişmeli bir halka oluşturur. Bazı modüller için, halkada çarpmaya göre tersler vardır, dolayısıyla halka cisimdir; ayrıca bu cisim üzerinde sonlu-boyutlu vektör uzayları cisim olur. Bunu göstermek için indirgenemezlik, asallık, ve cebirsel kapanış kavramlarını ve Öklid Algoritması`nı geliştireceğiz.
- Title of the course:
- Continued fractions
- Instructor:
- Prof. David Pierce
- Institution:
- MSGSÜ
- Dates:
- 13–19 August 2018
- Prerequisites:
- None. We shall study some topics that may be studied in a second-semester number-theory course; however, no specific results are required from a first-semester course.
- Level:
- Graduate, advanced undergraduate
- Abstract:
- We accept from childhood that multiplication of whole numbers is commutative; but Euclid gives a rigorous proof based on what we now call the Euclidean algorithm. This algorithm can be used to write any real number as a continued fraction. The continued fraction repeats when the real number is the solution of a quadratic equation. This case yields the solutions of a so-called Pell equation, x2 − dy2 = 1, an example of a Diophantine equation.
- Textbook or/and course webpage:
- [this page]
- Language:
- TR; EN
- Title of the course:
- Prime numbers
- Instructor:
- Prof. David Pierce
- Institution:
- MSGSÜ
- Dates:
- 20–26 August 2018
- Prerequisites:
- Some elementary number theory
- Level:
- Graduate, advanced undergraduate
- Abstract:
- We shall work through the Prime Number Theorem, that the probability that a given number N is prime is about 1⁄log(N).
- Language:
- TR, EN
- Textbook or/and course webpage:
- [this page]
See also last year’s course.
Finite Fields
Part of the 2018 Aratatil Lise-Lisans-Lisansüstü Cebir Programı at the Nesin Mathematics Village, January 22–28, 2018.
Lecture notes, last edited March 30, 2018: 52 pages, size A5, 12 point type.
(I needed to turn page 35 in the pdf file with the command
pdftk finite-fields-2018-revised-2.pdf cat 1-34 35north 36-end output finite-fields-2018-revised-2-turned.pdf
)See also last year’s course.
Continued fractions
2018 TMD Lisans ve Lisansüstü Yazokulu
Lecture notes, edited August 22, 2018: 57 pages, size A5, 12 point type:
I expect to use my own notes from a Number Theory II course. I revised the notes extensively last winter, and they contain such diagrams as the one above.
Prime numbers
2018 TMD Lisans ve Lisansüstü Yazokulu
Lecture notes, edited August 29, 2018: 58 pages, size A5, 12 point type:
Some basic ideas are illustrated by proving Bertrand’s Postulate, that for every counting number n, some prime p satisfies n < p ≤ 2n. A little more work yields Chebyshev’s Theorem, that the ratio of π(x) (the number of primes no greater than x) and x⁄log(x) stays within fixed bounds. The ratio tends to unity, by the Prime Number Theorem, which takes quite a bit more work. The work seems to be most conveniently done with some complex analysis; D. Zagier streamlines the proof of D. J. Newman in five pages (“Newman’s short proof of the prime number theorem,” Amer. Math. Monthly 104 [1997], no. 8, 705–708).