Strongly Rayleigh measures and the Kadison-Singer Problem

Mohan Ravichandran, MSGSU, Istanbul

Koc University, Istanbul

October 18, 2016
1. Negative dependance
 - Attempts and examples
 - Geometric approach to Negative dependance
 - Strongly Rayleigh measures

2. The Restricted Invertibility principle and Kadison-Singer
 - Well conditioned co-ordinate restrictions
 - Anderson’s paving problem
 - Interlacing
 - Combinatorics
 - The univariate barrier method
 - The multivariate barrier method

3. Questions: Analytic Borcea-Branden + Lieb-Sokal + Immanantal polynomials
 - Root shift estimates
 - Analytic Lieb-Sokal
 - Immanantal polynomials
Main actors in story

Richard Kadison
Isadore Singer
Joel Anderson
Charles Akemann
Jean Bourgain
Adam Marcus
Daniel Spielman
Nikhil Srivastava
Nik Weaver
Julius Borcea
Petter Branden
Shayan Oveis-Gharan
Robin Pemantle
Pete Casazza
Janet Tremain
Lior Tzafriri
Mohan Ravichandran, MSGSU, Istanbul
Thomas Liggett
Nima Anari
In this talk we only work with binary (\(\{0, 1\}\) valued) random variables.
\(\mu \in \mathcal{P}(2^{[n]})\), i.e PM on subsets of \([n] = \{1, \cdots, n\}\).

1. **Positive dependance** well understood.

 \[\text{PLC}(+ \text{ lattice condition}) \quad \mu(S)\mu(T) \leq \mu(S \cup T)\mu(S \cap T), \quad \forall S, T \subset [n]. \]
 \[\text{PA}(\text{positive association}) \quad \mathbb{E}(f)\mathbb{E}(g) \leq \mathbb{E}(fg), \quad \forall f, g : 2^{[n]} \to \mathbb{R}, \uparrow. \]

 FKG(Fortuin-Kasteleyn-Ginibre) theorem, 1971: \(\text{PLC} \implies \text{PA}\), local-global.

2. **Negative dependance**: Analogous notions for repelling random variables:

 \[\text{NLC}(- \text{ lattice condition}) \quad \mu(S)\mu(T) \geq \mu(S \cup T)\mu(S \cap T), \quad \forall S, T \subset [n]. \]
 \[\text{NA}(\text{negative association}) \quad \mathbb{E}(f)\mathbb{E}(g) \leq \mathbb{E}(fg), \quad \forall f, g : 2^{[n]} \to \mathbb{R}, \uparrow \quad \text{supp}(f) \cap \text{supp}(g) = \emptyset. \]

 However, \(\text{NLC} \nRightarrow \text{NA}\)

Popularized by Robin Pemantle (2000 - ...)
Various definitions

Given \(\mu \in P_n := P(2^{[n]}) \), we consider the multi-affine (generating) polynomial (of \(\mu \)),

\[
P_\mu = \sum_{S \subseteq [n]} \mu(S)z^S.
\]

\(X_1, \ldots, X_n \) : co-ordinate random variables, \(X_i(S) = 1 \) if \(i \in S \), else 0.

1. \(\mu \in P_n \) is **pairwise negative correlated** (p-NC) if

\[
\mathbb{E}(X_i) \mathbb{E}(X_j) \geq \mathbb{E}(X_iX_j), \ i \neq j \in [n] \iff \partial_i P_\mu(1) \partial_j P_\mu(1) \geq \partial_{ij} P_\mu(1).
\]

2. \(\mu \in P_n \) satisfies the **strong hereditary negative lattice condition** (h-NLC+) if,

\[
\mu(S) \mu(T) \geq \mu(S \cup T) \mu(S \cap T), \quad \forall S, T \subseteq [n].
\]

and the same holds for

1. **Projections** : Projection onto \(2^X \) where \(X \subseteq [n] \), \(\tilde{\mu}(S) \sim \sum_{T = S \cup X^c} \mu(T) \) for every \(X \subseteq S \).
2. **Application of external fields** : Given \((a_1, \ldots, a_n) \in \mathbb{R}_+^n \), \(\tilde{\mu}(S) \sim \mu(S) \prod_{i \in S} a_i \).

3. \(\mu \in P_n \) is **strongly conditionally negatively associated** (CNA+) if it is conditionally negatively associated and the same holds upon applying projections and external fields.
Examples

1. **Determinantal measures:** \(\mu \in \mathcal{P}_n | \exists \text{ PSD } A \in M_n(\mathbb{R}) \text{ such that,} \)

\[
\mu(\{T \subset [n]|S \subset T\}) = \sum_{S \subset T} \mu(T) = \det[A(S)], \quad \forall S \subset [n].
\]

(Lyons, 2003) : \(\mu \) determinantal measure in \(\mathcal{P}_n \). If the associated PSD matrix is a contraction, then it is CNA+.

2. **Symmetric exclusion processes** Take \(n \) points on \(\{0, 1\}^k \). These points jump to neighbours with fixed probabilities but jumps to occupied spots are forbidden.

Goal : Come up with a notion of negative dependence that is preserved under these transitions.

None of p-NC, h-NLC+ or CNA+ are.
Real Stable polynomials

Polynomial $p(z_1, \cdots, p_m)$ called stable if

$$p(z_1, \cdots, z_n) \neq 0, \quad \forall (z_1, \cdots, z_n) \mid \text{Im}(z_k) > 0 \quad \forall k \in [m].$$

Real Stable: Stable + real coefficients.

1. Univariate real stability = Real rootedness.
2. $p = \text{det}[A + z_1B_1 + \cdots + z_nB_n]$, where A is symmetric and the B_i are PSD.
3. Real stability preservers,
 1. $p \rightarrow \partial_i p$.
 2. (Julius Borcea, Petter Branden, 2006) Lieb-Sokal lemma: $p \rightarrow q(\partial_1, \cdots, \partial_n)p$.
 3. $p(z_1, \cdots, z_n) \rightarrow p(t, z_1, \cdots, z_n)$ for $t \in \mathbb{R}$.
4. Convexity: (Adam Marcus, Daniel Spielman, Nikhil Srivastava 2013, Terence Tao 2013, Alexander Scott, Alan Sokal, 2010) $a \in \mathbb{R}$ called above the roots of p or $a \in Ab_p$ if $p(a + z) > 0 \quad \forall z \in \mathbb{R}_n^+$. Then,

 Complete monotonicity \quad $(-1)^k \partial_j^k \left(\frac{\partial_i p}{p} \right)(a) \geq 0 \quad \forall a \in Ab_p, \; i, j \in [n], \; k \geq 0$.

Strongly Rayleigh measures

Definition (Julius Borcea, Petter Branden, Thomas Liggett 2009)

$\mu \in P_n$ is called *Strongly Rayleigh* if $P_\mu := \sum_{S \subseteq [n]} \mu(S)z^S$ is real stable.

Product measures, Determinantal measures, uniform spanning tree measures are SR. Preserved under symmetric exclusion processes. Implies p-NC, h-NLC+ and CNA+.

X random vector taking values in \mathbb{Z}_+^n. Define,

$$P_X = \sum \mathbb{P}(X = a)z^a.$$

$M(X)$: Maximum degree of the variables z_i.

Theorem (Multivariate CLT, Ghosh, Pemantle, Liggett, 2016)

X_n sequence of random vectors with sequence s_n such that there is a matrix A satisfying,

$$\frac{\text{Cov}(X_n)}{s_n^2} \rightarrow A, \quad \frac{M(X_n)^{1/3}}{s_n} \rightarrow 0.$$

Then,

$$\frac{X - \mathbb{E}(X)}{s_n} \rightarrow N(0, A).$$
Bourgain-Tzafriri’s RIP

Let $T : \mathbb{R}^m \to \mathbb{R}^n$ be a linear map.

The singular values of T, denoted by $s_1(T) \geq \cdots \geq s_m(T)$, are the square roots of the eigenvalues of T^*T. They are also the square roots of the diagonal entries of the positive semi-definite matrix T^*T.

Question: Find a large subspace on which T is well invertible.

The singular rank of T, denoted as $\text{srank}(T)$, is defined as:

$$\text{srank}(T) = \frac{\|T\|_2^2}{\|T\|_2^2} = \frac{\text{Trace}(T^* T)}{\|T\|^2} = \frac{\sum s_k(T)^2}{s_1(T)^2}.$$
Remark (Singular vector basis)

\{v_1, \cdots, v_m\} basis of singular vectors for \(T \), i.e. eigenbasis for \(T^* T \).
\(V = \text{span}\{v_1, \cdots, v_k\} \), where \(k = c \text{srank}(T) \) for some \(c < 1 \). Then,

\[
\min_{V} s_{\min} T \geq \sqrt{(1-c) \sqrt{\frac{\text{srank}(T)}{m}}}
\]

Similar statement holds for any basis! One version,

Theorem (The restricted invertibility principle, B-T, Spielman-Srivastava)

\{v_1, \cdots, v_m\} orthonormal basis. Then, for any \(c < 1 \), there exists \(\sigma \subset [m] \) of size \(k = c \text{srank}(T) \),

\[
\min_{P_{\sigma} \mathbb{R}^m} s_{\min} T \geq \frac{1}{5} \sqrt{(1-c) \sqrt{\frac{\text{srank}(T)}{m}}}
\]

Theorem (R, 2016)

Let \(T : \mathbb{R}^m \rightarrow \mathbb{R}^n \) be a linear operator. Then, for any \(0 \leq \delta \leq 1 \), there is a subset \(\sigma \) of size \(|\sigma| = \delta \frac{\|T\|_2^4}{\|T\|_4^4} \) and such that, letting \(c = \frac{|\sigma|}{m} \), we have,

\[
s_{\min}(T |_{P_{\sigma} \mathbb{R}^m}) \geq \sqrt{\frac{\text{srank}(T)}{m}} \left[\sqrt{1-c} - \sqrt{\delta-c} \right].
\]
Theorem (Joel Anderson’s Paving problem, Adam Marcus, Daniel Spielman, Nikhil Srivastava 13)

There are universal constants $\epsilon < 1$ and $r \in \mathbb{N}$ so that for any zero diagonal contraction $A \in M_n(\mathbb{R})^{sa}$, there are diagonal projections Q_1, \ldots, Q_r with $Q_1 + \cdots + Q_r = I$,

$$\lambda_1(Q_iAQ_i) < \epsilon, \quad 1 \leq i \leq r.$$

Restricted Invertibility in analogous form,

Theorem (Restricted Invertibility, R 2016)

For any trace zero contraction $A \in M_n(\mathbb{R})^{sa}$ and any $c \leq \frac{1}{2}$ there is a principal submatrix $A(S)$ of size cn such that

$$\lambda_1[A(S)] \leq 2\sqrt{c - c^2}.$$
Casazza, Speegle, Tremain, Weber 2006: Equivalent to fundamental problems in Geometric Functional Analysis, Convex geometry, Signal processing, Harmonic analysis, Frame theory (Feichtinger conjecture), Coding theory, ...

\[\mathcal{I} \subset \mathbb{Z}, \quad S(I) := \text{span}(\{e^{int} : n \in S\}) \]

Theorem (Weyl)

Given any \([a, b] \subset [0, 1], \epsilon > 0\) there is a partition \(X_1 \cup \cdots \cup X_n = \mathbb{Z}\) such that \(\forall f \in S(X_j), 1 \leq j \leq n,\)

\[(1 - \epsilon)\|f\|_2^2 \leq \frac{\|f \chi[a, b]\|_2^2}{b - a} \leq (1 + \epsilon)\|f\|_2^2.\]

Does the same hold for any measurable set \(E\)? Equivalent to Kadison-Singer.
\[\mu \in \mathcal{P}_n \text{ Strongly Rayleigh, } A \in M_n(\mathbb{R})^{sa} \text{ self adjoint.} \]

Sample principal submatrices of \(A \), picking \(A_S \) with probability \(\mu(S) \).

\(A_S \) : Principal submatrix of \(A \) with rows and columns from \(S \) removed.

Sublime idea of MSS : Take expectation not of largest eigenvalue, but of the characteristic polynomial!

Theorem (MSS, Nima Anari and Oveis-Gharan 2014, R 2016)

\[
\mathbb{E} \chi[A_S] = \sum_{S \subseteq [n]} \mu(S) \chi[A_S],
\]

is real rooted and further,

\[
\mathbb{P} [\lambda_1 \chi[A_S] \leq \lambda_1 \mathbb{E} \chi[A_S]] > 0.
\]

Further,

\[
\mathbb{E} \chi[A_S] = P_{\mu}(\partial_1, \ldots, \partial_n) \det[Z - A] |_{Z=xl}.
\]
Restricted invertibility: Uniform measure on \(n - k \) element subsets of \([n]\),

\[
P_{\mu} = \binom{n}{k}^{-1} \sum_{|S|=n-k} z^S = \binom{n}{k}^{-1}(\partial_1 + \cdots + \partial_n)^k z_1 \cdots z_n.
\]

Kadison-Singer: Pick subsets of \([n] \times [n]\) of the form \(T \times T^c \).

\[
P_{\mu_2} = 2^{-n} \left(\prod_{i=1}^{n} (\partial z_i + \partial y_i) \right) (z_1 \cdots z_n)(y_1 \cdots y_n).
\]
Cauchy-Poincare, R.C. Thompson and MSS’ Markov principle

Theorem (Cauchy-Poincare)

\[A \in M_n(\mathbb{R})^{sa}. \text{ Then, the eigenvalues of } \chi[A] \text{ and } \chi[A_i] \text{ interlace.} \]

Lemma (Markov principle)

\[p_1, \cdots, p_n \text{ be same degree monic real rooted with common interlacer. Then, } \forall k \exists i, \]

\[\lambda_k(p_i) \leq \lambda_k(p_1 + \cdots + p_n). \]

Lemma (Obreshkoff)

\[\{p_i\}_{i=1}^n \text{ degree } k \text{ monic real rooted. Common interlacer iff every convex combination real rooted.} \]

Let \(A \in M_n(\mathbb{R}) \) *be hermitian. Then, \(\exists i \in [n] \) *such that,*

\[\lambda_1(\chi[A_i]) \leq \lambda_1 \left(\sum \chi[A_i] \right) = \lambda_1(\chi'[A]). \]

For any \(k \in [n] \), *there is a size* \(k \) *subset* \(S \subset [n] \) *such that,*

\[\lambda_1(\chi[A_S]) \leq \lambda_1 \left(\sum_{|S|=k} \chi[A_S] \right) = \lambda_1(\chi^{(k)}[A]). \]
Set $Z = \text{diag}(z_1, \cdots, z_n)$ diagonal matrix of variables.

Lemma

If $A \in M_n(\mathbb{R})$ and $S \subset [n]$. Then,

$$\det[AS] = \frac{\partial^S}{\partial^S z} \det[Z + A] \big|_{Z=0}, \quad \chi[AS] = \frac{\partial^S}{\partial^S z} \det[Z - A] \big|_{Z=xI}.$$

$\mu \in \mathcal{P}_n$ Strongly Rayleigh. $A \in M_n(\mathbb{R})^{sa}$ real symmetric.

Create tree. $n + 1$ levels.

Nodes at level k indexed by subsets of $[k - 1]$. Mark node at level k by $\sum_{S \supset T} \mu(S)\chi[AS]$.

Children of node indexed by $S \subset [k] : n - k$ nodes indexed by $S \cup i$, for $i \notin S$.

Leaf nodes : $\chi[AS]$ for $S \subset [n]$.

Top node : $\sum_{S \subset [n]} \mu(S)\chi[AS]$.
Theorem (R, 2016)

Let $A \in M_n(\mathbb{R})$ be real symmetric. Then, the sum of the characteristic polynomials of all the 2^n pavings of A is real rooted and satisfies,

$$\sum_{S \sqcup T = [n]} \chi[A_S \oplus A_T] = \left[\prod_{m=1}^{\lfloor n/2 \rfloor} (\partial z_m + \partial y_m) \right] \det[Z - A] \det[Y - A] \mid Z = Y = xI .$$

Further, there is a paving $(S, T) \in \mathcal{P}_2$ such that

$$\lambda_1 \chi[A_S \oplus A_T] \leq \lambda_1 \left[\sum_{S \sqcup T = [n]} \chi[A_S \oplus A_T] \right] .$$

Lemma (R, 2016)

$$\left[\prod_{m=1}^{\lfloor n/2 \rfloor} (\partial z_m + \partial y_m) \right] \det[Z - A] \det[Y - A] \mid Z = Y = xI = \frac{\partial^n}{\partial z_1 \cdots \partial z_n} \det[Z - A]^2 \mid Z = xI .$$
Definition (Mixed determinant)

\[A, B \in M_n(\mathbb{R}), \]
\[D(A, B) := \sum_{S \coprod T = [n]} \det[A(S)] \det[B(T)]. \]

Definition

Given a matrix \(A \in M_n(\mathbb{R}) \), define

\[\det_r(A) := \sum_{\sigma \in S_n} \prod_{i=1}^{n} a_{i \sigma(i)} (-1)^{\text{sgn}(\sigma)} r_c(\sigma), \quad \chi_r[A] := \det_r(xI - A). \]

where \(c(\sigma) \) denotes the number of cycles in \(\sigma \).

Lemma (R, 2016)

\[E_{\mathcal{P}_2([n])} \chi[A, x] = \frac{\partial^n}{\partial z_1 \cdots \partial z_n} \det[Z - A]^2 \big|_{Z = xI = \chi_2[A]} = D(xI - A, xI - A). \]
Conjecture

$A \in M_n(\mathbb{R})^+, \text{ positive contraction, diagonal entries of } A \text{ all be at most } \alpha \leq \frac{1}{2}. \text{ Then,}$

$$\max \text{root } \chi_2[A] \leq \frac{1}{2} + \sqrt{\alpha(1-\alpha)} = \frac{1}{4} \left(\sqrt{2\alpha} + \sqrt{2(1-\alpha)} \right)^2.$$

$$MSS : \frac{1}{2} + \sqrt{2\alpha} + \alpha, \quad BCMS : \frac{1}{2} + \sqrt{2\alpha(1-2\alpha)}.$$

Theorem (R 2016, 2paving)

$A \in M_n(\mathbb{R})^+, \text{ positive contraction, diagonal entries of } A \text{ all be at most } \alpha \leq \frac{1}{4}. \text{ Then,}$

$$\max \text{root } \chi_2[A] \leq \frac{1}{4} \left(\sqrt{\alpha} + \sqrt{3(1-\alpha)} \right)^2.$$

Theorem (R 2016, paving diagonal 1/2 projections)

$A \in M_n(\mathbb{R})^+, \text{ positive contraction, diagonal entries of } A \text{ all be at most } \alpha \leq \frac{1}{2}. \text{ Then,}$

$$\max \text{root } \chi_4[A] \leq \frac{(3 + \sqrt{7})^2}{32} \approx 0.996.$$
p : Real rooted degree n polynomial. For $b \geq \lambda_1(p)$ and $\varphi > 0$, define

$$\Phi_p(b) := \frac{p'}{p} = \sum \frac{1}{b - \lambda_i}, \quad \text{smax}_\varphi(p) := \Phi^{-1}(\varphi) = \lambda_1(p' - \varphi p).$$

Note : For any $\varphi > 0$, we have : $\lambda_1(p) < \text{smax}_\varphi(p)$.

Proposition (Marcus, 2014)

Let p be real rooted and $\varphi > 0$. Then,

$$\text{smax}_\varphi(p') \leq \text{smax}_\varphi(p) - \frac{1}{\varphi}, \quad \Rightarrow \quad \text{smax}_\varphi(p^{(k)}) \leq \text{smax}_\varphi(p) - \frac{k}{\varphi}.$$

Follows from concavity of $\frac{1}{\Phi_p}$ above $\lambda_1(p)$.
A ∈ Mₙ(ℝ)ˢᵃ, set

\[p₀ = \det[Z - A]², \quad p₁ = \frac{∂}{∂z₁} \det[Z - A]², \quad \ldots, \quad pₙ = \frac{∂ⁿ}{∂z₁ \cdots ∂zₙ} \det[Z - A]². \]

Real stable polynomial \(p(z₁, \ldots, zₙ) \), say \(z ∈ \mathbb{R}^n \) is in \(Abₚ \) if \(p(z + t) \neq 0 \) for any \(t ∈ \mathbb{R}^n. \)

(Upper) potential of \(p \) in direction \(j \),

\[\Phi_j^p(z) = \frac{\partial_j p}{p}(z). \]

Basic fact, for any \(z ∈ Abₚ \) and \(i, j ∈ [n] \),

\[\Phi_j^p > 0, \quad \partial_i \Phi_j^p < 0 \text{ (Monotonicity),} \quad \partial_i^² \Phi_j^p > 0 \text{ (Convexity).} \]

Lemma (MSS, R)

\[\Phi_j^p(z + δe_i) ≤ \Phi_j^p(z), \quad \delta = \frac{1}{1 - \Phi_j^p}, \quad i, i ∈ [n]. \]

Suppose \(p \) is of degree at most 2 in \(z_i \),

\[\Phi_j^p(z - δe_i) ≤ \Phi_j^p(z), \quad \delta = \frac{1}{2\Phi_j^p}, \quad j ∈ [n]. \]
Theorem (R, 2016)

\(p(z_1, \cdots, z_n) \) real stable and of degree at most 2 in each of the variables. (For instance, \(p = \det [Z - A]^2 \)). Let \(q = \frac{\partial^n}{\partial z_1 \cdots \partial z_n} p \). Then, for any \(z \in Ab_p \),

\[
\Phi^j_q(z - \delta) \leq \Phi^j_p(z), \quad j \in [n] \quad \text{where} \quad \delta = \min_{j \in [n]} \frac{1}{2\Phi^j_p(z)}.
\]

Lemma (R, 2016)

Suppose \(p = \det [Z - A]^2 \) where \(A \) is a positive contraction and \(z = zI \) where \(z > \lambda_1(A) \), then,

\[
\Phi^j_p(zI) \leq \frac{\delta}{z - 1} + \frac{1 - \delta}{z}, \quad \delta = \max(A_{ii}).
\]

Theorem (R, 2016)

\(A \in M_n(\mathbb{R})^+ \), positive contraction, diagonal entries of \(A \) all be at most \(\alpha \leq \frac{1}{4} \). Then,

\[
\maxroot \chi_2[A] \leq \inf_{z \geq 1} z - \frac{1}{2} \left(\frac{\alpha}{z - 1} + \frac{1 - \alpha}{z} \right)^{-1} = \frac{1}{4} \left(\sqrt{\alpha} + \sqrt{3(1 - \alpha)} \right)^2.
\]
Remark

Suppose we could shift the barrier to the left by \(\frac{1}{\Phi_j(p)(z)} \) instead of \(\frac{1}{2\Phi_j(p)(z)} \), we would have the conjectured optimal estimate of maxroot \(\chi_2[A] \leq \frac{1}{2} + \sqrt{\alpha(1 - \alpha)} \).

Alas, not true in general. Also fails for polynomials of the form \(\det[Z - A]^2 \). Similar estimates can be gotten for \(\chi_3[A] \) and \(\chi_4[A] \) through brute force means.

Theorem (R, 2016)

Let \(A \in M_n(\mathbb{R})^+ \), positive contraction, diagonal entries of \(A \) all be at most \(\alpha \). Then,

\[
\max \text{root } \chi_3[A] \leq \frac{1}{9} \left(\sqrt{5(1 - \alpha)} + 2\sqrt{\alpha} \right)^2, \quad \alpha \leq \frac{4}{9}.
\]

\[
\max \text{root } \chi_4[A] \leq \frac{1}{16} \left(\sqrt{7(1 - \alpha)} + 3\sqrt{\alpha} \right)^2, \quad \alpha \leq \frac{9}{16}.
\]
Questions: Analytic Borcea-Branden + Lieb-Sokal + Immanantal polynomials

Root shift estimates

Question

p and q real stable polynomials in n variables. Estimates for zero free regions of,

$$q(\partial_1, \cdots, \partial_n)p(z_1, \cdots, z_n).$$

Special case of great interest,

$$e_k(\partial_1, \cdots, \partial_n) \det[Z - A].$$

One variable case: $\varphi > 0$. Define $\text{smax}_{\varphi}(p) = \phi_p^{-1}(\varphi)$.

Theorem

p real rooted. Then,

$$\text{smax}_{\varphi}(\partial p) \leq \text{smax}_{\varphi}(p) - \frac{1}{\varphi}, \quad \text{smax}_{\varphi}[(\partial - \alpha)p] \leq \text{smax}_{\varphi}(p) - \frac{1}{\varphi - \alpha}.$$

Theorem (One variable Analytic Lieb-Sokal)

p, q real rooted. Then,

$$\text{smax}_{\varphi}(q(\partial)p) \leq \text{smax}_{\varphi}(p) - \Phi_q(\varphi).$$
Multivariable case: $\varphi \in \mathbb{R}_+^n$.

Let $\text{smax}_\varphi(p) = \{b \in \mathbb{R}^n : \Phi_p(b) = \varphi\}$.

Given two sets $A, B \in \mathbb{R}^n$, say $A \prec B$ if for all $b \in B$ and $h \in \mathbb{R}_+^n$, $b + h \notin A$.

Conjecture

p, q real stable in $\mathbb{R}[z_1, \cdots, z_n]$ and let $a \in A b_p$. Then,

$$\text{smax}_\varphi(q(\partial)p) \prec \text{smax}_\varphi(p) - \Phi_q(\varphi).$$
Given a class function \(\phi \) on \(S_n \) and a matrix \(A \), the expression

\[
\det_\phi (A) := \sum_{\sigma \in S_n} \left(\prod_{i \in [n]} a_{i \sigma(i)} \right) \phi(\sigma),
\]

is called an immanant. One may define the expression,

\[
\chi_\phi [A] := \det_\phi [xI - A].
\]

c(\sigma) : number of cycles in \(\sigma \).
When \(\phi(\sigma) = (-1)^{\text{sgn}(\sigma)} \), we get \(\chi[A] \).
When \(\phi(\sigma) = (-1)^{\text{sgn}(\sigma)} c(\sigma) \), we get \(\chi_r[A] \).
\(r \in \mathbb{N} \) : We have that \(\chi_r[A] \) is real rooted for hermitian \(A \).

Question

Which immanantal polynomials are real rooted for all hermitian arguments?

Conjecture

Those immanants such that

\[
\det_\phi (A) = p(\partial_1, \cdots, \partial_n) \det[Z + A]^k \big|_{Z=0}, \quad \text{deg}(p) = (k - 1)n, \quad p \text{ real stable } + \text{ symmetric}.
\]