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Abstract. A well known result of Ando says that H∞(D) has a unique pred-

ual. There have been two natural extensions of this result to noncommutative

algebras: Ueda showed that finite maximal subdiagonal algebras have unique
preduals. Ina second direction, Davidson and Wright showed that free semi-

group algebras have unique preduals. In this note, we explore a different

natural generalization of this result - Let A be a finitely connected domain
in the plane. We show that H∞(A) has a unique isometric predual. We also

prove a couple of theorems about the structure of the unique predual.

1. Introduction

A dual Banach space X = Y ∗ is said to have a unique (isometric)predual if
X ∼= (Z)∗ isometrically implies that Y ∼= Z isometrically. A classical result of
Grothendieck [10] says that the dual Banach space L∞(X,µ) has a unique predual
for any measure space (X,µ). This result, over the years has spawned a host of
extensions and generalizations. Noting that all abelian von Neumann algebras are
of the form L∞(X,µ), Sakai [16] extended Grothendieck’s result by showing that
all von Neumann algebras have unique preduals.

In the non-selfadjoint realm, Ando [2] proved that H∞(D), which is easily seen to
be a dual space has a unique (isometric)predual. Ando’s result has been extended
in two notable directions.

(1) The Free semigroup algebras, the WOT closed operator algebras generated
by the creation operators on the Full Fock space F(H) where H is a Hilbert
space were recently shown by Davidson and Wright [5] to have a unique
predual.

(2) Finite Maximal subdiagonal algebras, also called noncommutative H∞ al-
gebras were introduced by Arveson [3], see also Exel’s [6] paper and are
defined thus : Let (M, τ) be a finite von Neumann algebra and let A be an
abelian von Neumann subalgebra. A weak* closed subalgebra A of M is
said to be maximal subdiagonal in M if
(a) A + A∗ is weak* dense in M and
(b) The unique normal trace preserving conditional expectation E : M →

A is multiplicative on A.
In particular, H∞(D) ⊂ L∞(T) is a (finite) maximal subdiagonal alge-
bra. Ueda [17](see also [18]), recently proved that all maximal subdiagonal
algebras have unique preduals.

Ando’s result however, has not been generalized to other domains. It is currently
unknown if H∞ of a domain in Cn, even say, the ball in C2 or the two-torus T2
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has a unique predual. In this paper we show that the situation in the plane is more
tractable.

Theorem 4.1: H∞ for every finitely connected domain in the plane has a unique
predual.

We mention here that for operator algebras, having a unique predual is somewhat
mysterious. The major result in this direction is Ruan’s result [14] that local
dual operator algebras (i.e weak* closed operator algebras in which the compact
operators are ultraweakly dense) have unique preduals.

Our proof is an adaptation of Ando’s, whose proof hinges upon a result of Amar
and Lederer [1] that says roughly that singular functionals on H∞(D) are supported
on peak sets of functions in H∞. We extend this result of Amar and Lederer,
Theorem(3.1) and our extension further allows us to extend another of Ando’s
results. There is a canonical decomposition of any element in φ ∈ L∞(D)∗, φ =
φn + φs, into “normal” and “singular” functionals. The projection P given by
P (φ) = φn is an L-projection, i.e. ‖φ‖ = ‖φn‖+ ‖φs‖.

This projection is not weak* continuous, for that would imply that L∞ is reflex-
ive. However, Ando shows that the mapping is weak* sequentially continuous and
that H∞(D)⊥ is invariant under this projection. As a consequence the L-projection
P induces an L-projection from H∞(D)∗ onto H∞(D)∗. Our extension of Amar
and Lederer’s peak sets result allows us to prove analogous results in the case of
finitely connected domains.

Theorem 4.2: For any finitely connected domain A, the predual (H∞(A))∗ is the
range of a weak∗ sequentially continuous L-projection.

The proof of Theorem(4.2) uses Theorem(3.1) but not Theorem(4.1). A recent
result of Pfitzner [13] says that if a predual is an L-summand in its double dual(i.e.
the range of an L- projection) then it is a strongly unique predual (See Section 2
for definition.) Thus, the first part of Theorem(4.2) along with Pfitzner’s result
will imply Theorem(4.1). However, since the proof of Theorem(4.1) is simpler than
that of Theorem(4.2), we include it.

Finally, we give an extension of yet another result of Ando by showing that the
unit ball of the canonical predual has no extreme points, which in turn implies the
following result:
Theorem 4.3: H∞ of a finitely connected domain has no second predual.

We conclude with some consequences of these results.

2. Preliminiaries

Given a Banach space X, we say that Y is a predual for X if X ∼= Y ∗, where ∼=
means isometric isomorphism. Thus, Y is a norm closed subspace of X∗ that norms
X and also, the unit ball (X)1 := {x ∈ X | ||x|| ≤ 1} of X is σ(X,Y ) compact.
The converse is also true. Suppose Y is a norm closed subspace of X∗ so that (X)1

is σ(X,Y ) compact. In fact, the bipolar theorem gives us that Y norms X, i.e.,

supφ∈(Y )1 |φ(x)| = ||x|| for all x ∈ X.(1)
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Thus, X sits in Y ∗ isometrically. By the compactness condition, the unit ball
(X)1 is σ(Y ∗, Y ) closed in (Y ∗)1 and therefore, by the Krein-Smulian theorem, X
is σ(Y ∗, Y ) closed in Y ∗. As Y ⊂ X∗, the annihilator of X in Y is {0}, which
implies that X = Y ∗.

If a Banach space X is known to have a predual X∗ ⊂ X∗, we will say that
it has a strongly unique predual if X∗ is the unique norm closed subspace of X∗

which makes (X)1 compact in the induced topology. No examples are known of
dual Banach spaces that have unique but not strongly unique preduals. We will
show that H∞ of a finitely connected domain in the plane has indeed, a strongly
unique predual.

We start with a finitely connected domain on the sphere S2, whose complement
consists of n+1 closed components relative to the sphere. By applying the Riemann
mapping theorem n+1 times, we map the domain biholomorphically onto a bounded
domain in the complex plane whose boundary consists of n + 1 disjoint analytic
simple curves. Biholomorphic maps induce isometric isomorphisms of Hp spaces
for 1 ≤ p ≤ ∞. Thus, the latter avatar will be the setting for our results.

Let A be a domain in D bounded by simple analytic curves Γ0, Γ1 · · ·Γn, so that
Γ0 the unit circle. Set Γ = Γ0 ∪ Γ1 ∪ · · ·Γn. By m, denote Lebesgue measure on Γ,
normalized so that m(Γi) = 1 for 0 ≤ i ≤ n. Let us denote by Ui the unbounded
component of C \ Γi for i > 0.

It is well-known that every f ∈ H∞(A) can be represented in the form

f(z) = f0(z) + f1(z) + . . . fn(z)

where f0 ∈ H∞(D) and fj ∈ H∞(Uj). As a consequence of this result the boundary
values of f exists almost everywhere and the map f → f∗,where f∗ ∈ H∞(Γ) is the
corresponding boundary function, is an isometry (See [7] or [4] for details.) From
now on H∞ will refer to H∞(A) or H∞(Γ) depending on the context.

Denote the maximal ideal space of L∞(A) by Ω, which is a totally disconnected
compact Hausdorff space and in particular, its topology is given by a basis of clopen
sets. The set Ω can be identified with the Shilov boundary of H∞(A), though this
is not something we will use. We will write L∞ for L∞(Γ).

Let f → f̂ denote the Gelfand transform on L∞. Any bounded linear functional
on L∞ is represented by a regular Borel measure on Ω and in particular, we have
a measure m̂ so that ∫

fdm =

∫
f̂dm̂.(2)

By the Hahn-Banach theorem, any bounded linear functional on H∞ can be
extended to a bounded linear functional on L∞ and thus, has a (non-unique) rep-
resenting measure on Ω.

Suppose now that φ is some element in (L∞)∗. Write φ(f) =
∫

Ω
f̂dν and take

the lebesgue decomposition of ν with respect to dm̂, that is, ν = νa + νs with

νa � m̂ and νs ⊥ m̂. Letting φa(f) =
∫

Ω
f̂dνa and φs(f) =

∫
Ω
f̂dνs, we have a

decomposition φ = φa + φs. The map P which takes φ to φa is an L-projection,
i.e. ||φ|| = ||φa||+ ||φs|| by the Radon Nikodym Theorem.

Any element f in L1 gives rise to a functional on H∞ by the formula

h −→
∫

Γ

hfdm for all f ∈ H∞.
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Throughout this paper, we will denote the pre-annihilator of H∞ in L1 by Z. We
will also use the notation (H∞)∗ to refer to the canonical predual. In this notation,
the canonical predual of H∞ is (H∞)∗ = L1/Z.

It is easy to see that a functional ψ on H∞ is in the canonical predual L1/Z iff
there is some representing measure for it on Ω that is absolutely continuous with
respect to m̂. i.e, there is a measure ν on Ω such that

ψ(f) =

∫
Ω

f̂dν for every f ∈ H∞ and ν � m̂.

The dual (H∞)
∗

is isometric isomorphic to (L∞)
∗
/(H∞)

⊥
. So if one can show

that the annihilator (H∞)
⊥

is invariant under the projection P , the L-projection
P will induce an L-projection from (H∞)

∗
to (H∞)∗.

We also need the notion of unconditional weak summability. Let X be a Banach
space. A sequence (xn)n in X is said to be unconditionally weakly summable if for
any φ ∈ X∗, we have

∑∞
n=1 |φ(xn)| < ∞. This is equivalent to saying that there

exists C so that for all finite sequences (ε1, · · · , εn) with maxn |εn| ≤ 1, we have
that ||ε1x1 + · · · + εnxn|| < C (See [11] [Pg. 34]). The following proposition is
trivial.

Proposition 2.1. A sequence {fn}n in H∞(A) is unconditionally weakly summable
iff there is a constant C so that for every z ∈ A,

∑
n |fn(z)| < C.

3. Peak Sets for H∞(A)

The main ingredient in the proof of our main result is the following extension
of Amar and Lederer’s well known peak sets result. In this paper, the term “peak
set” will refer to :

Definition 3.1. A compact subset K of Ω is called a peak set for H∞ if there exists

an element f ∈ H∞ such that f̂(x) = 1 for every x ∈ K and |f̂(x)| < 1 for every
x ∈ X \K.

It is well known, see for instance [15], page 249 that the boundary values of a
Hinfty function on a simply connected domain cannot vanish on a set of positive
lebesgue measure. This implies that

Lemma 3.1. If the boundary values of a function f ∈ H∞ are zero on a set of
positive measure in Γ, then f ≡ 0 on A.

Proof. Suppose the boundary values of f are zero on a subset X of Γ. Choose a
simply connected domain B in A that has as part of its boundary, a subset of X
of non-zero measure. Then f must vanish on the domain B and hence must be
zero. �

Theorem 3.1. [Amar-Lederer Redux] Let K be a compact set in Ω so that m̂(K) =
0. Then, K is contained in a compact set F with m̂(F ) = 0 which is a peak set for
H∞.

Proof. Since m̂ is a regular measure on a totally disconnected set Ω, we can find

clopen sets Kn, so that K1 = Ω, Kn ⊃ Kn+1, Kn ⊃ K, and m̂(Kn) <
1

n3
and

m̂(Kn) > 0 for n ≥ 2. Since the sets {Kn}n are clopen, the characteristic functions
χKn

are continuous on Ω. Via the Gelfand transformation, we can find measurable
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subsets En of Γ such that E1 = Γ, En ⊃ En+1, ˆχEn = χKn , and m(En) < 1
n3 .

Actually note that by (2), we have m(En) = (̂m)(Kn). Let f =
∑∞
n=1 nχEn . By

the statement above f ∈ L1. Let Pz(ζ), for z ∈ A and ζ ∈ Γ be the Poisson Kernel
on A and define un as the Poisson transform of nχEn

,

un(z) =

∫
Γ

Pz(ζ)χEn
ds(ζ)

Let u =
∑
n un. By the the monotone convergence theorem, we have

u(z) =

∫
Γ

Pz(ζ)f(ζ)ds(ζ).

It is a standard fact, see for instance [8][Theorem II.2.5] that Pz(ζ) = −∂g(ζ, z)

∂nζ
,

where g(ζ, z) is the Green’s function for A. Further, since the Green’s function
g(ζ, z) is harmonic on a neighbourhood of Γ,thus real analytic, we conclude that for
any z in A, the function Pz(ζ) is continuous on Γ. In particular, u(z) is everywhere
finite on A. So by Harnack’s principle u is a harmonic function.

Let a1, · · · , an be points, fixed in the sequel, in the interior of the bounded
domains, bounded by Γ1, · · · ,Γn respectively. By [7] [proof of Theorem 4.2.3, page
80], there are real constants c1, · · · , cn so that u+

∑n
i=1 ci log |z − ai| has a (single

valued)harmonic conjugate v. Adding a real positive constant C if necessary we
can assume that the function

∑n
i=1 ci log |z − ai|+ C > 0 for all points in A. This

is clearly possible since the domain is bounded. This gives rise to the following
analytic function

g = ũ+ iv = u+

n∑
i=1

ci log |z − ai|+ C + iv

with positive real part.

Let k =
g

1 + g
. Since g has positive real part, k is a bounded analytic function

and thus, has non-tangential limits almost everywhere. We will show that for

m > 1, we have that |1− k| ≤ 1

1 +
m

3

almost everywhere on Em.

Pick a point ζ so that both k =
g

1 + g
and um(which is the Poisson transform

of a bounded function) have boundary values at ζ. We will show that |1− k(ζ)| ≤
1

1 +
m

3

. Suppose not: i.e. |1 − k(ζ)| > 1

1 +
m

3

. We can pick a non-tangential

neighbourhood B of ζ so that

(1) |1− k| > 1

1 +
m

3

on B.

(2) um >
2m

3
on B. This is possible since limz∈B,z→ζ un(z) = m.
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(1) implies the following: Since | 1

1 + g
| = |1 − g

1 + g
| = |1 − k|, we see that |1 +

g| < 1 +
m

3
on B. Since Re(g) > 0, we have that Re(g) <

m

3
. And since

u = Re(g)−
∑n
i=1 ci log |z − ai| − C1, we conclude that u <

m

3
on B.

From (2) : Since u ≥ um, we conclude that u >
2m

3
on B. We have a contradic-

tion.

Thus, |1− k| ≤ 1

1 +
m

3

almost everywhere on Em for m ≥ 1 and hence |1− k̂| ≤

1

1 +
m

3

on Km. This implies that k̂ takes value 1 on
⋂
nKn. Further, since k is

not identically 1 it follows from the above lemma that k is 1 on at most a set of m

measure zero and hence, k̂ is 1 on a set of m̂ measure at most 0. Thus, the set of

points F = {x ∈ Ω : k̂(x) = 1} is a set of m̂ measure 0 that contains E. Further, it

is the peak set for
1 + k̂

2
. �

We will use a consequence of this result, Proposition 3.1 in the proof of our main
theorem. The proof of this proposition is analogous to a theorem used by Ando in
the case of H∞(D), to prove uniqueness of predual, and so we omit the proof.

Proposition 3.1. If a measure ν on Ω is singular with respect to m̂, then there is
a compact subset F of Ω and a weakly summable sequence {gn} in H∞ so that

|ν|(Ω \ F ) = 0, and

∞∑
n=1

ĝn(ω) = χF (ω) (ω ∈ Ω) and

∞∑
n=1

gn(ζ) = 0 a.e. on Γ.

We will also use a result by Godefroy and Talagrand [Theorem 4 in [9]].

Theorem 3.2 (Godefroy-Talagrand). Let X = Y ∗ be a Banach space. Let C(Y )
be the set of all elements φ ∈ X∗ such that

∑
n

φ(xn) = φ(weak∗ limit

N∑
n=1

xn)

for every unconditionally summable sequence (xn)n in X. Then every predual of X
belongs to C(Y ). Here, we identify a predual of X with its canonical embedding in
X∗∗ = Y ∗

4. The predual of H∞

Once we have Theorem 3.1, the proof of the following theorem is analogous to
that of Ando’s. We provide it for the sake of completeness.

Theorem 4.1. H∞ has a unique predual.

1(recall that C was chosen so that
∑n

i=1 ci log |z − ai|+ C was positive)
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Proof. Let Y be a closed subspace of the dual H∞∗ so that the unit ball of H∞ is
compact with respect to σ(H∞, Y ). Let φ be an arbitrary element in Y and ν be
its representing measure.Then if ν = νa + νs is the Lebesgue decomposition of ν,
we write φ = φa + φs for the corresponding decomposition. Let h be an arbitrary
element in H∞. The proof is complete if we can show that φs(h) = 0.

Let E be the support of νs in Ω. Since νs is singular with respect to m̂, we have
m̂(E) = 0. By Proposition 3.1, there exist a set F ⊃ E with m̂(F ) = 0 and a
weakly summable sequence {gn} in H∞ so that

Supp(νs) ⊂ F,
∞∑
n=1

ĝn(ω) = χF (ω) for ω ∈ Ω and

∞∑
n=1

gn(ζ) = 0 a.e on Γ.

Thus,

φs(h) =

∫
Ω

ĥdνs =

∫
Ω

ĥχF dν =

∫
Ω

ĥ

∞∑
n=1

ĝndν.

By the dominated convergence theorem, we have

φs(h) =

∞∑
n=1

∫
Ω

ĥĝndν =

∞∑
n=1

φ(hgn).

Since
∑∞

1 gn = 0, with the limit taken weak*, we have that
∑∞
n=1 hgn has

weak* limit 0 as well. Further, since {gn}n is unconditionally weakly summable, so
is {hgn}n. By theorem (3.2), the subspace Y , being a predual, belongs to C(H∞∗).
Hence,

∑∞
n=1 φ(hgn) = 0. Then φs(h) = 0, which implies that Y ⊂ (H∞)∗. �

4.1. Two theorems on the space (H∞)∗. With Theorem(3.1) in hand, the proof
of Theorem (2) of Ando’s paper [2] applies without a change, to give us that the pro-
jection P is weak* sequentially continuous and induces an L-projection on (H∞)

∗
.

Theorem 4.2. The predual (H∞)∗ is the range of a weak∗ sequentially continuous
L-projection.

Ando proved in [2] that H∞ does not have a second predual. The same holds
in the case of finiteiy connected domains. Using the version of the Amar-Lederer’s
result in this paper, theorem(3.1), Ando’s proof applies without any other change.
We omit the proof.

Theorem 4.3. H∞ of a finitely connected domain has no second predual.
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