Definable soluble and nilpotent envelopes "around" subgroups in simple theory
1. Motivation

Theorem. G is an infinite group with small theory. Then G has an infinite abelian subgroup.

Conjecture (Smidt). Every infinite group has an infinite abelian subgroup.

False. (1968 Adian Novikov).

Definition. A **Tarski Monster** is an infinite (countable) group such that every proper subgroup is either $\{1\}$ or cyclic of order a prime p.

Fact (Ol’shanskii 1979). For every prime $p > 10^{75}$, there are 2^\aleph_0 non-isomorphic Tarski monsters.

Corollary. Any Tarski Monster has 2^\aleph_0 countable models sharing its theory, up to isomorphisms.
1. Motivation

Theorem. G is an infinite group with small theory. Then G has an infinite abelian subgroup.

Corollary (Wagner). G is a group with small and stable theory. Then G has a definable infinite abelian subgroup.

Proof. A infinite abelian. Take $Z(C(A))$.

Question. When can one find definable abelian groups around abelian subgroups?

Question. When can one find definable nilpotent/soluble groups around nilpotent/soluble subgroups?
2. What is known

Remark. If G has **dcc on centralisers**, and $A \leq G$ is abelian H, then $Z(C(A))$ is a definable abelian envelope of H.

Fact (Poizat). If G is **stable** and $H \leq G$ is n-nilpotent/n-soluble, H has a definable n-nilpotent/n-soluble envelope.

Fact (Shelah). If G has **NIP** and $A \leq G$ is abelian, A has a definable abelian envelope.

Fact (Aldama). If G has **NIP** and $H \leq G$ is n-nilpotent/normal n-soluble, H has a definable envelope with same property.

Fact (Altınel, Baginsky). If G has **dcc on centralisers** and $H \leq G$ is n-nilpotent, H has a definable n-nilpotent envelope.
3. Question

What happens if G has merely a simple theory? Can one find a definable abelian/nilpotent/soluble envelope of an abelian/nilpotent/soluble $H \leq G$?

The answer is no. But:

Proposition. If G is simple and $A \leq G$ is abelian, then A has a definable envelope which is abelian-by-finite.

Theorem A. If G is simple and $N \leq G$ is n-nilpotent, there is a definable $2n$-nilpotent group finitely many translates of which cover N.

Theorem B. If G is simple and $S \leq G$ is n-soluble, there is a definable $2n$-soluble group finitely many translates of which cover S.
4. Stable and simple definitions and properties

Definition. X is a definable subset of G, $\phi(x, y)$ a formula. The ϕ-Cantor-Bendixson rank of X:

- $\text{CB}(X, \phi) \geq 0$ if $X \neq \emptyset$,
- $\text{CB}(X, \phi) \geq n + 1$ if there are infinitely many 2-disjoint ϕ-sets X_1, X_2, \ldots with $\text{CB}(X_i \cap X, \phi) \geq n$.

Definition. G is stable if $\text{CB}(G, \phi)$ is finite for every formula ϕ.

Definition. X is a definable subset of G, $\phi(x, y)$ a formula, k a natural number. The $D(\ldots, \phi, k)$-Cantor rank of X:

- $D(X, \phi, k) \geq 0$ if $X \neq \emptyset$,
- $D(X, \phi, k) \geq n + 1$ if there are infinitely k-disjoint sets defined by $\phi(x, a_1), \phi(x, a_2), \ldots$ with $D(X_i \cap X, \phi, k) \geq n$.

Definition. G has a simple theory if $D(G, \phi, k)$ is finite for every formula ϕ and natural number k.
Remark. \(D(X, \phi, k) \leq CB(X, \phi) \): stability implies simplicity.

Fact (Baldwin Saxl’s chain condition). \(G \) is a group with stable theory, \(\phi(x, y) \) a formula. There is some \(n \) such that every descending chain of subgroups defined by \(\phi \)-formulae has no more than \(n \) elements.

Fact (Wagner’s chain condition). \(G \) is a group with simple theory, \(\phi(x, y) \) a formula. There is some \(n \) such that every descending chain of subgroups defined by \(\phi \)-formulae has no more than \(n \) elements, up to finite index.
4. Stable and simple definitions and properties

<table>
<thead>
<tr>
<th>In a stable theory</th>
<th>Analogue in a simple theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform dcc</td>
<td>Uniform dcc up to finite index</td>
</tr>
<tr>
<td>abelian groups</td>
<td>FC-groups (eg finite, abelian)</td>
</tr>
<tr>
<td>$C_G(H)$</td>
<td>$FC_G(H) = { g \in G : g^H \text{ is finite}}$ (Haimo, 1953)</td>
</tr>
<tr>
<td>$Z(H)$</td>
<td>$FC(G) = FC_G(G)$</td>
</tr>
<tr>
<td>$Z_{n+1}(G)$</td>
<td>$FC_{n+1}(G) \ (FC_{n+1}(G)/FC_n(G) = FC(G/FC_n(G))$</td>
</tr>
<tr>
<td>n-nilpotent</td>
<td>n-FC-nilpotent ($FC_n(G) = G$, Haimo) (eg finite, nilpotent)</td>
</tr>
<tr>
<td>n-soluble</td>
<td>n-FC-soluble (Duguid, McLain, 1956)</td>
</tr>
</tbody>
</table>

Proposition. G is a saturated group with simple theory, and H is a definable subgroup. Then $FC_G(H)$ is definable.
5. Main results

Theorem. Let G be a group with simple theory and N a subgroup of G. If N is FC-nilpotent of class n, then it is contained in a definable FC-nilpotent group of class n.

Theorem. Let G be a group with simple theory, and let S be a subgroup of G. If S is FC-soluble of class n, then it is contained in a definable FC-soluble group of class n the members of whose FC series are definable subgroups.

Fact (Wagner). In a group with simple theory, an FC-nilpotent definable subgroup is virtually-m-nilpotent, with $m \leq 2n$.

Proposition. In a group with simple theory, an FC-soluble definable subgroup is virtually-m-soluble, with $m \leq 2n$.
5. Main results

Corollary. If G is simple and N is n-nilpotent, there is a definable $2n$-nilpotent group finitely many translates of which cover N.

Corollary. If G is simple and S is n-soluble, there is a definable $2n$-soluble group finitely many translates of which cover S.

Corollary. In a group with simple theory, let N be a normal nilpotent subgroup of class n. There is a definable normal nilpotent group of class at most $3n$ containing N.

Corollary. In a group with simple theory, let S be a normal soluble subgroup of class n. There is a definable normal soluble group of class at most $3n$ containing S.
6. Next questions: nilpotent and soluble radical

In a group G, the **Fitting subgroup** $\text{Fit}(G)$ is the subgroup generated by all normal nilpotent subgroups of G. The **soluble radical** $R(G)$ is generated by all normal solvable subgroups of G.

Remark (Ould Houcine).

1. $\text{Fit}(G)$ is definable if and only if it is nilpotent.
2. $R(G)$ is definable if and only if it is solvable.

Question. In a group with simple theory, are $R(G)$ and $\text{Fit}(G)$ definable?

Fact (Wagner). *If G is stable, $\text{Fit}(G)$ is definable.*

Remark. Known for algebraic groups, groups of finite RM (Nesin).

Fact (Baudish). *If G is superstable, $R(G)$ is definable.*

Remark. Known for groups of finite RM (Belegradek), and groups of finite U-rank (Baldwin-Pillay).
Fact (Elwes, Jaligot, Macpherson, Ryten). G is a supersimple group of finite SU-rank such that T^{eq} eliminates \exists^∞. Then $R(G)$ is definable and soluble.

Question (Elwes, Jaligot, Macpherson, Ryten). G is a supersimple group of finite SU-rank such that T^{eq} eliminates \exists^∞. Is $Fit(G)$ definable and nilpotent?

Proposition. Yes, and one does not need to assume that T^{eq} eliminates \exists^∞.

Proposition. G is a supersimple group of finite SU-rank. Then $R(G)$ is definable and soluble.