Model-Theory of Fields: Background

David Pierce

2004.10.25

These notes are intended as a quick summary of first-order logic as used in model-theory and the model-theoretic study of fields. I originally wrote them for the algebra study group at METU in 2002, when we were looking at [3, ch. 6]. For less terse accounts, see [2] or [4] or even [1].
My notational conventions are these. The set of natural numbers is ω, and each natural number n is the set $\{0, \ldots, n-1\}$ of its predecessors. In particular, 0 is \varnothing. If $I \subseteq \omega$, and M is a set, then M^{I} is the set of functions from I to M. A typical element of M^{I} can be written $\left(a_{i}: i \in I\right)$ or just a or \vec{a}.
Model-theory begins with the distinctions indicated in the table on p. 2. Technical terms in bold are not defined further; those that are slanted, will be.
Formally, a structure with signature \mathcal{L} can be defined as a pair (M, \mathfrak{I}), where M is a set, and \mathfrak{I} is a function assigning an interpretation to each constant-, function- and relation-symbol in \mathcal{L}. (I may refer to relation-symbols as predicates, and to constant-symbols as constants.) The set M is called the universe of the structure. One rarely refers to \mathfrak{I} explicitly, but one may write the structure as \mathfrak{M} (in a more elaborate font) to indicate the presence of \mathfrak{I}.
The signature \mathcal{L}_{r} of (unital) rings and fields is

$$
\{+,-, \cdot, 0,1\},
$$

where + and \cdot are binary, and - is a unary, function-symbol, and 0 and 1 are constant-symbols. The signature $\mathcal{L}_{\text {or }}$ of ordered rings and fields contains also the binary relation-symbol \leqslant. To indicate explicitly that the integers are to be thought of as composing an ordered ring, one might write this structure as

$$
\left(\mathbb{Z},++^{\mathbb{Z}},-\mathbb{Z}, \mathbb{Z}^{\mathbb{Z}}, 0^{\mathbb{Z}}, 1^{\mathbb{Z}}, \leqslant^{\mathbb{Z}}\right) .
$$

However, the superscripts are rarely needed; one might write ($\mathbb{Z},+,-, \cdot, 0,1, \leqslant$), or just refer to 'the ordered ring \mathbb{Z} '.
Terms can be defined thus (here f is as in the table):
(*) Constant-symbols and variables are terms.
(\dagger) If t_{0}, \ldots, t_{n-1} are terms, then so is $f t_{0} \ldots t_{n-1}$.
If t is a term, and I is a subset of ω containing the indices of all variables appearing in t, then $t^{\mathfrak{M}}$ can be understood in the obvious way as a function from M^{I} to M.

Informally, letters like x, y and z stand for variables. The definition of 'term' uses the so-called Polish notation, which needs no brackets. Conventionally, binary symbols are written between their arguments, so that $+x y z$ is written $(x+y) \cdot z$. The manner of writing terms is not mathematically important; what is important is that a term of \mathcal{L} is an unambiguous recipe for constructing a function in each \mathcal{L}-structure.

For every commutative ring \mathfrak{A}, there is a unique homomorphism of \mathbb{Z} into \mathfrak{A}; the image of \mathbb{Z} in A is (the universe of) the prime ring of \mathfrak{A}. Every element of the prime ring is the interpretation of a term, namely $-(1+\cdots+1)$ or 0 or $1+\cdots+1$. Then every polynomial over the prime ring is the interpretation of a term of \mathcal{L}_{r}, and every term has such an interpretation in \mathfrak{A} (if A is infinite).

Table 1: Model-theoretic symbols and meanings

$\begin{aligned} & \text { IMAGE } \\ & \text { SYMBOL } \\ & \text { SYNTAX } \end{aligned}$	REALITY INTERPRETATION SEMANTICS
signature \mathcal{L}	\mathfrak{M}, an \mathcal{L}-structure
	OPERATIONS ON M :
$\begin{array}{r} \text { variable } v_{i} \\ \text { constant-symbol } c \\ n \text {-ary function-symbol } f \\ \hline \end{array}$	BASIC OPERATIONS: $\mathbf{a} \mapsto a_{i}: M^{I} \rightarrow M$, if $i \in I$ $c^{\mathfrak{M}}$, an element of M $f^{\mathfrak{M}}: M^{n} \rightarrow M$
term t	$t^{\text {M }}$, a composition of basic operations
LOGICAL SYMBOLS:	FUNCTIONS ON $\mathcal{P}\left(M^{I}\right)$
CONNECTIVES:	OPERATIONS:
\wedge	
\neg	$A \mapsto A^{\text {c }}$
\checkmark	
\rightarrow	$(A, B) \mapsto A^{\mathrm{c}} \cup B$
\leftrightarrow	$(A, B) \mapsto\left(A^{\mathrm{c}} \cup B\right) \cap\left(A \cup B^{\mathrm{c}}\right)$
QUANTIFIERS:	PROJECTIONS:
$\exists v_{i}$	$A \mapsto\left\{\left(a_{j}: j \in I \backslash\{i\}\right): \mathbf{a} \in A\right\}$
$\forall v_{i}$	$A \mapsto\left\{\left(a_{j}: j \in I \backslash\{i\}\right): \mathbf{a} \in A^{\mathrm{c}}\right\}^{\mathrm{c}}$
	RELATIONS ON M :
n-ary relation-symbol $=$	BASIC RELATIONS: equality $R^{\mathfrak{M}}$, a subset of M^{n}
FORMULAS:	DEFINABLE RELATIONS:
atomic formula α	$\alpha^{\mathfrak{M}}$, a solution-set
open formula β	$\beta^{\mathfrak{M}}$, a constructible set
formula ϕ	$\phi^{\mathfrak{M}}$
	true or false
\vdash	\vDash
\models	\subseteq

If we want to allow arbitrary coefficients from A, we introduce them into the signature. In general, if $B \subseteq M$, then $\mathcal{L}(B)$ is \mathcal{L} with a new constant-symbol for each element of B.

Atomic formulas take the form $\left(t_{0}=t_{1}\right)$ or $R t_{0} \ldots t_{n-1}$ (where R is as in the table; the latter formula is in Polish notation.) The corresponding interpretations in \mathfrak{M} are thus:

- $\left(t_{0}=t_{1}\right)^{\mathfrak{M}}$ is the inverse image of $\{(a, a): a \in M\}$ under $\left(t_{0}^{\mathfrak{M}}, t_{1}^{\mathfrak{M}}\right)$, and
- $\left(R t_{0} \ldots t_{n-1}\right)^{\mathfrak{M}}=\left(t_{0}^{\mathfrak{M}}, \ldots, t_{n-1}^{\mathfrak{M}}\right)^{-1} R^{\mathfrak{M}}$.

In \mathcal{L}_{r}, the atomic formulas correspond to polynomial equations over a prime ring; the interpretations of the formulas are the solution-sets of the equations. In $\mathcal{L}_{\text {or }}$, some atomic formulas correspond to inequalities.
In the propositional calculus, the connectives \wedge and \neg are adequate to symbolize every truth-table. In particular, one has the equivalences:

$$
P \vee Q \sim \neg P \wedge \neg Q ; \quad P \rightarrow Q \sim \neg P \vee Q ; \quad P \leftrightarrow Q \sim P \rightarrow Q \wedge Q \rightarrow P
$$

I shall use the arrows \Longrightarrow and \Longleftrightarrow not as formal symbols, but as abbreviations for ordinary expressions like 'implies' and 'if and only if' respectively.
Hence we can define open (or basic, or quantifier-free) formulas thus.
(*) Atomic formulas are open.
(\dagger) If α is open, then so is $\neg \alpha$.
(\ddagger) If α and β are open, then so is $(\alpha \wedge \beta)$.
Informally, redundant brackets can be omitted. (Or one can use Polish notation.)

Arbitrary formulas are defined as open formulas are, with an extra provision:
(§) If ϕ is a formula, then so is $(\exists x \phi)$ for any variable x.
For every formula ϕ, there is a set $\mathrm{fv}(\phi)$ of indices of its free variables, given thus:
$(*)$ If α is atomic, then $\operatorname{fv}(\alpha)$ is the set of indices of variables appearing in ϕ.
$(\dagger) \operatorname{fv}(\neg \phi)=\mathrm{fv}(\phi)$.
$(\ddagger) \operatorname{fv}(\phi \wedge \psi)=\mathrm{fv}(\phi) \cup \mathrm{fv}(\psi)$.
$(\S) \mathrm{fv}\left(\exists v_{i} \phi\right)=\mathrm{fv}(\phi) \backslash\{i\}$.
If $\operatorname{fv}(\phi)=n$, then ϕ can be written as $\phi\left(v_{0}, \ldots, v_{n-1}\right)$, and $\phi^{\mathfrak{M}}$ should be a subset of M^{n}. Indeed, we define:

- $(\neg \phi)^{\mathfrak{M}}=\left(\phi^{\mathfrak{M}}\right)^{\mathrm{c}} ;$
- $(\phi \wedge \psi)^{\mathfrak{M}}=\phi^{\mathfrak{M}} \cap \psi^{\mathfrak{M}}$;
- $\left(\exists v_{i} \phi\right)^{\mathfrak{M}}$ is the image of $\phi^{\mathfrak{M}}$ under $\mathbf{a} \mapsto\left(a_{j}: j \in I \backslash\{i\}\right): M^{I} \rightarrow M^{I \backslash\{i\}}$, where $\operatorname{fv}(\phi) \subseteq I$.
In \mathfrak{M}, the sets definable over \varnothing are the interpretations of formulas of \mathcal{L}. These sets are also called 0-definable. If $B \subseteq M$, then the B-definable sets are the interpretations of formulas of $\mathcal{L}(B)$. Usually definable means M-definable.

In algebraic geometry, if \mathfrak{K} is a field, then the constructible sets of \mathfrak{K} are the sets definable by open formulas of $\mathcal{L}_{\mathrm{r}}(K)$. Chevalley's Theorem [5, §4.4, p. 33] is that, if K is algebraically closed, then all definable sets of \mathfrak{K} are constructible.
A sentence is a formula with no free variables. If σ is a sentence, then $\sigma^{\mathfrak{M}}$ is a subset of M^{\varnothing}. But $M^{\varnothing}=\{\varnothing\}$, whose subsets are \varnothing and $\{\varnothing\}$, that is, 0 and 1, which can be considered as false and true respectively.
If $\sigma^{\mathfrak{M}}=1$, then we write

$$
\mathfrak{M} \models \sigma
$$

and say that \mathfrak{M} is a model of σ. In particular, if $\operatorname{fv}(\phi)=\{0\}$, then

$$
\mathfrak{M} \models \exists v_{0} \phi \Longleftrightarrow \phi^{\mathfrak{M}} \neq \varnothing .
$$

If Γ is a set of sentences, then the expression

$$
\mathfrak{M}=\Gamma
$$

has the obvious meaning. If $\mathfrak{M} \models \Gamma \Longrightarrow \mathfrak{M} \vDash \sigma$ for all \mathcal{L}-structures \mathfrak{M}, then we write

$$
\Gamma \models \sigma
$$

and say σ is a logical consequence of Γ. One can define a notion of formal proof, and write $\Gamma \vdash \sigma$ (' σ is deducible from Γ^{\prime}) when there is a formal proof of σ from Γ. Gödel's Completeness Theorem is that the symbols \vdash and \models are interchangeable.
A theory is a set of sentences that contains all of its logical consequences. If T is a theory, and $\Gamma \models T$, then Γ is a set of axioms for T.
In \mathcal{L}_{r}, the axioms for the (first-order) theory of fields are standard. They can be written in universal form, except for the axiom

$$
\forall x \exists y(x=0 \vee x y=1)
$$

The theory ACF of algebraically closed fields has the additional axioms

$$
\forall v_{0} \forall v_{1} \ldots \forall v_{n-1} \exists y v_{0}+v_{1} y+\ldots v_{n-1} x^{n-1}+y^{n}=0
$$

The model-theoretic version of Chevalley's Theorem is that ACF admits elimination of quantifiers, that is, for all positive n, for every n-ary formula ϕ of \mathcal{L}_{r}, there is an open formula α such that

$$
\mathrm{ACF} \models \forall v_{0} \ldots \forall v_{n-1}(\phi \leftrightarrow \alpha)
$$

One method of proof relies on the fact that a model of ACF is determined up to isomorphism by its characteristic and its transcendence-degree.

Ultra-products

Let $\left(\mathfrak{M}^{(i)}: i \in I\right)$ be an indexed set of \mathcal{L}-structures. We define a productstructure

$$
\prod_{i \in I} \mathfrak{M}^{(i)}
$$

or \mathfrak{M} for short, as follows. The universe, M, is the product $\prod_{i \in I} M^{(i)}$. A typical element of this is $\left(a^{(i)}: i \in I\right)$, or simply a. Then each $\mathfrak{M}^{(i)}$ is an $\mathcal{L}(M)$-structure when we define

$$
a^{\mathfrak{M}^{(i)}}=a^{(i)}
$$

For the symbols of \mathcal{L}, let this definition be a notational convention, so that $s^{(i)}$ means $s^{\mathfrak{M}^{(i)}}$ when $s \in \mathcal{L}$.
If σ is a sentence of $\mathcal{L}(M)$, then its Boolean value, $\|\sigma\|$, is defined to be the set

$$
\left\{i \in I: \mathfrak{M}^{(i)} \models \sigma\right\} .
$$

The map $\sigma \mapsto\|\sigma\|$ is a sort of homomorphism: $\|\sigma \wedge \tau\|=\|\sigma\| \cap\|\tau\|$ and $\|\neg \sigma\|=\|\sigma\|^{\mathrm{c}}$.
Having M, we define \mathfrak{M} by:

- $c^{\mathfrak{M}}=\left(c^{\mathfrak{M}^{(i)}}: i \in I\right)$,
- $f^{\mathfrak{M}}(\mathbf{a})=\left(f^{\mathfrak{M}^{(i)}}\left(\mathbf{a}^{(i)}\right): i \in I\right)$,
- $\mathbf{a} \in R^{\mathfrak{M}} \Longleftrightarrow\|R \mathbf{a}\|=I$.

Let \mathfrak{F} be a filter on I (that is, the dual of an ideal of $\mathcal{P}(I)$). Define an equivalencerelation \sim on M by:

$$
a \sim b \Longleftrightarrow\|a=b\| \in \mathfrak{F}
$$

(In case $\mathfrak{F}=\{I\}$, this relation is equality.) The reduced product $\mathfrak{M} / \mathfrak{F}$ has universe M / \sim, and:

- $c^{\mathfrak{M} / \mathfrak{F}}=c^{\mathfrak{M}} / \sim$,
- $f^{\mathfrak{M} / \mathfrak{F}}(\mathbf{a} / \sim)=f^{\mathfrak{M}}(\mathbf{a}) / \sim$,
- $(\mathbf{a} / \sim) \in R^{\mathfrak{M} / \mathfrak{F}} \Longleftrightarrow\|R \mathbf{a}\| \in \mathfrak{F}$.

The validity of this definition must be checked: If $\mathbf{a}, \mathbf{b} \in M^{n}$, then

$$
\left\|a_{0}=b_{0} \wedge \ldots \wedge a_{n-1}=b_{n-1}\right\| \subseteq\|f(\mathbf{a})=f(\mathbf{b})\|
$$

so $\mathbf{a} \sim \mathbf{b} \Longrightarrow f(\mathbf{a}) \sim f(\mathbf{b})$. Also,

$$
\left\|a_{0}=b_{0} \wedge \ldots \wedge a_{n-1}=b_{n-1}\right\| \cap\|R \mathbf{a}\| \subseteq\|R \mathbf{b}\|
$$

so $\mathbf{a} \sim \mathbf{b} \wedge\|R \mathbf{a}\| \in \mathfrak{F} \Longrightarrow\|R \mathbf{b}\| \in \mathfrak{F}$.
Lemma. Say $\sigma_{e}(e<2)$ are sentences of $\mathcal{L}(M)$ such that

$$
\mathfrak{M} / \mathfrak{F} \models \sigma_{e} \Longleftrightarrow\left\|\sigma_{e}\right\| \in \mathfrak{F}
$$

in each case. Then $\mathfrak{M} / \mathfrak{F} \models \sigma_{0} \wedge \sigma_{1} \Longleftrightarrow\left\|\sigma_{0} \wedge \sigma_{1}\right\| \in \mathfrak{F}$.
Proof. $\left\|\sigma_{0}\right\| \cap\left\|\sigma_{1}\right\|=\left\|\sigma_{0} \wedge \sigma_{1}\right\| \subseteq\left\|\sigma_{e}\right\|$.
Lemma. Say ϕ is a formula of $\mathcal{L}(M)$ with one free variable, and

$$
\mathfrak{M} / \mathfrak{F} \models \phi(a) \Longleftrightarrow\|\phi(a)\| \in \mathfrak{F}
$$

for all a in M. Then $\mathfrak{M} / \mathfrak{F} \models \exists x \phi \Longleftrightarrow\|\exists x \phi\| \in \mathfrak{F}$.

Proof. $\|\phi(a)\| \subseteq\|\exists x \phi\|$ for all a in M. Also, there a in M such that $\mathfrak{M}^{(i)} \models \phi(a)$ if $\mathfrak{M}^{(i)} \vDash \exists x \phi$. Then $\|\phi(a)\|=\|\exists x \phi\|$.

Theorem (Łoś). If \mathfrak{U} is an ultrafilter on I, then

$$
\begin{equation*}
\mathfrak{M} / \mathfrak{U} \mid=\sigma \Longleftrightarrow\|\sigma\| \in \mathfrak{U} \tag{1}
\end{equation*}
$$

for all sentences σ of $\mathcal{L}(M)$.

Proof. Since all sentences are constructed from atomic formulas using only \wedge, \exists and \neg, it is enough to note that if (1) holds when $\sigma=\theta$, then it holds when $\sigma=\neg \theta$.

Corollary (Compactness). If every finite subset of a theory T has a model, then T has a model.

Proof. Let I comprise the finite subsets of T. Each Γ in I determines a filter (Γ), namely the set

$$
\left\{\Gamma^{\prime} \in I: \Gamma \subseteq \Gamma^{\prime}\right\}
$$

Any finite collection $\left\{\left(\Gamma_{0}\right), \ldots,\left(\Gamma_{m-1}\right)\right\}$ of subsets of I has intersection containing $\Gamma_{0} \cup \cdots \cup \Gamma_{m-1}$; so the intersection is non-empty. Hence some ultrafilter \mathfrak{U} on I contains each (Γ). For each Γ in I, let $\mathfrak{M}^{(\Gamma)}$ be a model of Γ. If $\sigma \in T$, then $(\{\sigma\}) \subseteq\|\sigma\|$, so $\|\sigma\| \in \mathfrak{U}$. By the theorem of Łoś, $\prod_{\Gamma \in I} \mathfrak{M}^{(\Gamma)} / \mathfrak{U} \models T$.

Let T be the set of sentences of \mathcal{L} such that $\|\sigma\| \in \mathfrak{F}$. If \mathfrak{U} is an ultrafilter on I that includes \mathfrak{F}, then

$$
\mathfrak{M} / \mathfrak{U} \models T .
$$

Conversely, suppose $\mathfrak{N} \models T$. The set $\{\|\sigma\|: \mathfrak{N} \models \sigma\}$ is closed under finite intersection. Also, if $\mathfrak{N} \models \sigma$, then $\|\sigma\|^{c} \notin \mathfrak{F}$. Hence $\{\|\sigma\|: \mathfrak{N} \models \sigma\} \cup \mathfrak{F}$ is included in an ultrafilter \mathfrak{U}, such that

$$
\mathfrak{N} \models \sigma \Longleftrightarrow\|\sigma\| \in \mathfrak{U} \Longleftrightarrow \mathfrak{M} / \mathfrak{U} \models \sigma
$$

for all sentences σ of \mathcal{L}. We write

$$
\mathfrak{N} \equiv \mathfrak{M} / \mathfrak{U}
$$

and say that \mathfrak{N} and $\mathfrak{M} / \mathfrak{U}$ are elementarily equivalent.
Example. Let T be the set of sentences of \mathcal{L}_{r}, each of which is true in all but finitely many finite fields. Then

$$
\prod_{q \in I} \mathbb{F}_{q} / \mathfrak{U} \models T
$$

where I is the set of prime powers, for all non-principal ultrafilters \mathfrak{U} on I. Conversely, every model of T is elementarily equivalent to such an ultraproduct.

References

[1] Elisabeth Bouscaren, editor. Model theory and algebraic geometry, volume 1696 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1998. An introduction to E. Hrushovski's proof of the geometric Mordell-Lang conjecture.
[2] C. C. Chang and H. J. Keisler. Model theory, volume 73 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, third edition, 1990.
[3] Michael D. Fried and Moshe Jarden. Field arithmetic, volume 11 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1986.
[4] Wilfrid Hodges. Model theory, volume 42 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1993.
[5] James E. Humphreys. Linear algebraic groups. Springer-Verlag, New York, 1975. Graduate Texts in Mathematics, No. 21.

