Model-Theory of Fields: Background

David Pierce

2004.10.25

These notes are intended as a quick summary of first-order logic as used in model-theory and the model-theoretic study of fields. I originally wrote them for the algebra study group at METU in 2002, when we were looking at [3, ch. 6]. For less terse accounts, see [2] or [4] or even [1].

My notational conventions are these. The set of natural numbers is ω , and each natural number n is the set $\{0, \ldots, n-1\}$ of its predecessors. In particular, 0 is \emptyset . If $I \subseteq \omega$, and M is a set, then M^I is the set of functions from I to M. A typical element of M^I can be written $(a_i : i \in I)$ or just **a** or \vec{a} .

Model-theory begins with the distinctions indicated in the table on p. 2. Technical terms in **bold** are not defined further; those that are *slanted*, will be.

Formally, a **structure** with **signature** \mathcal{L} can be defined as a pair (M, \mathfrak{I}) , where M is a set, and \mathfrak{I} is a function assigning an interpretation to each constant-, function- and relation-symbol in \mathcal{L} . (I may refer to relation-symbols as **predicates**, and to constant-symbols as **constants**.) The set M is called the **universe** of the structure. One rarely refers to \mathfrak{I} explicitly, but one may write the structure as \mathfrak{M} (in a more elaborate font) to indicate the presence of \mathfrak{I} .

The signature \mathcal{L}_r of (unital) rings and fields is

$$\{+, -, \cdot, 0, 1\},\$$

where + and \cdot are binary, and - is a unary, function-symbol, and 0 and 1 are constant-symbols. The signature \mathcal{L}_{or} of ordered rings and fields contains also the binary relation-symbol \leq . To indicate explicitly that the integers are to be thought of as composing an ordered ring, one might write this structure as

$$(\mathbb{Z}, +^{\mathbb{Z}}, -^{\mathbb{Z}}, \cdot^{\mathbb{Z}}, 0^{\mathbb{Z}}, 1^{\mathbb{Z}}, \leqslant^{\mathbb{Z}}).$$

However, the superscripts are rarely needed; one might write $(\mathbb{Z}, +, -, \cdot, 0, 1, \leq)$, or just refer to 'the ordered ring \mathbb{Z} '.

Terms can be defined thus (here f is as in the table):

- (*) Constant-symbols and variables are terms.
- (†) If t_0, \ldots, t_{n-1} are terms, then so is $ft_0 \ldots t_{n-1}$.

If t is a term, and I is a subset of ω containing the indices of all variables appearing in t, then $t^{\mathfrak{M}}$ can be understood in the obvious way as a function from M^{I} to M.

Informally, letters like x, y and z stand for variables. The definition of 'term' uses the so-called Polish notation, which needs no brackets. Conventionally, binary symbols are written between their arguments, so that $\cdot + x y z$ is written $(x+y) \cdot z$. The manner of writing terms is not mathematically important; what is important is that a term of \mathcal{L} is an unambiguous recipe for constructing a function in each \mathcal{L} -structure.

For every commutative ring \mathfrak{A} , there is a unique homomorphism of \mathbb{Z} into \mathfrak{A} ; the image of \mathbb{Z} in A is (the universe of) the **prime ring** of \mathfrak{A} . Every element of the prime ring is the interpretation of a term, namely $-(1 + \cdots + 1)$ or 0 or $1 + \cdots + 1$. Then every polynomial over the prime ring is the interpretation of a term of \mathcal{L}_r , and every term has such an interpretation in \mathfrak{A} (if A is infinite).

IMAGE	REALITY
SYMBOL	INTERPRETATION
SYNTAX	SEMANTICS
signature \mathcal{L}	\mathfrak{M} , an \mathcal{L} -structure
	OPERATIONS ON M :
	BASIC OPERATIONS:
variable v_i	$\mathbf{a} \mapsto a_i : M^I \to M$, if $i \in I$
$\mathbf{constant}$ -symbol c	$c^{\mathfrak{M}}$, an element of M
n-ary function-symbol f	$f^{\mathfrak{M}}: M^n \to M$
term t	$t^{\mathfrak{M}}$, a composition of basic operations
LOGICAL SYMBOLS:	FUNCTIONS ON $\mathcal{P}(M^{I})$
CONNECTIVES:	OPERATIONS:
∧	\cap
	$A \mapsto A^{c}$
V	U
\rightarrow	$(A,B)\mapsto A^{\mathbf{c}}\cup B$
\leftrightarrow	$(A,B) \mapsto (A^{c} \cup B) \cap (A \cup B^{c})$
QUANTIFIERS:	PROJECTIONS:
$\exists v_i$	$A \mapsto \{(a_j : j \in I \smallsetminus \{i\}) : \mathbf{a} \in A\}$
$\forall v_i$	$A \mapsto \{(a_j : j \in I \smallsetminus \{i\}) : \mathbf{a} \in A^c\}^c$
	RELATIONS ON M :
	BASIC RELATIONS:
=	equality
<i>n</i> -ary relation-symbol <i>R</i>	$R^{\mathfrak{M}}$, a subset of M^n
FORMULAS:	DEFINABLE RELATIONS:
atomic formula α	$\alpha^{\mathfrak{M}}$, a solution-set
open formula β	$\beta_{\infty}^{\mathfrak{M}}$, a constructible set
formula ϕ	$\phi^{\mathfrak{M}}$
sentence	true or false
<u>⊢</u>	
	\subseteq

Table 1: Model-theoretic symbols and meanings

If we want to allow arbitrary coefficients from A, we introduce them into the signature. In general, if $B \subseteq M$, then $\mathcal{L}(B)$ is \mathcal{L} with a new constant-symbol for each element of B.

Atomic formulas take the form $(t_0 = t_1)$ or $Rt_0 \dots t_{n-1}$ (where R is as in the table; the latter formula is in Polish notation.) The corresponding interpretations in \mathfrak{M} are thus:

- $(t_0 = t_1)^{\mathfrak{M}}$ is the inverse image of $\{(a, a) : a \in M\}$ under $(t_0^{\mathfrak{M}}, t_1^{\mathfrak{M}})$, and
- $(Rt_0 \dots t_{n-1})^{\mathfrak{M}} = (t_0^{\mathfrak{M}}, \dots, t_{n-1}^{\mathfrak{M}})^{-1} R^{\mathfrak{M}}.$

In \mathcal{L}_{r} , the atomic formulas correspond to polynomial equations over a prime ring; the interpretations of the formulas are the solution-sets of the equations. In \mathcal{L}_{or} , some atomic formulas correspond to inequalities.

In the propositional calculus, the connectives \land and \neg are adequate to symbolize every truth-table. In particular, one has the equivalences:

$$P \lor Q \sim \neg P \land \neg Q; \quad P \to Q \sim \neg P \lor Q; \quad P \leftrightarrow Q \sim P \to Q \land Q \to P.$$

I shall use the arrows \implies and \iff not as formal symbols, but as abbreviations for ordinary expressions like 'implies' and 'if and only if' respectively.

Hence we can define **open** (or **basic**, or **quantifier-free**) formulas thus.

- (*) Atomic formulas are open.
- (†) If α is open, then so is $\neg \alpha$.
- (‡) If α and β are open, then so is $(\alpha \land \beta)$.

Informally, redundant brackets can be omitted. (Or one can use Polish notation.)

Arbitrary formulas are defined as open formulas are, with an extra provision:

(§) If ϕ is a formula, then so is $(\exists x \phi)$ for any variable x.

For every formula ϕ , there is a set $fv(\phi)$ of indices of its **free variables**, given thus:

- (*) If α is atomic, then $fv(\alpha)$ is the set of indices of variables appearing in ϕ .
- (†) $\operatorname{fv}(\neg \phi) = \operatorname{fv}(\phi)$.
- (‡) $\operatorname{fv}(\phi \land \psi) = \operatorname{fv}(\phi) \cup \operatorname{fv}(\psi).$
- (§) $\operatorname{fv}(\exists v_i \phi) = \operatorname{fv}(\phi) \smallsetminus \{i\}.$

If $fv(\phi) = n$, then ϕ can be written as $\phi(v_0, \ldots, v_{n-1})$, and $\phi^{\mathfrak{M}}$ should be a subset of M^n . Indeed, we define:

- $(\neg \phi)^{\mathfrak{M}} = (\phi^{\mathfrak{M}})^{\mathrm{c}};$
- $(\phi \wedge \psi)^{\mathfrak{M}} = \phi^{\mathfrak{M}} \cap \psi^{\mathfrak{M}};$
- $(\exists v_i \ \phi)^{\mathfrak{M}}$ is the image of $\phi^{\mathfrak{M}}$ under $\mathbf{a} \mapsto (a_j : j \in I \setminus \{i\}) : M^I \to M^{I \setminus \{i\}}$, where $\mathrm{fv}(\phi) \subseteq I$.

In \mathfrak{M} , the sets **definable over** \varnothing are the interpretations of formulas of \mathcal{L} . These sets are also called 0-definable. If $B \subseteq M$, then the *B*-definable sets are the interpretations of formulas of $\mathcal{L}(B)$. Usually **definable** means *M*-definable.

In algebraic geometry, if \mathfrak{K} is a field, then the **constructible** sets of \mathfrak{K} are the sets definable by open formulas of $\mathcal{L}_{\mathbf{r}}(K)$. Chevalley's Theorem [5, § 4.4, p. 33] is that, if K is algebraically closed, then all definable sets of \mathfrak{K} are constructible.

A sentence is a formula with no free variables. If σ is a sentence, then $\sigma^{\mathfrak{M}}$ is a subset of M^{\varnothing} . But $M^{\varnothing} = \{\emptyset\}$, whose subsets are \emptyset and $\{\emptyset\}$, that is, 0 and 1, which can be considered as **false** and **true** respectively.

If $\sigma^{\mathfrak{M}} = 1$, then we write

 $\mathfrak{M}\models\sigma$

and say that \mathfrak{M} is a **model** of σ . In particular, if $fv(\phi) = \{0\}$, then

$$\mathfrak{M} \models \exists v_0 \ \phi \iff \phi^{\mathfrak{M}} \neq \varnothing.$$

If Γ is a set of sentences, then the expression

$$\mathfrak{M}\models\Gamma$$

has the obvious meaning. If $\mathfrak{M} \models \Gamma \implies \mathfrak{M} \models \sigma$ for all \mathcal{L} -structures \mathfrak{M} , then we write

 $\Gamma\models\sigma$

and say σ is a **logical consequence** of Γ . One can define a notion of formal proof, and write $\Gamma \vdash \sigma$ (' σ is deducible from Γ ') when there is a formal proof of σ from Γ . **Gödel's Completeness Theorem** is that the symbols \vdash and \models are interchangeable.

A **theory** is a set of sentences that contains all of its logical consequences. If T is a theory, and $\Gamma \models T$, then Γ is a set of **axioms** for T.

In \mathcal{L}_r , the axioms for the (first-order) theory of fields are standard. They can be written in *universal* form, except for the axiom

$$\forall x \; \exists y \; (x = 0 \lor xy = 1).$$

The theory ACF of algebraically closed fields has the additional axioms

$$\forall v_0 \ \forall v_1 \dots \forall v_{n-1} \ \exists y \ v_0 + v_1 y + \dots + v_{n-1} x^{n-1} + y^n = 0.$$

The model-theoretic version of Chevalley's Theorem is that ACF admits elimination of quantifiers, that is, for all *positive* n, for every *n*-ary formula ϕ of $\mathcal{L}_{\mathbf{r}}$, there is an open formula α such that

$$ACF \models \forall v_0 \dots \forall v_{n-1} \ (\phi \leftrightarrow \alpha).$$

One method of proof relies on the fact that a model of ACF is determined up to isomorphism by its characteristic and its transcendence-degree.

Ultra-products

Let $(\mathfrak{M}^{(i)}: i \in I)$ be an indexed set of \mathcal{L} -structures. We define a product-structure

$$\prod_{i\in I}\mathfrak{M}^{(i)},$$

or \mathfrak{M} for short, as follows. The universe, M, is the product $\prod_{i \in I} M^{(i)}$. A typical element of this is $(a^{(i)} : i \in I)$, or simply a. Then each $\mathfrak{M}^{(i)}$ is an $\mathcal{L}(M)$ -structure when we define

$$a^{\mathfrak{M}^{(i)}} = a^{(i)}.$$

For the symbols of \mathcal{L} , let this definition be a notational convention, so that $s^{(i)}$ means $s^{\mathfrak{M}^{(i)}}$ when $s \in \mathcal{L}$.

If σ is a sentence of $\mathcal{L}(M)$, then its **Boolean value**, $\|\sigma\|$, is defined to be the set

$$\{i \in I : \mathfrak{M}^{(i)} \models \sigma\}.$$

The map $\sigma \mapsto \|\sigma\|$ is a sort of homomorphism: $\|\sigma \wedge \tau\| = \|\sigma\| \cap \|\tau\|$ and $\|\neg\sigma\| = \|\sigma\|^{c}$.

Having M, we define \mathfrak{M} by:

- $c^{\mathfrak{M}} = (c^{\mathfrak{M}^{(i)}} : i \in I),$ • $f^{\mathfrak{M}}(\mathbf{a}) = (f^{\mathfrak{M}^{(i)}}(\mathbf{a}^{(i)}) : i \in I),$
- $\mathbf{a} \in R^{\mathfrak{M}} \iff ||R\mathbf{a}|| = I.$

Let \mathfrak{F} be a filter on I (that is, the dual of an ideal of $\mathfrak{P}(I)$). Define an equivalencerelation \sim on M by:

$$a \sim b \iff ||a = b|| \in \mathfrak{F}.$$

(In case $\mathfrak{F} = \{I\}$, this relation is equality.) The **reduced product** $\mathfrak{M}/\mathfrak{F}$ has universe M/\sim , and:

- $c^{\mathfrak{M}/\mathfrak{F}} = c^{\mathfrak{M}}/\sim,$
- $f^{\mathfrak{M}/\mathfrak{F}}(\mathbf{a}/\sim) = f^{\mathfrak{M}}(\mathbf{a})/\sim,$
- $(\mathbf{a}/\sim) \in R^{\mathfrak{M}/\mathfrak{F}} \iff ||R\mathbf{a}|| \in \mathfrak{F}.$

The validity of this definition must be checked: If $\mathbf{a}, \mathbf{b} \in M^n$, then

$$||a_0 = b_0 \land \ldots \land a_{n-1} = b_{n-1}|| \subseteq ||f(\mathbf{a}) = f(\mathbf{b})||$$

so $\mathbf{a} \sim \mathbf{b} \implies f(\mathbf{a}) \sim f(\mathbf{b})$. Also,

$$||a_0 = b_0 \wedge \ldots \wedge a_{n-1} = b_{n-1}|| \cap ||R\mathbf{a}|| \subseteq ||R\mathbf{b}||,$$

so $\mathbf{a} \sim \mathbf{b} \wedge \|R\mathbf{a}\| \in \mathfrak{F} \implies \|R\mathbf{b}\| \in \mathfrak{F}$.

Lemma. Say σ_e (e < 2) are sentences of $\mathcal{L}(M)$ such that

$$\mathfrak{M}/\mathfrak{F}\models\sigma_e\iff \|\sigma_e\|\in\mathfrak{F}$$

in each case. Then $\mathfrak{M}/\mathfrak{F} \models \sigma_0 \wedge \sigma_1 \iff \|\sigma_0 \wedge \sigma_1\| \in \mathfrak{F}$.

Proof. $\|\sigma_0\| \cap \|\sigma_1\| = \|\sigma_0 \wedge \sigma_1\| \subseteq \|\sigma_e\|.$

Lemma. Say ϕ is a formula of $\mathcal{L}(M)$ with one free variable, and

$$\mathfrak{M}/\mathfrak{F} \models \phi(a) \iff \|\phi(a)\| \in \mathfrak{F}$$

for all a in M. Then $\mathfrak{M}/\mathfrak{F} \models \exists x \ \phi \iff \|\exists x \ \phi\| \in \mathfrak{F}$.

Proof. $\|\phi(a)\| \subseteq \|\exists x \ \phi\|$ for all a in M. Also, there a in M such that $\mathfrak{M}^{(i)} \models \phi(a)$ if $\mathfrak{M}^{(i)} \models \exists x \ \phi$. Then $\|\phi(a)\| = \|\exists x \ \phi\|$.

Theorem (Loś). If \mathfrak{U} is an ultrafilter on I, then

$$\mathfrak{M}/\mathfrak{U}\models\sigma\iff \|\sigma\|\in\mathfrak{U}\tag{1}$$

for all sentences σ of $\mathcal{L}(M)$.

Proof. Since all sentences are constructed from atomic formulas using only \land , \exists and \neg , it is enough to note that if (1) holds when $\sigma = \theta$, then it holds when $\sigma = \neg \theta$.

Corollary (Compactness). If every finite subset of a theory T has a model, then T has a model.

Proof. Let I comprise the finite subsets of T. Each Γ in I determines a filter (Γ) , namely the set

$$\{\Gamma' \in I : \Gamma \subseteq \Gamma'\}$$

Any finite collection $\{(\Gamma_0), \ldots, (\Gamma_{m-1})\}$ of subsets of I has intersection containing $\Gamma_0 \cup \cdots \cup \Gamma_{m-1}$; so the intersection is non-empty. Hence some ultrafilter \mathfrak{U} on I contains each (Γ) . For each Γ in I, let $\mathfrak{M}^{(\Gamma)}$ be a model of Γ . If $\sigma \in T$, then $(\{\sigma\}) \subseteq ||\sigma||$, so $||\sigma|| \in \mathfrak{U}$. By the theorem of Los, $\prod_{\Gamma \in I} \mathfrak{M}^{(\Gamma)}/\mathfrak{U} \models T$. \Box

Let T be the set of sentences of \mathcal{L} such that $\|\sigma\| \in \mathfrak{F}$. If \mathfrak{U} is an ultrafilter on I that includes \mathfrak{F} , then

$$\mathfrak{M}/\mathfrak{U}\models T.$$

Conversely, suppose $\mathfrak{N} \models T$. The set $\{ \|\sigma\| : \mathfrak{N} \models \sigma \}$ is closed under finite intersection. Also, if $\mathfrak{N} \models \sigma$, then $\|\sigma\|^c \notin \mathfrak{F}$. Hence $\{ \|\sigma\| : \mathfrak{N} \models \sigma \} \cup \mathfrak{F}$ is included in an ultrafilter \mathfrak{U} , such that

$$\mathfrak{N}\models\sigma\iff \|\sigma\|\in\mathfrak{U}\iff\mathfrak{M}/\mathfrak{U}\models\sigma$$

for all sentences σ of \mathcal{L} . We write

$$\mathfrak{N} \equiv \mathfrak{M}/\mathfrak{U},$$

and say that \mathfrak{N} and $\mathfrak{M}/\mathfrak{U}$ are elementarily equivalent.

Example. Let T be the set of sentences of \mathcal{L}_{r} , each of which is true in all but finitely many finite fields. Then

$$\prod_{q\in I} \mathbb{F}_q/\mathfrak{U}\models T,$$

where I is the set of prime powers, for all non-principal ultrafilters \mathfrak{U} on I. Conversely, every model of T is elementarily equivalent to such an **ultraproduct**.

References

- Elisabeth Bouscaren, editor. Model theory and algebraic geometry, volume 1696 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1998. An introduction to E. Hrushovski's proof of the geometric Mordell-Lang conjecture.
- [2] C. C. Chang and H. J. Keisler. Model theory, volume 73 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, third edition, 1990.
- [3] Michael D. Fried and Moshe Jarden. Field arithmetic, volume 11 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1986.
- [4] Wilfrid Hodges. *Model theory*, volume 42 of *Encyclopedia of Mathematics* and its Applications. Cambridge University Press, Cambridge, 1993.
- [5] James E. Humphreys. *Linear algebraic groups*. Springer-Verlag, New York, 1975. Graduate Texts in Mathematics, No. 21.