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These notes are intended as a quick summary of first-order logic as used in
model-theory and the model-theoretic study of fields. I originally wrote them
for the algebra study group at METU in 2002, when we were looking at [3, ch.
6]. For less terse accounts, see [2] or [4] or even [1].

My notational conventions are these. The set of natural numbers is ω, and each
natural number n is the set {0, . . . , n − 1} of its predecessors. In particular, 0
is ∅. If I ⊆ ω, and M is a set, then M I is the set of functions from I to M . A
typical element of M I can be written (ai : i ∈ I) or just a or ~a.

Model-theory begins with the distinctions indicated in the table on p. 2. Tech-
nical terms in bold are not defined further; those that are slanted, will be.

Formally, a structure with signature L can be defined as a pair (M, I), where
M is a set, and I is a function assigning an interpretation to each constant-,
function- and relation-symbol in L. (I may refer to relation-symbols as pred-
icates, and to constant-symbols as constants.) The set M is called the uni-
verse of the structure. One rarely refers to I explicitly, but one may write the
structure as M (in a more elaborate font) to indicate the presence of I.

The signature Lr of (unital) rings and fields is

{+,−, ·, 0, 1},

where + and · are binary, and − is a unary, function-symbol, and 0 and 1 are
constant-symbols. The signature Lor of ordered rings and fields contains also
the binary relation-symbol 6. To indicate explicitly that the integers are to be
thought of as composing an ordered ring, one might write this structure as

(Z,+Z,−Z, ·Z, 0Z, 1Z,6Z).

However, the superscripts are rarely needed; one might write (Z,+,−, ·, 0, 1,6),
or just refer to ‘the ordered ring Z’.

Terms can be defined thus (here f is as in the table):

(∗) Constant-symbols and variables are terms.

(†) If t0, . . . , tn−1 are terms, then so is ft0 . . . tn−1.

If t is a term, and I is a subset of ω containing the indices of all variables
appearing in t, then tM can be understood in the obvious way as a function
from M I to M .
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Informally, letters like x, y and z stand for variables. The definition of ‘term’
uses the so-called Polish notation, which needs no brackets. Conventionally,
binary symbols are written between their arguments, so that ·+x y z is written
(x+ y) · z. The manner of writing terms is not mathematically important; what
is important is that a term of L is an unambiguous recipe for constructing a
function in each L-structure.

For every commutative ring A, there is a unique homomorphism of Z into A;
the image of Z in A is (the universe of) the prime ring of A. Every element
of the prime ring is the interpretation of a term, namely −(1 + · · ·+ 1) or 0 or
1 + · · ·+ 1. Then every polynomial over the prime ring is the interpretation of
a term of Lr, and every term has such an interpretation in A (if A is infinite).

Table 1: Model-theoretic symbols and meanings

IMAGE REALITY
SYMBOL INTERPRETATION
SYNTAX SEMANTICS

signature L M, an L-structure

OPERATIONS ON M :
basic operations:

variable vi a 7→ ai : M I →M , if i ∈ I
constant-symbol c cM, an element of M

n-ary function-symbol f fM : Mn →M
term t tM, a composition of basic operations

LOGICAL SYMBOLS: FUNCTIONS ON P(M I)
connectives: operations:

∧ ∩
¬ A 7→ Ac

∨ ∪
→ (A,B) 7→ Ac ∪B
↔ (A,B) 7→ (Ac ∪B) ∩ (A ∪Bc)

quantifiers: projections:
∃vi A 7→ {(aj : j ∈ I r {i}) : a ∈ A}
∀vi A 7→ {(aj : j ∈ I r {i}) : a ∈ Ac}c

RELATIONS ON M :
basic relations:

= equality
n-ary relation-symbol R RM, a subset of Mn

formulas: definable relations:
atomic formula α αM, a solution-set

open formula β βM, a constructible set
formula φ φM

sentence true or false
` |=
|= ⊆



Model-theory summary, 2004.10.25 3

If we want to allow arbitrary coefficients from A, we introduce them into the
signature. In general, if B ⊆ M , then L(B) is L with a new constant-symbol
for each element of B.

Atomic formulas take the form (t0 = t1) or Rt0 . . . tn−1 (where R is as in the ta-
ble; the latter formula is in Polish notation.) The corresponding interpretations
in M are thus:

• (t0 = t1)M is the inverse image of {(a, a) : a ∈M} under (tM0 , tM1 ), and

• (Rt0 . . . tn−1)M = (tM0 , . . . , tMn−1)−1RM.

In Lr, the atomic formulas correspond to polynomial equations over a prime
ring; the interpretations of the formulas are the solution-sets of the equations.
In Lor, some atomic formulas correspond to inequalities.

In the propositional calculus, the connectives ∧ and ¬ are adequate to symbolize
every truth-table. In particular, one has the equivalences:

P ∨Q ∼ ¬P ∧ ¬Q; P → Q ∼ ¬P ∨Q; P ↔ Q ∼ P → Q ∧ Q→ P.

I shall use the arrows =⇒ and ⇐⇒ not as formal symbols, but as abbreviations
for ordinary expressions like ‘implies’ and ‘if and only if’ respectively.

Hence we can define open (or basic, or quantifier-free) formulas thus.

(∗) Atomic formulas are open.

(†) If α is open, then so is ¬α.

(‡) If α and β are open, then so is (α ∧ β).

Informally, redundant brackets can be omitted. (Or one can use Polish nota-
tion.)

Arbitrary formulas are defined as open formulas are, with an extra provision:

(§) If φ is a formula, then so is (∃x φ) for any variable x.

For every formula φ, there is a set fv(φ) of indices of its free variables, given
thus:

(∗) If α is atomic, then fv(α) is the set of indices of variables appearing in φ.

(†) fv(¬φ) = fv(φ).

(‡) fv(φ ∧ ψ) = fv(φ) ∪ fv(ψ).

(§) fv(∃vi φ) = fv(φ)r {i}.
If fv(φ) = n, then φ can be written as φ(v0, . . . , vn−1), and φM should be a
subset of Mn. Indeed, we define:

• (¬φ)M = (φM)c;

• (φ ∧ ψ)M = φM ∩ ψM;

• (∃vi φ)M is the image of φM under a 7→ (aj : j ∈ Ir{i}) : M I →M Ir{i},
where fv(φ) ⊆ I.

In M, the sets definable over ∅ are the interpretations of formulas of L. These
sets are also called 0-definable. If B ⊆ M , then the B-definable sets are the
interpretations of formulas of L(B). Usually definable means M -definable.
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In algebraic geometry, if K is a field, then the constructible sets of K are the
sets definable by open formulas of Lr(K). Chevalley’s Theorem [5, § 4.4, p. 33]
is that, if K is algebraically closed, then all definable sets of K are constructible.

A sentence is a formula with no free variables. If σ is a sentence, then σM is
a subset of M∅. But M∅ = {∅}, whose subsets are ∅ and {∅}, that is, 0 and
1, which can be considered as false and true respectively.

If σM = 1, then we write
M |= σ

and say that M is a model of σ. In particular, if fv(φ) = {0}, then

M |= ∃v0 φ ⇐⇒ φM 6= ∅.

If Γ is a set of sentences, then the expression

M |= Γ

has the obvious meaning. If M |= Γ =⇒ M |= σ for all L-structures M, then
we write

Γ |= σ

and say σ is a logical consequence of Γ. One can define a notion of formal
proof, and write Γ ` σ (‘σ is deducible from Γ’) when there is a formal proof
of σ from Γ. Gödel’s Completeness Theorem is that the symbols ` and |=
are interchangeable.

A theory is a set of sentences that contains all of its logical consequences. If T
is a theory, and Γ |= T , then Γ is a set of axioms for T .

In Lr, the axioms for the (first-order) theory of fields are standard. They can
be written in universal form, except for the axiom

∀x ∃y (x = 0 ∨ xy = 1).

The theory ACF of algebraically closed fields has the additional axioms

∀v0 ∀v1 . . .∀vn−1 ∃y v0 + v1y + . . . vn−1x
n−1 + yn = 0.

The model-theoretic version of Chevalley’s Theorem is that ACF admits elim-
ination of quantifiers, that is, for all positive n, for every n-ary formula φ of
Lr, there is an open formula α such that

ACF |= ∀v0 . . .∀vn−1 (φ↔ α).

One method of proof relies on the fact that a model of ACF is determined up
to isomorphism by its characteristic and its transcendence-degree.

Ultra-products

Let (M(i) : i ∈ I) be an indexed set of L-structures. We define a product-
structure ∏

i∈I
M(i),



Model-theory summary, 2004.10.25 5

or M for short, as follows. The universe, M , is the product
∏
i∈IM

(i). A

typical element of this is (a(i) : i ∈ I), or simply a. Then each M(i) is an
L(M)-structure when we define

aM(i)

= a(i).

For the symbols of L, let this definition be a notational convention, so that s(i)

means sM(i)

when s ∈ L.

If σ is a sentence of L(M), then its Boolean value, ‖σ‖, is defined to be the
set

{i ∈ I : M(i) |= σ}.
The map σ 7→ ‖σ‖ is a sort of homomorphism: ‖σ ∧ τ‖ = ‖σ‖ ∩ ‖τ‖ and
‖¬σ‖ = ‖σ‖c.
Having M , we define M by:

• cM = (cM
(i)

: i ∈ I),

• fM(a) = (fM(i)

(a(i)) : i ∈ I),

• a ∈ RM ⇐⇒ ‖Ra‖ = I.

Let F be a filter on I (that is, the dual of an ideal of P(I)). Define an equivalence-
relation ∼ on M by:

a ∼ b ⇐⇒ ‖a = b‖ ∈ F.

(In case F = {I}, this relation is equality.) The reduced product M/F has
universe M/∼, and:

• cM/F = cM/∼,

• fM/F(a/∼) = fM(a)/∼,

• (a/∼) ∈ RM/F ⇐⇒ ‖Ra‖ ∈ F.

The validity of this definition must be checked: If a,b ∈Mn, then

‖a0 = b0 ∧ . . . ∧ an−1 = bn−1‖ ⊆ ‖f(a) = f(b)‖,

so a ∼ b =⇒ f(a) ∼ f(b). Also,

‖a0 = b0 ∧ . . . ∧ an−1 = bn−1‖ ∩ ‖Ra‖ ⊆ ‖Rb‖,

so a ∼ b ∧ ‖Ra‖ ∈ F =⇒ ‖Rb‖ ∈ F.

Lemma. Say σe (e < 2) are sentences of L(M) such that

M/F |= σe ⇐⇒ ‖σe‖ ∈ F

in each case. Then M/F |= σ0 ∧ σ1 ⇐⇒ ‖σ0 ∧ σ1‖ ∈ F.

Proof. ‖σ0‖ ∩ ‖σ1‖ = ‖σ0 ∧ σ1‖ ⊆ ‖σe‖.

Lemma. Say φ is a formula of L(M) with one free variable, and

M/F |= φ(a) ⇐⇒ ‖φ(a)‖ ∈ F

for all a in M . Then M/F |= ∃x φ ⇐⇒ ‖∃x φ‖ ∈ F.
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Proof. ‖φ(a)‖ ⊆ ‖∃x φ‖ for all a inM . Also, there a inM such that M(i) |= φ(a)
if M(i) |= ∃x φ. Then ‖φ(a)‖ = ‖∃x φ‖.

Theorem ( Loś). If U is an ultrafilter on I, then

M/U |= σ ⇐⇒ ‖σ‖ ∈ U (1)

for all sentences σ of L(M).

Proof. Since all sentences are constructed from atomic formulas using only ∧,
∃ and ¬, it is enough to note that if (1) holds when σ = θ, then it holds when
σ = ¬θ.

Corollary (Compactness). If every finite subset of a theory T has a model,
then T has a model.

Proof. Let I comprise the finite subsets of T . Each Γ in I determines a filter
(Γ), namely the set

{Γ′ ∈ I : Γ ⊆ Γ′}.

Any finite collection {(Γ0), . . . , (Γm−1)} of subsets of I has intersection contain-
ing Γ0 ∪ · · · ∪ Γm−1; so the intersection is non-empty. Hence some ultrafilter U
on I contains each (Γ). For each Γ in I, let M(Γ) be a model of Γ. If σ ∈ T ,
then ({σ}) ⊆ ‖σ‖, so ‖σ‖ ∈ U. By the theorem of  Loś,

∏
Γ∈I M(Γ)/U |= T .

Let T be the set of sentences of L such that ‖σ‖ ∈ F. If U is an ultrafilter on I
that includes F, then

M/U |= T.

Conversely, suppose N |= T . The set {‖σ‖ : N |= σ} is closed under finite
intersection. Also, if N |= σ, then ‖σ‖c /∈ F. Hence {‖σ‖ : N |= σ} ∪ F is
included in an ultrafilter U, such that

N |= σ ⇐⇒ ‖σ‖ ∈ U ⇐⇒ M/U |= σ

for all sentences σ of L. We write

N ≡M/U,

and say that N and M/U are elementarily equivalent.

Example. Let T be the set of sentences of Lr, each of which is true in all but
finitely many finite fields. Then

∏

q∈I
Fq/U |= T,

where I is the set of prime powers, for all non-principal ultrafilters U on I. Con-
versely, every model of T is elementarily equivalent to such an ultraproduct.
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