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This note gives a uni�ed treatment to several mathematical observations.
For notation, let 2 be considered as the universe f0; 1g of an abelian group. Foreach e in 2, let Ae be a set, and let � be a relation from A0 to A1. This meansthat � is a subset of A0 �A1; if � contains (x0; x1), then we write

x0 � x1:
If xe 2 Ae, let

[xe] = fxe+1 2 Ae+1 : x0 � x1g 2 P(Ae+1):
If X 2 P(Ae), let

X 0 =\f[x] : x 2 Xg 2 P(Ae+1):
Let A�e+1 be the image of P(Ae) under the map X 7! X 0.
Theorem 1. Let e 2 2.

(�) If X;Y 2 P(Ae) and X � Y , then Y 0 � X 0.
(y) If X 2 P(Ae), then X � X 00.
(z) The map X 7! X 0 is a bijection from A�e to A�e+1 with inverse X 7! X 0.

Proof. Exercise. (For the last point, see [3, ch. V, Lemma 2.6].)
Regardless of how the maps X 7! X 0 are originally de�ned, if they meet theconditions established in the theorem, they constitute a Galois correspon-
dence between A�0 and A�1. (This de�nition is in [4, p. 35].) There are severalexamples, as you should verify:

Field-theory

The usual Galois correspondence in �eld-theory is the case when A0 is a �eld Lthat is a �nite Galois extension of a �eld K, and A1 is Aut(L=K), and
x � � () x� = x:

Then A�0 comprises the sub�elds F of L that include K, and A�1 comprises thesubgroups H of Aut(L=K), and F 0 = Aut(L=F ), and H 0 = Fix(H).
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The Zariski topology

Suppose A0 is a ring R (commutative with 1), and A1 is SpecR, that is, the setof prime ideals of R. Let � be 2. Then
[x] [ [y] = [xy]

if x; y 2 R. Hence the sets [x] are the basic closed sets for a topology, the
Zariski topology on SpecR. (See for example [1, pp. 54{55] or [2, x II.2].)The topology is compact, although possibly not Hausdor�. In this topology, ifX � SpecR, then X 00 is the closure of X. If X � R, then X 00 is the radical (inthe sense of [3, ch. VIII, De�nition 2.5]) of the (possibly improper) ideal (X).In general, A�0 comprises the radical ideals of R, and A�1 comprises the closedsubsets of SpecR.

The Stone space

Now suppose in particular that A0 is a Boolean ring or algebra B, and A1 is its
Stone space S(B), the set of ultra�lters of B. The ultra�lters are dual to theprime ideals, all of which are maximal. Let � be 2 again. Then

[x] \ [y] = [xy] = [x ^ y]
when x; y 2 B, and also [x]c = [x+ 1] = [:x];
so that [x] [ [y] = [x+ y + xy] = [x _ y]:
Hence the sets [x] are basic open and closed sets for a topology on S(B). Thistopology is compact as before, but also Hausdor�. The elements of A�1 are stilljust the closed subsets of S(B); the elements of A�0 are just the �lters of B. IfX � B, then X 00 is the �lter generated by X; if X � S(B), then X 00 is itsclosure.

Model-theory

Suppose L is a signature for �rst-order logic. Let A0 be the class Mod(L) ofL-structures, let A1 be SnL, and let � be j=. Then A�1 is the set of theories ofL, and A�0 is the set of elementary classes of L-structures. (See [4, x 3.4].)
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