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 Preface

So that they might serve as a reference for my talk a week later
in College Park. I prepared and printed these notes before
leaving Istanbul on June , . I assembled them, in part
from earlier notes and a published article:

• “Euclid Mathematically and Historically,” from a -
minute colloquium talk in the mathematics department
of Bilkent University, Ankara, March , ;

• “Conic Sections With and Without Algebra,” from a -
minute contributed talk at Antalya Algebra Days, Nesin
Mathematics Village, May , ;

• “Affine Geometry,” filename affine.tex;
• “Thales and the Nine-point Conic” [].

While in the US, by hand I wrote out five A-size pages of
notes that I might actually write on the boards. In the pro-
cess, I detected some mistakes, now corrected, in the present
notes. After the talk, I prepared a separate typeset document
containing notes of what I said and might have said.
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 Abstract

Having submitted this as plain text, I typeset it here as such.

“Heraclitus holds that the findings of

sense-experience are untrustworthy, and he sets up

reason [logos, ratio] as the criterion” (Sextus

Empiricus)

“It is necessary to know that war is common and

right is strife [eris] and all things happen by

strife and necessity” (Heraclitus, according to

Origen)

1. Strife has arisen between the historian of

mathematics and the mathematician who thinks about

the past. One must be both, to understand Euclid’s

obscure definition of proportion of numbers.

Proportion is sameness of ratio. When this occurs

between two pairs of numbers, something should be

the same about each pair. In Book VII of the

Elements, this can only mean that the Euclidean

Algorithm has the same steps when applied to either

pair of numbers. From this, despite modern

suggestions to the contrary, Euclid has rigorous

proofs, not only of what we call Euclid’s Lemma,

but also of the commutativity of multiplication.





2. Apollonius of Perga gives three ways to

characterize a conic section: (i) an equation,

involving a latus rectum, that we can express in

Cartesian form; (ii) the proportion whereby the

square on the ordinate varies as the abscissa or

product of abscissas; (iii) an equation of a

triangle with a parallelogram or trapezoid. The

latter equation holds in an affine plane. With the

advent of Cartesian methods in 1637, the equation

seems to have been forgotten, because it is not

readily translated into the lengths (symbolized by

single minuscule letters) that Descartes has taught

us to work with. With the affine equation,

Apollonius can give a proof-without-words of what

today we consider a coordinate change, performed

with more or less laborious computations.

3. By interpreting the field where algebra is done

in the plane where geometry is done, Descartes does

inspire new results. An example still builds on

work of an ancient mathematician, Pappus of

Alexandria. The model companion of the theory of

Pappian affine spaces of unspecified dimension,

considered as sets of points with ternary relation

of collinearity and quaternary relation of

parallelism, is the theory of Pappian affine planes

over algebraically closed fields.





 Notes for talk

. Affinity

Preservation Theorem. If V and V ∗ are the points (1, 0)
and (a, b) on the ellipse or hyperbola with center K given by

x2 ± y2 = 1, (.)

as in Fig. ., then the curve is preserved under the linear

transformation that interchanges V and V ∗.

Proof. The transformation is multiplication by

(

a c
b d

)

for some (c, d), and then

(

1
0

)

=

(

a c
b d

)(

a
b

)

=

(

a2 + cb
ba + db

)

,

so that

c = ±b, d = −a,

and
(

a ±b
b −a

)(

x
y

)

=

(

ax± by
bx− ay

)

.





K

V

V ∗

b

(a) Ellipse

K

V

V ∗

b

(b) Hyperbola

Figure .: Ellipse and hyperbola

Since

a2 ± b2 = 1,

we compute

(ax± by)2 ± (bx− ay)2 = x2 ± y2.

Thus the image (ax ± by, bx − ay) lies on our curve if (x, y)
does.

Corollary. If
−−→
KV and

−−→
KL are independent vectors, as in Fig.

. or Fig. ., and V ∗ lies on the locus of points P such that

−−→
KP = x ·

−−→
KV + y ·

−−→
KL,

where again (.) holds, then the affinity or affine transfor-

mation of the plane that fixes K and interchanges V and V ∗

fixes the curve.

. Affinity 
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Figure .: Ellipse

After publication of Descartes’s Geometry [, ] in ,
versions of the preservation theorem, or rather its corollary,
were expressed and proved in

 by Wallis [],
 by de Witt [],
 by Euler [], and
 by Hugh Hamilton [, ].

In each case lengths are used, or perhaps vectors. Descartes
reduced the ancient algebra of areas and volumes to an alge-
bra of lengths alone. Nobody seems to follow Apollonius in
proving the preservation theorem using areas, as in Book i of
the Conics [, ]. We may thus have lost something.

Apollonius reasons as follows. Dropping

• V E∗ to KV ∗ and
• V ∗M and PX to KV ,
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Figure .: Hyperbola
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all parallel to KL, writing (.) as

±y2 = (1− x)(1 + x),

we have

−−→
XP 2 ∝

−−→
XV ·

−−→
WX

∝
−−→
XV · (

−−→
KV +

−−→
KX)

∝
−−→
XV · (

−−→
V E∗ +

−−→
XY )

∝ V XY ∗E∗. (.)

Letting E on KV satisfy

V ∗V ‖ E∗E,

equivalently
−−→
KM :

−−→
KV : :

−−→
KV :

−−→
KE,

we have

MV ∗E = VMV ∗E∗. (.)

Dropping PY to KV parallel to V ∗E, we have

−−→
XP 2 ∝ XPY

and therefore, from (.),

XPY ∝ V XY ∗E∗.

Since this becomes an equation, namely (.), when P is V ∗,
we conclude

XPY = V XY ∗E∗. (.)
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This is an alternative defining equation for our curve. The
polygons in (.) are oriented, and the non-parallel sides of
the trapezoid may intersect internally. If either of

−−→
PX =

−−→
XP ′,

−−→
PK =

−−→
KP ′

holds, then P ′ lies on the curve. Thus, because
• V K bisects the chords that are parallel to V E∗, it is a

diameter of the curve;
• the curve is symmetric about K, this is its center.

Consequently,

every line through K is a diameter of the curve.

Moreover, PY cutting V ∗K at X∗, if to either side of the
defining equation (.) we add the quadrilateral

Y X∗Y ∗X,

we obtain

Y ∗PX∗ = V Y X∗E∗

= EYX∗V ∗. [by (.)]

Thus,

with respect to any diameter,
the curve has the same equation.

This is the Preservation Theorem.
For Rosenfeld in his commentary [, p. ] on the theorem,

Apollonius never mentions parabolic, elliptic, and hyperbolic
turns, but no doubt that he used these transformations to
generalize the results obtained by his precursors in rectan-
gular coordinates for the cases of oblique coordinates.

. Affinity 



C D

A B E F

G

(a) Proposition 
C D

A

F

H

(b) Proposition 

Figure .: Parallelism

A “turn” is for Coxeter [, pp. –] a rotation; it is a kind of
affinity.

There are all kinds of doubt that Apollonius had any notion
of an affinity in our technical sense. This is important because:

) Apollonius’s proof is more direct than the best modern
proof;

) misunderstanding of the ancient use of ratios has led
some modern mathematicians to accuse Euclid of logical
error.

. Affine plane

In Book i of the Elements, Propositions  and  are that, in
Fig. .,

AF ‖ CD ⇔ ACD = FCD.

We can understand Euclid’s proof as having the following
steps, the justifications of which will be sufficient to axiom-
atize an affine plane in the full sense of being acted on tran-
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(b) Proof

Figure .: Prism Theorem

sitively and faithfully by a 2-dimensional vector space over a
commutative field, albeit of characteristic other than 2.

. First we assume AF ‖ CD. Using Playfair’s Axiom,

that through a point not on a line passes exactly one
parallel, we let

AC ‖ BD, CE ‖ DF.

. Because ABDC and CDFE are parallelograms, as in
Fig. .a,

ACE = BDF.

. Because equality is a congruence on the abelian group of
polygons, by Euclid’s Common Notions  and ,

If equals be added to (or subtracted from) equals,
the wholes (or remainders) are equal,

. Affine plane 



we conclude

ACDB = ACGB + CDG

= ACE − BGE + CDG

= BDF − BGE + CDG = ECDF

(which is Proposition ).
. Because a diagonal bisects a parallelogram (by Proposi-

tion ),
2ACD = 2FCD.

. No element of the group of polygons having order 2,

ACD = FCD.

. Now suppose AF ∦ CD. Letting AH ‖ CD, we conclude

ACD = HCD 6= HCD + FCH = FCD,

by Euclid’s Common Notion ,

The whole is greater than the part.

Our axioms formally govern a structure with two sorts,
• Σ, of points (τὰ σημεῖα), and
• Π, of polygons (τὰ πολύγωνα).

When n > 3, there is an n-ary map

(P1, . . . , Pn
) 7→ P1 · · ·Pn

from Σ to Π. In Axiom , the group of polygons satisfies the
following rules, where Γ and ∆ are strings of letters for points:

AΓ = AΓA,

AΓ = ΓA,

AΓB +B∆A = AΓB∆,

−A1 · · ·An
= A

n
· · ·A1.

  Notes for talk



We can understand Axiom  as a definition of collinearity:

coll(A,B,C) ⇔ ABC = 0, (.)

or rather as meaning that if each of two distinct points is
collinear, in the sense of (.), with two other distinct points,
the converse holds as well:

A 6≡ B & ACD = 0 & BCD = 0 & C 6≡ D ⇒ ABC = 0.

It is now a theorem that two points determine a line: if the
two points are A and B, the line they determine is defined by

ABX = 0,

and if C and D are two points on this line, then they determine
the same line.

To obtain a companionable theory whose model-companion
is still a theory of affine planes, we let there be a quaternary
relation of parallelism on Σ, given by the axiom

AB ‖ CD ⇔ ∀X
(

A 6≡ B & C 6≡ D &

(ABX = 0 & CDX = 0 ⇒ ABC = 0 & ABD = 0)
)

.

The axiom is ∀∃, by the general rule

(

σ ⇔ ∀x φ(x)
)

⇔ ∀x ∃y
(

(

σ ⇒ φ(x)
)

&
(

φ(y) ⇒ σ
)

)

.

Also for companionability, Axiom  should be that the abelian
group of polygons is either torsion-free or an elementary p-
group (thus a vector space) for some odd prime p.

The case of Desargues’s Theorem that I call the Prism

Theorem, and that is shown in Fig. .a, is now a theorem.

. Affine plane 



If AB, CD, and EF are parallel to one another (parallelism
being transitive by Playfair’s Axiom), then

AC ‖ BD & CE ‖ DF ⇒ AE ‖ BF.

We may assume ACE 6= 0. By Axiom ,

ACE = BDF.

If AE ∦ BF , let
AE ‖ BG.

By Axiom  again,

ACE = BDG.

By Euclid’s Proposition  as above,

BD ‖ EF,

contradicting the (implicit) assumption that AB and CD are
distinct lines.

Just as Pappus does, using Euclid’s Propositions  and ,
we prove Pappus’s Theorem [, , ] that if the vertices
of ABCDEF lie alternately on two lines, as in Fig. ., then

BC ‖ EF & CD ‖ FA ⇒ AB ‖ DE.

For, under the hypothesis,

ABE = ABC + CBE

= ABC + CBF

= ABF + FAC

= ABF + FAD

= ABD,
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E D

A B

C F

Figure .: Pappus’s Theorem

or more briefly,

ABE = ABFC = ABD.

Selecting now a proper triangle IOI ′, we define a multiplica-
tion on OI as in Fig. .a. The operation is commutative by
Pappus’s Theorem, as in Fig. .b. For associativity, use Fig.
., where is shown

(ab)c = (ac)b,

from which, by commutativity, associativity follows.
The Prism Theorem lets us define define parallel directed

segments
−→
AB and

−−→
CD as equal if and only if

• the segment are not collinear, and AC ‖ BD, or
• they are collinear and equal to a third in the sense just

defined.
A vector is the class of directed segments equal to a given
one. We can add non-parallel vectors by completing the par-
allelogram; parallel, by placing them end to end, as in Fig. .,
where

. Affine plane 



O ab

b′

baI

I ′

(a) Definition
O ab

b′

baI

I ′

a′

(b) Commutativity

Figure .: Multiplication

O ab

b′

baI

I ′

c

c′

abcac

Figure .: Associativity
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A B

D

C F

EG

Figure .: Commutativity of addition

−→
AB +

−→
AC =

−→
AF =

−→
AC +

−→
AB,

by definition and by Pappus’s Theorem.

.. Associativity

To prove associativity of addition of vectors, we have three
cases to consider.

. When A is not collinear with any two of B, C, and D,
as in Fig. ., then

−→
AB +

−→
AC =

−→
AE,

−→
AE +

−−→
AD =

−→
AF,

−→
AC +

−−→
AD =

−→
AG,

and then

−→
AB +

−→
AG =

−→
AF ⇐⇒ AB ‖ GF & AG ‖ BF. (.)

They are parallel, by the Prism Theorem, as follows. We can
apply the Theorem first to triangles ACE and DGF , so that,
since

CG ‖ AD ‖ EF, AC ‖ DG, AE ‖ DF,

. Affine plane 



A B

C

D

E

FG

Figure .: Associativity of addition: easy case

we can conclude CE ‖ GF . Since also AB ‖ CE, we obtain
AB ‖ GF . Now we can apply the Prism Theorem to triangles
ACG and BEF , obtaining AG ‖ BF . So we have the right-
hand side of (.), and therefore the left-hand side, which
means

−→
AB + (

−→
AC +

−−→
AD) = (

−→
AB +

−→
AC) +

−−→
AD. (.)

. When AB contains C, but not D, then (.) still holds,
since in Fig. .,

−→
AB +

−→
AC =

−→
AF,

−→
AF +

−−→
AD =

−−→
AK,

−→
AC +

−−→
AD =

−→
AE,

so that
−−→
AK =

−→
AB +

−→
AE ⇐⇒ AE ‖ BK.

The parallelism follows from the Parallel Theorem, applied to
the hexagon ADBKFE.

. Finally, when AB contains both C and D, then, making
use of commutativity, in Fig. . we have
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A B

D

C F

EG K

Figure .: Associativity of addition: less easy case

A B

E

C D

F

G

H

KL

M

Figure .: Associativity of addition: hardest case
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E

B′

B

A′

O

DA

C

C ′

F

H

K

G

L

Figure .: Distributivity

−→
AB +

−→
AC =

−→
AC +

−→
AB =

−→
AG,

−→
AG+

−−→
AD =

−−→
AK,

−→
AC +

−−→
AD =

−→
AL,

−→
AB +

−→
AL =

−−→
AK ⇐⇒ BE ‖ MK.

The Parallel Theorem, applied to BFGMLH , yields BH ‖
GM ; then, applied to KHBEGM , BE ‖ MK.

.. Distributivity

Addition of vectors makes any line into an abelian group. Mul-
tiplication in the line OI makes that line into a field and every
line through O into a one-dimensional vector space. Indeed,
in Fig. ., where

−→
OA = a,

−−→
OB = b,

−→
OC = a+ b,
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and then

−−→
OD = ca,

−−→
OE = cb,

−→
OF = c(a+ b),

We have

−→
OA =

−−→
BC [definition of +]

=
−−→
C ′B [Prism Theorem]

=
−−→
B′K, [Prism Theorem]

then

AB′ ‖ OK,

so by the converse of the Prism Theorem,

−−→
A′O =

−−→
HK =

−−→
C ′B′.

Now the converse of the Prism Theorem yields

−−→
OD =

−−→
LB′ =

−−→
GC ′ =

−→
EF,

and therefore

ca+ cb = c(a + b).

.. Vector space

To ensure finally that, with O selected, the plane is a vector
space over the field of points along OI, we show that the field
is independent of choice of I ′. It is independent, because De-
sargues’s Theorem holds in the special case shown in “Thales
and the Nine-point Conic” []. First we need to establish
that, in Fig. .a,

. Affine plane 
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(a) Euclid I.
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O D

PL

C

A
M

R

N

G

F Q

E S

(b)

Figure .: Conditions for parallelism

AC ‖ BD ⇐⇒ AGNB = GCDM ⇐⇒ OGL = 0.

Then, in Fig. .b, when we assume

AC ‖ BD, AE ‖ BF ‖ OD.

Then

CDRS = CDMG = AGNB = ESQF,

so

EC ‖ FD.

. Proportion

At the head of Book vii of the Elements, we are told, among
what are labelled as definitions:
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. “A number is a multitude of units.” 

. Numbers A, B, C, and D are proportional when A is
• the same multiple, or
• the same part, or
• the same parts,

of B that C is of D.
. The following are equivalent for numbers.

a) B is a multiple of A,
b) A is a part of B,
c) A measures B.

. If neither multiple nor part of B, A is parts of B.

Measuring will be dividing in extension, but not in intension:
() We can measure  apples evenly by  apples.
() In the process, we divide the apples into  groups.

It is clear when A is the same multiple or same part of
B that C is of D; but not same parts.

If
A : B :: C : D,

this should mean at least that for some numbers E and F , for
some multipliers k and m (either of which can be unity),

A = E · k,

B = E ·m,

C = F · k,

D = F ·m.
(.)

As he notes his “Mathematicall Preface” [] to Billingsley’s  English
translation of the Elements, John Dee created the word “unit” precisely
to translate Euclid’s μονάς. The existing alternative was “unity.” See
my article “On commensurability and symmetry” [].

The text says only that the less is parts of the greater when not mea-
suring the greater; but the definition of proportion implies that the
greater is parts of the less when not a multiple of the less.

Euclid uses dividing, as far as I know, only to say that an even number
can be divided in two. Alexandre Borovik discusses measuring and
dividing apples [], though not with the terminology of measuring.

. Proportion 



• Some Moderns call this the Pythagorean definition of
proportion of numbers.

• For the proper Euclidean definition, I say, we need also

E = gcm(A,B), F = gcm(C,D), (.)

where gcm means greatest common measure; equiv-
alently, k and m in (.) are coprime.

Without (.),

() sameness of ratio is not immediately transitive;
() thus proofs in Book vii are inadequate;
() Proposition  makes little sense, the enunciation, “Any

number is either a part or parts of any number, the less
of the greater,” only restating a definition, though the
proof is nontrivial.

Heath thinks () the theory of Book vii is due to the Pythagoreans
[, Vol. , p. ], and () its definition of proportion is the one
that we are calling Pythagorean [, p. ]. In Thomas’s first Loeb
volume of Greek Mathematical Works [], the chapter “Pythagorean
Arithmetic” gives first the definitions that head Book vii of the El-
ements, but nothing ensues that requires a careful interpretation of
the definition of proportion. That this definition ought immediately
to imply transitivity of sameness of ratio: this might seem belied by
Proposition  in Book v, which proves the transitivity for arbitrary
magnitudes under the Eudoxan definition; however, the proof is triv-
ial. Nonetheless, Pengelley and Richman [, pp. , ] accept
Heath’s judgment, and Mazur [, n. ] accepts their judgment; for
convenience, I imitate them in using the term Pythagorean. I have
seen no suggestion that the Pythagoreans proved general theorems like
the commutativity of multiplication or Euclid’s Lemma; thus perhaps
they had no theoretical need for the transitivity of sameness of ratio.

  Notes for talk



. Anthyphaeresis

In Book vii, Propositions – show, for two or more num-
bers,

() how to find a gcm, and
() that it is measured by all common measures.

The proofs use the Euclidean Algorithm, namely,
() replace the greater of two magnitudes with its remainder,

if there is one, after measurement by the less;
() repeat.

When the greater is measured exactly by the less, this is the
gcm. Thus from

80 = 62 · 1 + 18,

62 = 18 · 3 + 8,

18 = 8 · 2 + 2,

8 = 2 · 4,

we have gcm(80, 62) = 2, Also,

80 = 2 · 40, 62 = 2 · 31, (.)

and the multipliers 40 and 31 are automatically coprime.
Euclid proves Proposition  (again “Any number is either a

part or parts of any number, the less of the greater”) by finding
gcm’s, showing implicitly (in my view) that he intends what
I am calling the Euclidean definition of proportion. From

120 = 93 · 1 + 27,

93 = 27 · 3 + 12,

27 = 12 · 2 + 3,

12 = 3 · 4,

. Anthyphaeresis 



we have gcm(120, 93) = 3, and also

120 = 3 · 40, 93 = 3 · 31. (.)

By the repetition in (.) of multipliers from (.),

80 : 62 :: 120 : 93.

The same follows, just from the repetition of the multipliers
(1, 3, 2, 4) in the steps of the Algorithm. Indeed, we can write
either of the fractions 80/62 and 120/93 as the continued fraction

1 +
1

3 +
1

2 +
1

4

.

In Greek, the Algorithm is anthyphaeresis or “alternating
subtraction.”

• In Book v, for arbitrary magnitudes, Euclid gives the
Eudoxan definition of proportion, whereby a ratio is
effectively a Dedekind cut.

• Before this was known, there was an anthyphaeretic

definition, whereby the proportion

A : B :: C : D

means the Euclidean Algorithm has the same steps,
whether applied to A and B or C and D.

The term derives ultimately from ἀνθυφαιρέ-ω (anthyphaire-ô) “alter-
nately subtract,” the verb that Euclid uses to describe his Algorithm.
The analysis is ἀντί + ὑπό + αἱρέ-ω (anti + hypo+ haire-ô), the core verb
meaning take.

See Thomas [, pp. –] or Fowler [].
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S

S

AB

A

A

Figure .: Anthyphaeresis of diagonal and side of square

• The Euclidean definition is a simplification of this for
numbers.

The anthyphaeretic definition applies even to incommensu-
rable magnitudes, such as the diagonal and side of a square,
as in Figure ., where

D = S + A, S = A · 2 +B,

In particular, there is no reason to think that the Eudoxan theory was
“developed to handle incommensurable magnitudes.” Pengelley and
Richman [, p. ] suggest that it was, even though they cite the
book [] of Fowler, who says, “I now disagree with everything in
this line of interpretation”—the line whereby the Pythagoreans based
mathematics on commensurable magnitudes, until the discovery of
incommensurability, whose problems were not resolved until the Eu-
doxan theory was formulated.

. Anthyphaeresis 



and ever after, the less goes twice into the greater, so that

S : A :: A : B,

and also the ratio D : S is independent of D.
Understanding proportion is important because Euclid uses

it to prove
() commutativity of multiplication, and
() Euclid’s Lemma, that a prime measuring a product

measures one of the factors.
Under the Euclidean definition, the proofs are rigorous.

. Commutativity

In Book vii of the Elements, from either the anthyphaeretic or
the Euclidean definition of proportion of numbers, we obtain
Propositions –:

A : B :: C : D =⇒ A : B :: A± C : B ±D.

Repeated application gives Proposition :

E : F :: E ·m : F ·m.

This gives, by transitivity, Proposition :

E · k : F · k :: E ·m : F ·m. (.)

Automatically, if k and m are coprime,

E · k : E ·m :: F · k : F ·m. (.)

Since every proportion can be written in this form, the impli-
cation (.) ⇒ (.) is Proposition , Alternation:

A : B :: C : D =⇒ A : C :: B : D.
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Since
1 : A :: B : B ×A, (.)

by Alternation, 1 : B :: A : B ×A, so by symmetry

1 : A :: B : A×B. (.)

Comparing (.) and (.) yields Proposition , Com-

mutativity:

A× B = B ×A.

. Euclid’s Lemma

Proposition  is like :

C : D :: C ×A : D ×A. (.)

Hence Proposition , C : D :: A × C : A × D, or with
different letters,

A : B :: C × A : C × B. (.)

From (.), (.), and transitivity, we get Proposition ,

A : B :: C : D ⇐⇒ D × A = C × B,

the “Eudoxan” definition of proportion of numbers. Propo-

sition  is that, if A and B are the least X and Y such
that

X : Y :: C : D,

then A measures C, for by Alternation

A : C :: B : D,

And B measures D the same number of times, as Euclid says.

. Euclid’s Lemma 



and so A is the same part or parts of C that B is of D; but
it cannot be parts, by minimality. Here A and B are also
coprime. The converse is Proposition .

Immediately from the definitions, Proposition : every
prime is coprime with its every non-multiple.

For Proposition , Euclid’s Lemma, suppose a prime
P measures A× B, so that for some C,

P × C = A×B.

By  (the Eudoxan definition),

P : A :: B : C.

If P does not measure A, then
• P and A are coprime by ,
• they are the least numbers having their ratio by ,
• P measures B by .

Euclid uses words alone to describe proportions. This could
be because the Ancients were more used to hearing mathemat-
ics than seeing it. Modern commentators use fractions and the
equals sign. I have tried to preserve the distinction between

Mazur says, “Now I don’t quite follow Euclid’s proof of this pivotal
proposition, and I worry that there may be a tinge of circularity in the
brief argument given in his text” [, p. ]; then he cites Pengelley
and Richman []. Mazur’s own proof uses what he calls Propositions
 and , though  and  are also needed, to conclude A : B :: C−A·k :

D −B · k.
This is Proposition , but we shall not need it.
For Mazur [, p. ], “that if a prime divides a product of two num-

bers, it divides . . . one of them, is essentially Euclid’s Proposition 
of Book VII.” Strictly, this is that the product of numbers prime to
a number is also prime to it. Like that of , the proof relies on ,
which again for Mazur is problematic.
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proportions and equations, while making Euclid’s rigor visible

in the way that we Moderns are used to.

. Euclid’s Lemma 
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