Apollonian Proof

David Pierce

Logic Colloquium 2019, Prague, August
Mimar Sinan Güzel Sanatlar Üniversitesi mat.msgsu.edu.tr/~dpierce/ polytropy.com

In an affine plane, the
locus of $O+x \cdot \overrightarrow{O V}+y \cdot \overrightarrow{O L}$, where

$$
x^{2} \pm y^{2}=1
$$

is (for any V^{*}, namely $O+a \cdot \overrightarrow{O V}+b \cdot \overrightarrow{O L}$, on the locus) fixed by the affinity fixing O and interchanging V and V^{*}.

$$
\bullet\binom{0}{0}
$$

Modern proof. The affinity is $\binom{x}{y} \mapsto\left(\begin{array}{cc}a & \pm b \\ b & -a\end{array}\right)\binom{x}{y} . \square$

1. Apollonius's proof uses areas. 2. So does an axiomatization of affine planes in which the theorems of Pappus and Desargues are just that.

Proof of Apollonius. The locus of P is given by

Fundamental to the geometry of areas is Euclid I.37, 39 .

1. Assuming $A F \| C D$, let

$$
A C\|B D, \quad C E\| D F
$$

2. By translation,

$$
A C E=B D F
$$

3. By polygon algebra,

$$
A C D B=E C D F
$$

4. By bisection,

$$
\begin{aligned}
& A C D B=2 A C D, \\
& E C D F=2 F C D .
\end{aligned}
$$

5. By halving,

$$
\begin{equation*}
A C D=F C D \tag{*}
\end{equation*}
$$

6. If $A F \nVdash C D$, let $A H \| C D$.

$$
\begin{aligned}
& A C D=H C D \\
& F C D=H C D+F C H
\end{aligned}
$$

$$
\text { so }(*) \text { fails. }
$$

In order $3,6,1,5,4,2$, the steps are justified by:

Axiom 1. The polygons compose an abelian group Π where, $*$ and \dagger being strings of vertices,

$$
\begin{gathered}
A *=A * A=* A, \\
A * B+B \dagger A=A * B \dagger, \\
-A B C \cdots=\cdots C B A .
\end{gathered}
$$

Axiom 2. $A B C=0$ means that A, B, and C are collinear.

Axiom 3. Playfair's Axiom.

Axiom 4. All nonzero elements of Π have the same order, not 2 .

Axiom 5, 6. If $A B C G, A B E D$, and $B C F E$ are parallelograms, then

$$
C G A=A B C=D E F .
$$

- Euclid I. 43 plus.

$$
\begin{aligned}
O G L=0 & \Longleftrightarrow \alpha=\beta \\
& \Longleftrightarrow B D \| A C .
\end{aligned}
$$

- Desargues's Theorem.
- Pappus's Hexagon Theorem, by his proof: In hexagon $A B C D E F$, if

$$
A B\|D E, \quad B C\| E F
$$

then $F A D=F A E B=F A C$, so

Desargues's Theorem. If

$$
A B\|D E \& A C\| D F
$$

then $B C \| E F$, so $A B C \sim D E F$. Proof.

- True when $A B \| O C$, by I. $43+$.
- Enough now that, since

$$
B A G \sim E D H
$$

for all X (not shown) on $O A$,

$$
B X G \sim E Y H
$$

for some Y on $O A$. Note $B A E \sim G K H$ by Pappus, where $B A \| G K$.

Lemma. Given

$$
A E C \sim B F D
$$

we noted

$$
A E B \sim C L D
$$

for some L on $E F$. Now let

$$
K F\|A G\| C H
$$

By Pappus twice,

$$
B G\|K E\| D H
$$

whence

$$
A G B \sim C H D
$$

