Affine Planes with Polygons

David Pierce

Mimar Sinan Güzel Sanatlar Üniversitesi mat.msgsu.edu.tr/~dpierce, polytropy.com

Batumi (oucnjon), September, 2019

 X Annual International Conference of the Georgian Mathematical Union

because this is true when P is V^{*}, and $X P Y \propto X P^{2} \propto X V \cdot X W \propto V X Y^{*} E^{*}$.

The foregoing happens in an affine plane, satisfying

1) two points determine a line;
2) through a point not on a line, a single parallel passes;
3) there is a proper triangle.

The plane is K^{2} for some field K, if also, assuming

$$
A B\|D E \& A C\| D F
$$

4) Desargues's Theorem:

$$
B C \| E F
$$

if $A D, B E$, and $C F$ either
a) are mutually parallel or
b) have a common point;
5) Pappus's Theorem:

$$
B F \| C E,
$$

- D lies on $B C$ and
- A lies on $E F$.

Of Desargues, case (a), "Prism," lets us define, for non-collinear directed segments,

$$
\overrightarrow{A D}=\overrightarrow{B E} \Longleftrightarrow
$$

$A B E D$ is a parallelogram;

case (b), "Pyramid," for non-parallel pairs of parallel
vectors,

$$
\overrightarrow{O A}: \overrightarrow{O D}:: \overrightarrow{O B}: \overrightarrow{O E}
$$

$$
\Longleftrightarrow A B \| D E
$$

On the plane, ratios of vectors act as a field or skew-field.

With Pappus, it is a field.

For Pappus and Desargues to be Theorems, I propose axioms:

Addition. The polygons compose an abelian group where

$$
\begin{gathered}
-A B C \cdots=\cdots C B A \\
A A B=0, \quad A *=* A \\
A * B+B \dagger A=A * B \dagger
\end{gathered}
$$

* and \dagger being strings of vertices.

Linearity.

$$
\left.\begin{array}{rl}
A B C \neq & 0
\end{array}\right) B C D=0 .
$$

Parallels . . .

Translation. $A B E D$ and $B C F E$ being parallelograms,

$$
A B C=D E F
$$

Bisection. $A B C G$ being a parallelogram,

$$
C G A=A B C .
$$

Halving. All nonzero polygons have the same order, not 2.

Hence Euclid I.37, 39:

- Assuming $A F \| C D$, by Parallels we may let

$$
A C\|B D, \quad C E\| D F
$$

by Translation,

$$
A C E=B D F ;
$$

by Addition,

$$
\begin{gathered}
A C D B=A C G B+C D G= \\
A C E-B G E+C D G=
\end{gathered}
$$

$$
B D F-B G E+C D G=E C D F
$$

by Bisection,

$$
\begin{aligned}
& A C D B=2 A C D \\
& E C D F=2 F C D
\end{aligned}
$$

by Halving,

$$
A C D=F C D
$$

- If $A F \nVdash C D$, let $A H \| C D$.

$$
\begin{aligned}
& A C D=H C D \\
& F C D=H C D+F C H
\end{aligned}
$$

so $A C D \neq F C D$ by Linearity.

We can now prove:

- Prism, by Translation, I.39, and Parallels.
- Pappus. From $A B \| D E$ and $A C \| D F$, we obtain $B F \| C E$, since, by I. 37 ,

$$
B F C=B F A D=B F E .
$$

- Pyramid, special case. Assume
- $B E$ and $C F$ meet at O,
- $A B \| D E$ and $A C \| D F$,
- $A B \| O C$ and $A C \| O B$.

Then

$$
\begin{aligned}
A D \text { contains } O & \Longleftrightarrow \beta=\gamma \\
& \Longleftrightarrow B C \| D F .
\end{aligned}
$$

Pyramid, less special case. If

- $A D, B E$, and $C F$ meet at O,
- $A B \| D E$ and $A C \| D F$,
- $A B \| O C, \quad$ then $B C \| D F$.

General case. Assuming $A C^{\prime} \| D F^{\prime}$,

$$
A B C \sim D E F \Longrightarrow A B C^{\prime} \sim D E F^{\prime}
$$

provided $C C^{\prime} \| O A$; we can remove this; putting C^{\prime} on $O C$ is enough.

Given $A B C \sim D E F$, we let

$$
\begin{gathered}
B G \| A C, D F \\
H G, D F^{\prime} \| A C^{\prime}
\end{gathered}
$$

By Pappus,

1) from $A C H G B C^{\prime}, H C \| B C^{\prime}$;
2) from $B C D F E G, D C \| E G$;
3) from $H C D F^{\prime} E G, H C \| E F^{\prime}$.

Thus

$$
B C^{\prime} \| E F^{\prime}
$$

$A B C^{\prime} \sim D E F^{\prime} ;$ also $A D C \sim B E G$.

