Compactness Caucasian Mathematics Conference, Tbilisi

David Pierce

September 5 & 6, 2014 Mimar Sinan Fine Arts University, Istanbul http://mat.msgsu.edu.tr/~dpierce/ In the background will be **Zermelo–Fraenkel set theory**, in the first-order logic of signature $\{\in\}$:

Equality:

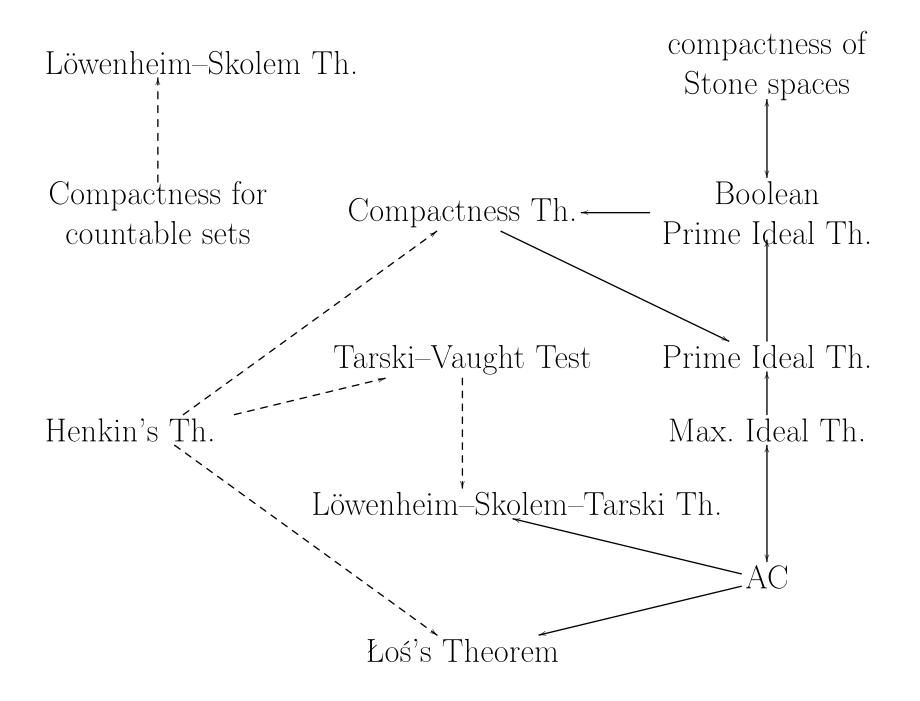
- Equal sets are those having the same elements;
- Equal sets are elements of the same sets.

Comprehension: Every formula $\varphi(x)$ defines the class

 $\{x\colon \varphi(x)\}.$

Certain classes are sets, namely: \bullet the empty class, \bullet a pair of sets, \bullet the union of a set, \bullet the image of a set under a function, \bullet the power class of a set, $\bullet \omega$.

We do not assume the Axiom of Choice (AC), which is equivalent to the Well Ordering Theorem.



Theorem 1 (1930s?). The **Maximal Ideal Theorem** (for nontrivial, commutative, unital rings) follows from AC.

Proof. A ring \mathfrak{R} with $R = \{a_{\xi} \colon \xi < \kappa\}$ has maximal ideal

$$\bigcup_{\xi < \kappa} I_{\xi}, \text{ where } I_{\xi} = \begin{cases} (a_{\xi}) + \bigcup_{\eta < \xi} I_{\eta}, & \text{if this is proper}, \\ \bigcup_{\eta < \xi} I_{\eta}, & \text{otherwise.} \end{cases}$$

This is a proper ideal because the class of commutative \Re -algebras without identity is $\forall \exists$ -axiomatizable, as by e.g.

$$\forall x \; \exists y \; xy \neq y.$$

Theorem 2 (Hodges, 1979). The Maximal Ideal Theorem implies the Axiom of Choice.

Theorem 3 (Halpern & Levy, 1971). The Maximal Ideal Theorem does not follow from the **Prime Ideal Theorem**. The signature \mathscr{S}_{ring} of a ring \mathfrak{R} is $\{0, 1, -, +, \times\}$. Let diag $(\mathfrak{R}) = \{$ quantifier-free sentences of $\mathscr{S}_{ring}(R)$ true in $\mathfrak{R}\};$ its models are just the structures in which \mathfrak{R} embeds.

Theorem 4 (Henkin, 1954). The **Prime Ideal Theorem** follows from the **Compactness Theorem** of first-order logic (a *theory* whose every finite subset has a *model* has a model).

Proof. In the signature $\mathscr{S}_{ring} \cup \{P\}$, let

 $\boldsymbol{K} = \{\text{rings with prime ideal } P\}, \qquad T = \text{Th}(\boldsymbol{K}).$ Then $\mathbf{Mod}(T) = \boldsymbol{K}$: every model of the theory of \boldsymbol{K} is in \boldsymbol{K} .

Every finitely generated sub-ring of a ring \mathfrak{R} has a prime ideal, by Theorem 1.

Hence every finite subset of $T \cup \text{diag}(\mathfrak{R})$ has a model.

A proper class \boldsymbol{X} can be topologized by

a relation \models ("turnstile") from \boldsymbol{X} to a set B.

If $x \in \mathbf{X}$ and $\sigma \in B$ and $x \models \sigma$, say x is a **model** of σ . So we define

$$\mathbf{Mod}(\sigma) = \{ x \in \mathbf{X} \colon x \models \sigma \}.$$

If $\Gamma \subseteq B$, we let

$$\mathbf{Mod}(\Gamma) = \bigcap_{\sigma \in \Gamma} \mathbf{Mod}(\sigma).$$

These are the **closed classes** of a **topology** on X, assuming (as we do) that for some 0 in B and binary operation \lor on B,

Call a subset Γ of B consistent if

$$\operatorname{\mathbf{Mod}}(\Gamma_0) \neq \varnothing$$
, that is, $\bigcap_{\sigma \in \Gamma_0} \operatorname{\mathbf{Mod}}(\sigma) \neq \varnothing$,

for all finite subsets Γ_0 of Γ . If it always follows that $\mathbf{Mod}(\Gamma) \neq \emptyset$, then the topology on X is **compact**.

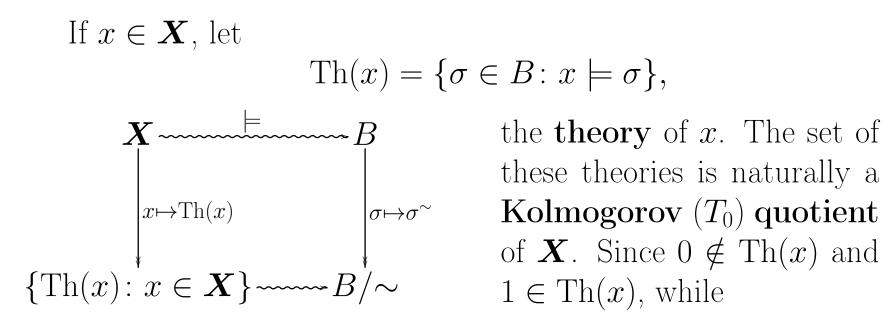
In any case, we may assume B also has an element 1 and a binary operation \wedge such that

 $\boldsymbol{X} = \boldsymbol{\mathrm{Mod}}(1), \quad \ \, \boldsymbol{\mathrm{Mod}}(\sigma) \cap \boldsymbol{\mathrm{Mod}}(\tau) = \boldsymbol{\mathrm{Mod}}(\sigma \wedge \tau).$

Now define **logical equivalence** in B by

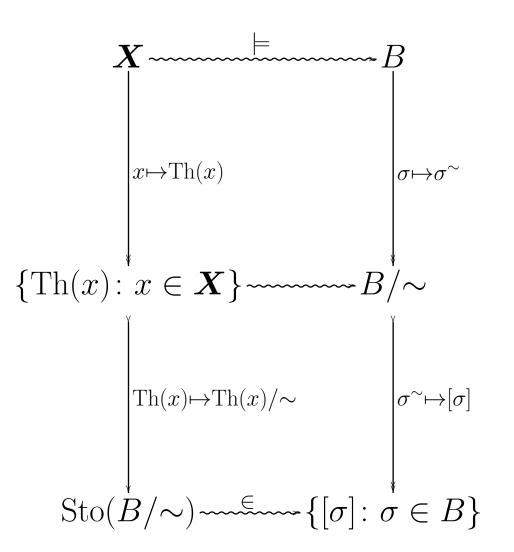
$$\sigma \sim \tau \iff \mathbf{Mod}(\sigma) = \mathbf{Mod}(\tau).$$

Then $(B, 0, 1, \vee, \wedge)/\sim$ is a well-defined distributive lattice.



 $\sigma \lor \tau \in \operatorname{Th}(x) \iff \sigma \in \operatorname{Th}(x) \text{ OR } \tau \in \operatorname{Th}(x),$ $\operatorname{Th}(x)/\sim \text{ is a prime filter of } B/\sim. \text{ Let}$ $\operatorname{Sto}(B/\sim) = \{ \text{prime filters of } B/\sim \},$ and if $\sigma \in B$, let $[\sigma] = \{ F \in \operatorname{Sto}(B/\sim) \colon \sigma^{\sim} \in F \}.$ Thus $x \in \operatorname{Mod}(\sigma) \iff \operatorname{Th}(x)/\sim \in [\sigma].$

Theorem 5.



- If the Prime Ideal Theorem holds, then $\sigma \mapsto \sigma^{\sim} \qquad \text{and} \quad \text{Kolmogorov} \\ \text{when} \quad \text{topologized} \quad k \\ \{[\sigma]: \sigma \in B\} \text{ under } \in. \end{cases}$ $\operatorname{Sto}(B/\sim)$ is compact and Kolmogorov (T_0) when topologized by
 - The map

 $x \mapsto \operatorname{Th}(x)/\sim$

from X to $\operatorname{Sto}(B/\sim)$ is continuous, and its image is dense and is a Kolmogorov quotient of \boldsymbol{X} .

Given a signature \mathscr{S} (such as \mathscr{S}_{ring}), we can let

- X be the class $\mathbf{Str}_{\mathscr{S}}$ of *structures* having signature \mathscr{S} ,
- B be the set $\operatorname{Sen}_{\mathscr{S}}$ of first-order sentences in \mathscr{S} ,
- \models be the relation of *truth* from $\mathbf{Str}_{\mathscr{S}}$ to $\mathrm{Sen}_{\mathscr{S}}$.

In addition to \lor and \land , Sen $_{\mathscr{S}}$ has the operation \neg , where

 $\mathbf{Str}_{\mathscr{S}} \smallsetminus \mathbf{Mod}(\sigma) = \mathbf{Mod}(\neg \sigma).$

Then $\operatorname{Sen}_{\mathscr{S}}/\sim$ is a Boolean algebra, called a Lindenbaum algebra, so

- its prime filters are *ultrafilters*,
- $\operatorname{Sto}(\operatorname{Sen}_{\mathscr{S}}/\sim)$ is Hausdorff.

Is the image of $\operatorname{Str}_{\mathscr{S}}$ in $\operatorname{Sto}(\operatorname{Sen}_{\mathscr{S}}/\sim)$ compact?

A subset Γ of Sen $_{\mathscr{S}}$ is **complete** if it is consistent and always contains σ or $\neg \sigma$.

Equivalently, $\Gamma = \bigcup \mathscr{U}$ for an ultrafilter \mathscr{U} of $\operatorname{Sen}_{\mathscr{S}}/\sim$.

Let $\operatorname{Fm}_{\mathscr{S}}(x) = \{ \text{formulas of } \mathscr{S} \text{ with free variable } x \}.$

Theorem 6 (Henkin, 1949). Suppose

- T is a complete subset of $Sen_{\mathscr{S}}$, and
- T has witnesses: for every φ in $\operatorname{Fm}_{\mathscr{S}}(x)$, for some constant c in \mathscr{S} ,

T contains $\exists x \ \varphi \to \varphi(c)$.

Then T has a **canonical model**, whose universe consists of its interpretations of the constants in \mathscr{S} .

Corollary 6.1 (Mal'cev, 1941). The Prime Ideal Theorem implies the Compactness Theorem.

Proof. Suppose Γ is a consistent subset of Sen $_{\mathscr{S}}$. We can find

- a set A of constants not in \mathscr{S} , together with
- a bijection $\varphi \mapsto c_{\varphi}$ from $\operatorname{Fm}_{\mathscr{S}(A)}(x)$ to A.

Let $\Gamma^* = \Gamma \cup \{ \exists x \ \varphi \to \varphi(c_{\varphi}) \colon \varphi \in \operatorname{Fm}_{\mathscr{S}(A)}(x) \}$. Then

- Γ^* has witnesses and is consistent;
- the same is true of any complete subset of $\operatorname{Sen}_{\mathscr{S}(A)}$ that includes Γ^* ;
- such complete sets exist, by Lindenbaum's Lemma (1930, following from the Prime Ideal Theorem).

Corollary 6.2 (Tarski–Vaught Test, 1957). If $\mathfrak{A} \subseteq \mathfrak{B}$, that is, $\mathfrak{B} \models \operatorname{diag}(\mathfrak{A})$, and if for all φ in $\operatorname{Fm}_{\mathscr{S}}(x)$, for some a in A,

$$\mathfrak{B} \models \exists x \; \varphi \to \varphi(a),$$

then

 $\mathfrak{A}\preccurlyeq\mathfrak{B}$

(\mathfrak{A} is an **elementary substructure** of \mathfrak{B}), that is, $\mathfrak{B} \models \mathrm{Th}(\mathfrak{A}_A)$, where \mathfrak{A}_A is the obvious expansion of \mathfrak{A} to $\mathscr{S}(A)$.

Proof. \mathfrak{A}_A is a canonical model of $\mathrm{Th}(\mathfrak{B}_A)$.

For example,

 $(\{0,1\},+) \nsubseteq (\mathbb{Z},+), \quad \mathbb{Z} \subseteq \mathbb{Q}, \quad \mathbb{Z} \not\preccurlyeq \mathbb{Q}, \quad \mathbb{Q}^{\mathrm{alg}} \preccurlyeq \mathbb{C}.$

Corollary 6.3 (Löwenheim–Skolem–Tarski Theorem). Every structure of at least the (infinite) cardinality of its signature has an elementary substructure of exactly that cardinality, assuming AC.

Proof. There is a substructure of that size to which the Tarski–Vaught Test applies.

The **Löwenheim–Skolem Theorem** is the case of countable signatures (this does not need AC).

Hence the **Skolem Paradox:** It is a theorem of ZF that \mathbb{R} is uncountable; but if ZF has a well-ordered model, it has a countable model.

(By Gödel's Second Incompleteness Theorem, it is not a theorem of ZF that ZF has a model at all.)

Corollary 6.4 (Łoś's Theorem, 1955). Assume AC. Suppose

- $(\mathfrak{A}_i: i \in \Omega) \in \mathbf{Str}_{\mathscr{S}}^{\Omega}$, and \mathscr{U} is an ultrafilter of $\mathscr{P}(\Omega)$;
- $A = \prod_{i \in \Omega} A_i$, and \mathfrak{A}_i^* is the expansion of \mathfrak{A}_i to $\mathscr{S}(A)$ so that

$$a^{\mathfrak{A}_i^*} = a_i$$

when a is $(a_i: i \in \Omega)$ in A;

- $\|\sigma\| = \{i \in \Omega : \mathfrak{A}_i^* \models \sigma\}$ when $\sigma \in \operatorname{Sen}_{\mathscr{S}(A)};$
- $T = \{ \sigma \in \operatorname{Sen}_{\mathscr{S}(A)} \colon \|\sigma\| \in \mathscr{U} \}$ (which is consistent).

Then T has a *canonical* model: an **ultraproduct** of the \mathfrak{A}_i .

Proof. If T contains $\exists x \varphi$, then it contains $\varphi(a)$, where

$$\mathfrak{A}_i^* \models \exists x \ \varphi \iff \mathfrak{A}_i^* \models \varphi(a_i).$$

Theorem 7 (Lindström, 1966). There is no proper "uniform" compact refinement of the topology on $\mathbf{Str}_{\mathscr{S}}$ that retains the Löwenheim–Skolem Theorem.

The Compactness Theorem may be so called because:

1) $\{\operatorname{Th}(\mathfrak{A})/\sim: \mathfrak{A} \in \mathbf{Str}_{\mathscr{S}}\}$ is a Stone space, and

2) Stone spaces are compact.

But the work lies in proving, not (2), but (1): In some logics, (1) fails.

Some formulations of the Compactness Theorem are equivalent to the Maximal Ideal Theorem; but it is desirable to recognize the basic form above, equivalent to the Prime Ideal Theorem.

Next June 20-30 in Istanbul: http://www.uni-log.org/