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Introduction

The present document is an exposition of three related topics:
. The interpretation of a field in a Euclidean plane, which

allowed Descartes to create what we call analytic geom-
etry. Descartes did not supply the details, but we can
do it by Pappus’s Hexagon Theorem, as well as other
means.

. The interpretation of the scalar field in a vector space
(of dimension at least 2) over the field by means of par-
allelism. This leads to the results of the paper, “Model-
theory of vector-spaces over an unspecified field” [].

. The interpretability, by existential formulas, of fields
with several derivations in certain Lie rings equipped
with a group endomorphism. This leads, through the
paper “Fields with several commuting derivations” [],
to the existence of model-complete theories of Lie rings
with group endomorphism.

I alluded to the last item at [, §, p. ]; but the present
document is so far the most thorough account.

The document consisted originally of notes for a talk to
be given on May , . The abstract of the talk was as
follows.

In his Geometry of , Rene Descartes gave a geometric
justification of algebraic manipulations of symbols. He did
this by interpreting a field in a vector-space with a notion of
parallelism. At least this is how we might describe it today.





I alluded to this in the abstract for my February  seminar,
but did not actually talk about it. Now I want to talk about
it.

By fixing a unit, Descartes defines the product of two line
segments as another segment. He relies on a theory of pro-
portion for this. Presumably this is the theory developed
in Book v of Euclid’s Elements—the theory that inspired
Dedekind’s definition of real numbers as “cuts” of rational
numbers.

But this theory has an “Archimedean” assumption: for any
two given segments, some multiple of the smaller exceeds the
larger.

In fact this assumption is not needed, as Hilbert observed
in Foundations of Geometry. Hilbert uses instead Pappus’s
Theorem. This work may be known now as “interpreting a
field in a projective plane.”

I tracked down Pappus’s original argument (from the th
century), and [on May , ] I wrote an account of it on
Wikipedia [in the “Pappus’s hexagon theorem” article, in the
“Origins” section].

As for model theory, another result that comes out of these
considerations is that there are model-complete theories of
Lie-rings equipped with an endomorphism of the abelian-
group-structure.

According to my records, in the actual talk, “I said something
about all sections of the notes, mainly in the order  [vector
spaces],  [Lie rings],  [geometry].” According to the notes of
Ayşe Berkman, transcribed as an appendix below (but which
may not be complete), I did not talk about geometry at all.

The talk concerned mainly the work with Özcan Kasal that would
appear in “Chains of theories and companionability” [].





I revisited my notes in the following September, and now
again in April, . I have made some corrections and
changes of style to the main text. More thoroughgoing revi-
sions, reflecting the increase of my own knowledge (especially
about Pappus and Dedekind), are in the footnotes. (All but
one of these notes are from .)





. Geometry

By fixing a line segment in the Euclidean plane as a unit,
Descartes defines multiplication of segments []. Thus he jus-
tifies algebra by interpreting it in geometry.

E

B

D

AC

Let AC ‖ DE.

If AB = 1,

BD = a,

BC = b,

then BE := ab.

Figure ..: Descartes’s definition of multiplication

Hilbert will go the other way, using algebra to produce mod-
els of his geometric axioms.

Descartes needs Proposition vi. of Euclid’s Elements [],
that a line parallel to the base of a triangle divides the sides
proportionally, as in Figure .. Descartes himself uses single
minuscule letters for line segments. To denote equality, he
uses the reverse of our ∝, instead of =. Strictly we should
probably consider these minuscule letters as lengths of line
segments; and the length of a segment should be understood

Nonetheless, though Descartes was writing in , Robert Recorde
had introduced our “equals” sign in  []. (Footnotes were added
in , unless otherwise noted.)





as the class of all segments that are congruent to it. (In Euclid,
equality means congruence; sameness is a different notion.)

The proof of vi. uses the auxiliary lines in Figure ., along
with vi., that triangles (and parallelograms) with the same
height are to one another as their bases.

B

A

C

ED

∵ DE ‖ BC,

∴ △BDE = △CDE,

∴ BD : DA :: △BDE : △ADE

:: △CDE : △ADE

:: CE : EA.

Figure ..: Euclid’s Proposition vi.

This follows easily from the definition of proportion in Book
v of the Elements. This definition uses an “Archimedean” as-
sumption: for any two magnitudes of the same kind (as line
segments, or areas), some multiple of the smaller exceeds the
larger. If A, B, C, and D are magnitudes, A and B being of
the same kind, and likewise C and D, then

A : B :: C : D

means for all positive integers k and m,

kA > mB ⇐⇒ kC > mD,

kA = mB ⇐⇒ kC = mD,

kA < mB ⇐⇒ kC < mD.

We then might understand

(A : B) = {m/k : kA < mB}.





Thus a ratio corresponds to a Dedekind cut of positive rational
numbers.

Dedekind [, I] does not say his definition (discovered
November , ) of the real numbers is inspired by Eu-
clid. But apparently he read Euclid in school [, p. ].

Dedekind does not show explicitly that the real numbers
defined by him satisfy the field axioms; but he says it can be
done. His idea seems to be this: the operations of + and × are
continuous in each coordinate, and therefore every equation,
like

(x+ y) · z = x · z + y · z,

that is satisfied by all rationals is satisfied by all reals as well.
The works that I know—Landau [, Thm , p. ] and

Spivak [, pp. –]—do not take this approach, but work
directly with the definitions of + and × as cuts.

Descartes does not recognize a need to prove associativity
and commutativity of his multiplication.

Note that addition is “obviously” commutative and associa-
tive, since equality of parts implies equality of the wholes.
Consider for example Euclid’s i. in Figure ., that parallel-
ograms on the same base and in the same parallels are equal,
because they can be divided into parts that are respectively
equal, though differently arranged.

We can prove commutativity of multiplication using a case
of Pappus’s Theorem. In Figure ., let

Dedekind does cite Euclid in [, II, Preface, pp. –], where he ob-
serves in effect that every ratio of Euclidean magnitudes is a real
number, but that critics have not understand that he (Dedekind) is
doing something new, namely showing how to define real numbers
without reference to magnitudes.

What we now call Pappus’s Theorem is that, if the vertices of a hexagon
lie alternately on two straight lines, then the intersection points of





A D E F

B C

G

∵ AF ‖ BC,

∴ ABE = DCF,

∴ ABGD = GCFE,

∴ ABCD = ABGD +GBC

= GCFE +GBC

= EBCF.

Figure ..: Euclid’s Proposition i.
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B

C

D

E
F

G

FGD = FGC ∵ FG ‖ DC

BGD = FBC [add BFG]

DEG = DEA ∵ DE ‖ AG

DBG = BEA [add DBE]

FBC = BEA [nd eqn]

FEC = FEA [subtract FBE]

∴ FE ‖ AC

Figure ..: Pappus’s Theorem and his proof





BF = 1, BE = 1, BD = a, BG = b.

Assume DC ‖ FG and DE ‖ AG. Then

BA = ab, BC = ba.

These are equal, provided AC ‖ FE. To prove the parallelism,
we may note that

BF : BD :: BG : BC, BD : BA :: BE : BG,

each of the three pairs of opposite sides of the hexagon lie on a straight
line. Here parallel straight lines are counted as meeting “at infinity.”
Thus, in the case now under consideration, each of two of the pairs of
opposite sides of the hexagon are parallel; the conclusion is that the
third pair are parallel. This is Lemma viii of Pappus’s  lemmas for
Euclid’s (now lost) book of Porisms. These lemmas are part of Book
vii of Pappus’s Collection [, pp. –]. Within Book vii, by the
count of Hultsch, the lemmas are Propositions –; thus Lemma
vii is Proposition .

Pappus’s own proof uses not proportions, but areas; I have added it
to Figure .. In , I did not know Pappus’s proof, because I had
accepted Heath’s account [, pp. –], whereby Pappus’s Theorem
is found in Propositions , , , and  of Book vii, that is,
Lemmas xii, xiii, xv, and xvii for Euclid’s Porisms. Heath was
following Chasles’s analysis of the  lemmas. Thus, unless Heath
misrepresents Chasles, he too overlooked the import of Proposition
. Kline [, p. ] cites only Proposition  as being Pappus’s
Theorem. This proposition is the case of Pappus’s Theorem where
each pair of opposite sides of the hexagon are intersecting, and the
two straight lines on which the vertices lie alternately are not parallel.
In Proposition , those straight lines are parallel. Propositions 
and  are the converse: if the straight line through the intersection
points of two pairs of opposite sides of the hexagon meets a fifth
side at a point, then the sixth side must pass through that point. As
Alexander Jones observes, citing Jan Hogendijk, the result can be seen
as the same as that of Propositions  and , if one relabels the
points; but this is not how Pappus’s proof goes [, p. ]. In ,
I translated the first  of Pappus’s lemmas from Greek to Turkish





and therefore, by Euclid’s Proposition v., ex aequali,

BF : BA :: BE : BC.

The proof of v. does not use commutativity of multiplica-
tion of integers, but uses the Archimedean property. In fact it
uses a bit more than this: of two unequal magnitudes of the
same kind, their difference is also of the same kind. The ar-
gument can be made as follows, where capital letters are now
magnitudes.

v.. Suppose A > B, and C is of the same kind as these.
Then for some k we have k(A−B) > C, and so for some
m we have

kA > mC > kB,

and thus A : C > B : C (hence also C : A < C : B).

v.. If A : B :: C : D and A > C, then

C : D :: A : B > C : B,

so B > D.

for use in a course called Geometriler. Only late in the process did I
learn about Jones’s edition of Pappus’s Book vii []. It seems that
Pappus did not consider the case of the theorem named for him in
which exactly one of the three pairs of opposite sides of the hexagon
are parallel.

Euclid’s v. is, “If there be any number of magnitudes whatever, and
others equal to them in multitude, which taken two and two together
are in the same ratio, they will also be in the same ratio ex aequali ”
[, p. ]. That is, if A1 : A2 :: B1 : B2, . . . , An : An+1 :: Bn : Bn+1,
then A1 : An+1 :: B1 : Bn+1. Proposition v. is a variant: “If there
be three magnitudes, and others equal to them in multitude, which
taken two and two together are in the same ratio, and the proportion
of them be perturbed, they will also be in the same ratio ex aequali.”





v.. Suppose

A : B :: E : F, B : C :: D : E.

If A > C, then E : F :: A : B > C : B :: E : D, so
D > F .

v.. Same supposition as v.. Then for all k and m,

kA : kB :: mE : mF, kB : mC :: kD : mE,

and so kA > mC =⇒ kD > mF . Thus

A : C :: D : F.

For associativity, in the same Figure ., suppose

BF = 1,
BD = ab,

BA = ac,

BE = b,

BG = c.

Then DE ‖ AG. Also

DC ‖ FG =⇒ BC = c(ab),

AC ‖ FE =⇒ BC = b(ac).

The theorem we have used is that if the vertices of a hexagon
lie alternately on two straight lines, and each of two pairs of
opposite sides are parallel, then so are the third pair. More
generally, the intersection points of the pairs of opposite sides
lie on the same straight line—in our case, this is the “line at
infinity”. Pappus proved the finite case [, vii.–].

Pascal’s Theorem is the generalization of Pappus’s Theorem
in which the vertices of the hexagon lie on a conic section. It

As already noted, Pappus proved the “infinite” or parallel case as well.





b

A

B

C

D

E

∵ ∠ACB = ∠ADB = right

∴ ∠BAD = ∠CAE

Figure ..: Hilbert’s lemma for Pappus’s Theorem

is enough to prove the case of a circle, since non-degenerate
conic sections are projections of a circle.

One can prove Pappus’s Theorem without using proportions
(or the Archimedean property in any way). See Hilbert’s Foun-

dations of Geometry [, §, pp. –], where the theorem is
named for Pascal. Hilbert argues as follows. In Figure ., the
angles ACB and ADB are right, so the points ABCD lie on
a circle, and therefore the angles ABD and ACD are equal,
so their complements BAD and CAE are equal. Considering
now how AE is the result of two projections, in two different
ways, from AB, we can write this as

c cosα cos β = c cos β cosα,

where c = AB, and α = ∠BAC, and β = ∠CAE. Hilbert
writes the conclusion as

βαc = αβc;

here αc just means the length of AC. Now apply this to
Figure ., which is just Figure . relettered. We assume
CB′ ‖ BC ′ and CA′ ‖ AC ′. Perpendiculars dropped from O





A

B

C

O

C ′

A′

B′

Figure ..: Hilbert’s first proof of Pappus’s Theorem

to CB′, CA′, and BA′ make angles λ′, µ′, and ν ′ with OA, and
angles λ, µ, and ν with OC ′, respectively. Then with distances
from O lettered in the obvious way, we have (in Hilbert’s no-
tation, as above)

λb′ = λ′c, µa′ = µ′c, νa′ = ν ′b,

λ′b = λc′, µ′a = µc′,

and therefore, since we can permute the angles, we apply
these equations in order to get

ν ′µ′λa = ν ′µλc′ = ν ′µλ′b = νµλ′a′ = νµ′λ′c = νµ′λb′,

ν ′a = νb′,

and therefore BA′ ‖ AB′.
Hilbert gives also another argument, “in the following very

simple manner, for which, however, I am indebted to another
source.”

We proved commutativity [of the angles]. Associativity is automatic,
since the angles represent functions; but Hilbert does not seem to say





B G

F

A

E

D

C

H

∠BHE = ∠BGF [construction]

∠BGF = ∠BCD [FG ‖ DC]

∠BHE = ∠BCD

∠BCH = ∠BDE [CDHE concyclic]

∠BDE = ∠BAG [DE ‖ AG]

∠BCH = ∠BAG

∠BCA = ∠BHG [AGCH concyclic]

∠BEF = ∠BHG [EFGH concyclic]

∴ ∠BCA = ∠BEF,

CA ‖ EF

Figure ..: Hilbert’s second proof of Pappus’s Theorem





With Pappus’s Theorem, Hilbert develops an “algebra of
segments,” more or less along the lines of Descartes. In short,
he interprets a field.

There is an alternative approach to interpreting a field, us-
ing only Book I of the Elements. Fix a unit segment. By
Propositions I. and I., in effect, every rectangle is equal
to a rectangle with unit side. The other side of this rectangle
can then be defined as the product of the two sides of the first
rectangle. This multiplication is immediately commutative, as
well as distributive over addition.

1

a

b d

d = ab

Figure ..: Multiplication defined by equal rectangles

More precisely, multiplication is effected as in Figure .,
where points are labelled with their distances from the lower
left vertex. Then (by I. and its converse) d = ab if and only if
the diagonal passes through the intersection of the vertical and

this explicitly. (Note added, September .)
I have now supplied this proof as Figure . (lettered like Figure .,

not like Hilbert’s own figure). The point to observe is that it uses
angles, like Hilbert’s first proof, and not areas, like Pappus’s own
proof.

Again, Pappus’s own proof of the parallel case of Pappus’s Theorem
has already provided this alternative approach.





1

a

b ab

c

cb a(cb)

A B

C D E F
G H K

Figure ..: Associativity of multiplication

horizontal lines. Associativity of multiplication thus defined
can be established by means of Figure .. Again points are
labelled with their distances from the lower left vertex. The
longer diagonal gives us both cb and ab. Then the shorter
diagonal then gives us a(cb). This is equal to c(ab), provided

C +D + E = K.

The longer diagonal gives us

A+ B = E + F +H +K,

B = E + F,

and therefore
A = H +K.

The shorter diagonal gives us

A = D + E +G+H,

and therefore
D + E +G = K.





We finish by noting (from the longer diagonal)

C = G.

Therefore c(ab) = a(cb). We have assumed c < 1 < a and
b < a(cb). Strictly we should consider four more cases:

() c < 1 < a, but a(cb) = b;
() c < 1 < a, but a(cb) < b;
() c < a < 1; and
() 1 < c < a.





. Vector spaces

Descartes’s idea for a geometric definition of multiplication lets
us interpret the scalar field in a vector space (of dimension at
least two) by means of parallelism. This is worked out in my
paper []. Given two parallel vectors a and b, we define [a : b]
as the class of pairs (c,d) of parallel vectors such that

a− c ‖ b− d

—assuming a ∦ c; otherwise we must be able to find a third
pair (e,f) of parallel vectors with the same relation to the
first two pairs, as in Figure .. Then the field is the set of

0
b a

d

c

0
b a

f

e

d c

Figure ..: Scalar field defined in a vector space

these classes [a : b], where b 6= 0. Equality and inequality of
these, and addition and multiplication of these, are defined by
existential formulas. Hence we obtain an equivalence of the
categories of:





) vector spaces with scalar field as a separate sort,
) vector spaces with scalar field only as interpreted above,

where in each case the morphisms are merely embeddings, not
just elementary embeddings.

In other words, if one vector space embeds in another, merely as an
abelian group with the relation of parallelism, then the embedding
preserves the whole structure of the vector space.





. Lie rings

Suppose K is a field. Let Der(K) be the set of derivations of
K. Then this is both

. a vector space over K, and
. a Lie ring, the multiplication being the Lie bracket,

(X, Y ) 7→ [X, Y ], where

[X, Y ] = X ◦ Y − Y ◦X.

For example,

K = Q(x0, . . . , xm−1), Der(K) = 〈∂0, . . . , ∂m−1〉K ,

where ∂i = ∂/∂xi. Suppose V is both a subspace and sub-ring
of Der(K). Then (K,V ) is a Lie–Rinehart pair.

Since V is a vector space over K, we may suppose K ⊆
End(V,+). In particular, we have

(f,D) 7→ fD : K × V → V.

Since V ⊆ Der(K), we have

(D, f) 7→ Df : V ×K → K.

Two compatibility conditions are satisfied. First, if f, g ∈ K
and D ∈ V , then

(fD)g = f(Dg). (∗)





Thus the expression
fDg

is unambiguous. Next, if f, g ∈ K and D,E ∈ V , then

[D, fE]g = D(fEg)− fE(Dg)

= (Df)(Eg) + fD(Eg)− fE(Dg)

= ((Df)E)g + f [D,E]g,

so
[D, fE] = (Df)E + f [D,E]. (†)

Suppose D ∈ V and t ∈ K and Dt 6= 0. For every f in K, we
have

( f

Dt
D
)

t = f.

Thus
K = {Dt : D ∈ V }.

That is, under the assumption that there is a nonzero deriva-
tive, then every element of the field is a derivative.

Let b denote the Lie bracket operation. I propose to call the
structure (V,+,−, 0, b, t) a Lie ring of vectors. The class
of these is elementary. For, first of all, there are axioms as
follows:

. (V,+,−, 0) is an abelian group.
. b makes this a lie ring: b distributes over +, and

X bX = 0,

X b (Y b Z) + Y b (Z bX) + Z b (X b Y ) = 0.

That is, the class of such structures for which there is a field K making
(V,K) a Lie–Rinehart pair as above is elementary.





. t is an endomorphism of the group:

t(X + Y ) = tX + tY.

Next, rearranging the second compatibility condition (†), we
obtain

(Df)E = D b (fE)− f(D b E). (‡)

If f is replaced by t, then the right hand side is a term in our
signature. We then take the left hand side as an abbreviation
of this. By the axioms so far, each operation X 7→ (Dt)X or
Dt is an endomorphism of (V,+). Let

K = {Xt : X ∈ V }.

Then this is a group under

Xt+ Y t = (X + Y )t.

The map X 7→ Xt is a group homomorphism from K to
End(V,+). We want it to be a ring monomorphism. So the
axioms say further:

. The action is faithful:

(Xt)Y = 0 → Y = 0 ∨ (Xt)Z = 0.

. K is closed under multiplication:

∃W (Xt)((Y t)Z) = (Wt)Z.

(Here the outer universal quantifiers are suppressed.)
Then multiplication is associative and distributes over
addition, by what we already have; so K is an associa-
tive ring. Expressions like

(Xt)(Y t)Z

are now unambiguous.





. K is commutative:

(Xt)(Y t)Z = (Y t)(Xt)Z.

. K has inverses:

∃Z
(

(Zt)(Xt)Y = Y ∨ (Xt)Y = 0
)

.

In particular, since K is closed under multiplication, it
contains 1, which is different from 0, since the action is
faithful.

We also need K to be closed under the action of V . Again by
the second compatibility condition, rearranged as (‡), we have

(DFt)E = D b (FtE)− (Ft)(D b E),

the right hand being a term of the signature; we use the left
as an abbreviation. So we now require:

. That K be closed under x 7→ Dx, for all D in V :

∃W (XY t)Z = (Wt)Z.

. That the first compatibility condition (∗) hold:

(

(

(Xt)Y
)

(Zt)
)

W =
(

(Xt)(Y Zt)
)

W.

This is it. We have not shown that V acts on K as a Lie ring
of derivations, but this is automatic from the definition of the
action, since K is now established as a sub-ring of End(V,+).

If 0 < m < ω, let LVm be the theory of m-dimensional Lie
rings of vectors. Let (V,+, b, t) be a model, with scalar field

Originally I forgot the condition that (Xt)Y should not be 0.





K. Then V has a basis of commuting derivations ∂0, . . . , ∂m−1

of K, so
(K, ∂0, . . . , ∂m−1) |= m-DF.

The structure (K, ∂0, . . . , ∂m−1) has a one-dimensional inter-
pretation in (V,+, b, t) with coordinate map X 7→ Xt from
(all of) V to K (see Hodges [, §., p. ]). To show this,
we need to find, for the appropriate formulas ϕ of the signa-
ture {+, ·, ∂0, . . . , ∂m−1}, formulas ϕ∗ of the signature {+, b, t}
such that

(V,+, t) |= ϕ∗(X, . . . )

⇐⇒ (K,+, ·, ∂0, . . . , ∂m−1) |= ϕ(Xt, . . . ).

These are as follows.

ϕ ϕ∗

x = y (Xt)∂0 = (Y t)∂0

x+ y = z (Xt)∂0 + (Y t)∂0 = (Zt)∂0

x · y = z (Xt)(Y t)∂0 = (Zt)∂0

∂ix = y (∂iXt)∂0 = (Y t)∂0

x 6= y (Xt)∂0 6= (Y t)∂0

The existence of all but the last formula ϕ∗ ensures the inter-
pretation. That all of the ϕ∗ are quantifier-free (existential
would be enough) ensures that, if (V,+, b, t) is existentially
closed, then so is (K,+, ·, ∂i : i < m).

As will be seen, the interpretation will use the parameter ∂0.
That is, if some model (V,+, b, t) of LVm is an elementary substructure

of every model of which it is a substructure, then the same is true of
every model of m-DF interpreted in (V,+, b, t) as above.





To derive this conclusion directly, we need only note that, if

(K,+, ·, ∂0, . . . , ∂m−1) ⊆ (L,+, ·, ∂̃0, . . . , ∂̃m−1),

then, letting
Ṽ = 〈∂̃0, . . . , ∂̃m−1〉L,

and letting b̃ be the Lie bracket, we have an embedding ∂i 7→ ∂̃i
of (V,+, b, t) in (Ṽ ,+, b̃, t).

We can go the other way. There is an m-dimensional inter-
pretation of (V,+, b, t) in (K,+, ·, ∂0, . . . , ∂m−1), with coordi-
nate map

(x0, . . . , xm−1) 7→
∑

i<m

xi∂i.

As before, if (K,+, ·, ∂0, . . . , ∂m−1) is existentially closed, so
must (V,+, b, t) be.

Since m-DF has the model companion m-DCF [], the the-
ory LVm also has a model companion. Indeed, note that if
V and K correspond as above, Then the dual space V ∗ has a
basis (d ti : i < m) for some ti in K, and this basis is dual to
a basis (∂i : i < m) of V given by

∂it
j = δ

j
i =

{

1, if i = j,

0, if i 6= j.

This is a commuting basis, since

[∂i, ∂j ] d t
k = [∂i, ∂j]t

k = 0

The details of this paragraph concerning the dual space V ∗ were lacking
originally, but are found at [, p. ]—where there is a blanket
assumption that fields have characteristic 0, but this does not affect
the present point. Apparently I gave the details in the talk as well:
see the appendix.





in each case. Then the axioms of the model-companion of LVm

say that if {∂0, . . . , ∂m−1} is a subset of V such that

∂iDjt = δ
j
i

for all i and j in m, for some (Dj : j < m) in V m, then the
structure (K,+, ·, ∂i : i < m) is a model of m-DCF.

One could avoid mentioning the Dj . But then one must require both
that, in each case, ∂i b ∂j = 0, and also that the ∂i span V . The
resulting axioms for the model companion of LVm would not then be
∀∃, though one could still assert that such axioms must exist.





A. Transcript

I transcribe the following from Ayşe Berkman’s handwritten

notes of my talk. She does not guarantee that her notes are

complete. I add the labelling and captioning of figures.

Descartes:

1 a

b

ab

Figure A..: Descartes’s definition of multiplication

Say (V,K) is a vector space, where dimK V > 2. Let

A = {(x, y) ∈ V 2 : x ‖ y ∧ y 6= 0}.

We have

f : A ։ K

(x, y) 7→ [x : y], where x = [x : y]y.

This f is the coordinate map of an interpretation of (K,+, ·)
in (V,+, ‖). One checks:





• A is definable;
• for certain ϕ of {+, ·} there are ϕ∗ of {+, ‖} such that

for all (x, y) in A,

V |= ϕ∗(x, y) ⇐⇒ K |= ϕ(f(x, y)) :

ϕ ϕ∗

x0 = x1

x0 − x1 ‖ y0 − y1 as in Fig. A.a

∨
(

y0 ‖ y1 ∧ ∃(x2, y2) as in Fig. A.b
)

x+ y = z
x · y = z
x 6= y

x0 y0

x1

y1

(a) y0 ∦ y1

x1 y1

x2

y2

x0 y0

(b) y0 ‖ y1

Figure A..: Equality of pairs (xi, yi) of parallel vectors

Remark: These are all ∃ formulas.

Result: If

T = Th(two sorted vector spaces),

T ′ = Th(abelian groups with ‖),

In the table, in the formula (x0 = x1)
∗, the first disjunct needs the

condition y0 ∦ y1. Also, the formulas ϕ for which apparently I did
not write down ϕ∗ should be x0 + x1 = x2, x0 · x1 = x2, and x0 6= x1.
Alternatively, they can stay as they are, but then x0 = x1 should be
x = y, so that the elements of A used in (x = y)∗ would be (x0, x1),
(y0, y1), and (z0, z1), rather than (x0, y0), (x1, y1), and (x2, y2).





then Mod⊆(T ) and Mod⊆(T
′) are equivalent. (Morphisms

are embeddings, not necessarily elementary.)
Again (V,K) is a vector space, but now say also V ⊆

Der(K). For example,

K = Q(x0, . . . , xm−1), V =

〈

∂

∂x0

, . . . ,
∂

∂xm−1

〉

K

.

Der(K) is always a vector space over K; it is also a Lie ring
under [ , ], where

[D,E] = D ◦ E − E ◦D.

So, say V is both a subspace and sub-ring of Der(K). Then
(K,V ) is a Lie–Rinehart algebra. If f ∈ K, then

[D, fE] = D ◦ (fE)− fE ◦D

= Df · E + f ·D ◦ E − fE ◦D

= Df · E + f · [D,E].

Also if g ∈ K then

(fD)g = f · (Dg).

Suppose t ∈ K, and for some D in V , Dt 6= 0. Then

V ։ K

D 7→ Dt

because
( g

Dt
·D

)

t = g if Dt 6= 0.

The following identity was used in the previous identity, where for
example fE◦D is understood first as (fE)◦D, that is, x 7→ (fE)(Dx),
and then as f(E ◦D), that is, x 7→ f · (E(Dx)).





Now suppose dimK V = m. We have

K → V ∗

x 7→ d x

given by

D(d x) = Dx, where D ∈ V.

The range of d spans V ∗. So for some t0, . . . , tm−1 in K,

V = 〈d t0, . . . , d tm−1〉K .

Let (∂0, . . . , ∂m−1) be the dual basis of V , so

∂i(d t
j) = δ

j
i .

Then [∂i, ∂j] = 0 in each case. So

(K, ∂0, . . . , ∂m−1) |= m-DF

(differential fields with m commuting derivations). The map
D 7→ Dt allows us to interpret (K, ∂0, . . . , ∂m−1) in (V, b, t)
(where t ∈ End(V ) and b is the bracket) by ∃ formulas. Simi-
larly

Km → V

(x0, . . . , xm−1) 7→
∑

i<m

xi∂i

is the coordinate map of an interpretation of (V, b, t) in
(K, ∂0, . . . , ∂m−1), again by ∃ formulas. So we get model-
complete theories of Lie rings with a group endomorphism.
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