INDUCTION AND RECURSION DAVID PIERCE Bern, 2008
Why do we learn and teach foundations wrongly”
According to Spivak’s Calculus (2d ed., 1980):
Ch. 1 Numbers have twelve “simple and obvious properties”.
Ch. 27 These are the defining properties of an ordered field.
Ch. 1 Without ordering, one cannot prove 1 + 1 # 0: consider F.
Ch. 8 R has the least upper bound property.
Ch. 28 R is constructed from Q.
Ch. 2 The natural numbers are 1, 2, 3, ...; these compose N.
“Basic assumptions”’ about the natural numbers are the
e principle of mathematical induction,
e well-ordering principle, and

e principle of “complete” induction, namely A =N if 1 € A and
{1,... )k} CA = k+1€ A

From each “basic assumption,” the others can be proved. No!
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The “basic assumptions” are not equivalent.

1. Induction is about (N, 1,2 +— = + 1).

2. Well-ordering is about (N, <).

3. “Complete” induction (a la Spivak) is about (N, <, 1,2 — x + 1).
Each is logically distinguishable from the others by appropriate models
(as Fy shows the field-axioms do not imply 14 1 # 0):

e Only induction works in Z/(2): the transitive closure of x — x + 1
is not an ordering.

e The proper subset w of w + w is closed under 0 and = +— x U {x},
but the transitive closure of the latter is a well-ordering.

Induction involves quantification over all subsets of N.

Why not define N by quantification over all supersets of N7 That is,
N=(|{XCR:leXa&aWyeX=y+lecX)}
Then induction, well-ordering, and complete induction follow from thzis.
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Dedekind gets things straight in The Nature and Meaning of Numbers
(1887, 1893):

“r9. Theorem of complete induction. In order to show that the chain
A, [that is, (|{X: A C X & ¢|X] C X}| is part of any system X. . . it
is sufficient to show,

p- that A 3 32, and A C Y
o. that the transform of every common element of A, and X is likewise
element of ¥.” 6[A, N Y] C 3

“71...the essence of a simply infinite system /N consists in the ex-
istence of a transformation ¢ of N and an element 1 which satisfy the
following conditions a, S, v, &:

a. N"3 N. [¢[N] C N
B.N =1, IN={XCN:1eX&o¢pX]CX}
y. The element 1 is not contained in N’ 11 & ¢|N]|
8. The transformation ¢ is similar.” ¢ is injective]

These are the ‘Peano axioms’ before Peano.
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“126. Theorem of the definition by induction. If there is given
a. .. transformation 6 of a system {2 into itself, and besides a determinate
element w in €2, then there exists one and only one transformation
of the number-series IV, which satisfies the conditions

Ly(N) 30 B[N C Q)
[l y(1) =w

[1I. ¢p(n') = 01p(n), where n represents every number.”

That is, from (N, ¢, 1) to (€2, 8,w) there is a unique homomorphism.

“130. Remark...it is worth while to call attention to a circumstance
in which |definition by induction (126)| is essentially distinguished
from the theorem of demonstration by induction |(59)|, however
close may seem the relation between the former and the latter...”

In particular,
e 7Z/(2) allows demonstration by induction; but

e there is no homomorphism from Z/(2) into Z/(3).
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Peano (1889g) acknowledges Dedekind.

For every a in N, there is a successor a + 1 € N. Then Peano defines
a+(b+1)=(a+0b)+1. (%)
This defines instances of a + (b + 1); assuming;
1. that b + 1 uniquely determines b;
2. that a + b is already defined;

3. that a 4+ (b + 1) is not already defined.

By induction, all a+b can be defined. But it is not immediate that (x)
holds for all @ and b in N, because of (3).

Dedekind’s (126) gives addition satisfying (x) immediately.

Following Kalmar, Landau (1929) shows implicitly that addition can
be defined with induction alone. Hence it can be defined on finite
structures: 9 3 ... o on+1
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Likewise, the recursive definition of multiplication,
ax1=a, ax(b+1)=axb+a,

is justified by induction alone. However:

Theorem. The identities
a' = a, " =a"xa (1)
hold on Z/(n) if and only if |n| € {0,1,2,6}.

2 3 L4 .5 6

S
S
S
S
S

In Z/(6): In Z/(3):

U~ W NI
— o W
Ot = W o
— o QO
U = W o
— o W

ALEXANDRE BOROVIK: Detecting a failure of () modulo pq gives
a 1/4 chance of factorizing pq. See A Dialogue on Infinity,

http://dialinf .wordpress.com/
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Mac Lane & Birkhoft, Algebra (1st ed. 1967):

P. 35 ‘Peano Postulates’ for (N, 0,0):
(i) o is injective;
(1) 0 & 0. (IN);
(iii)if 0 e U, and n € U = o(n) € U, then U = N.

P. 36 Natural numbers index iterates of an operation f on a set X:
fo=1x, f"=fof"
P. 38 Any two of the Postulates have a model in which the third fails.
P. 67 The possibility of recursive definitions is the Peano—Lawvere
Axiom (or Dedekind—Peano Axiom in Lawvere & Rosebrugh

2003); this is logically equivalent to the three ‘Peano Postulates’.

See also Burris, Logic for Mathematics and Computer Science (1998).
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A more general setting: SENTENTIAL LOGIC
Cf. Thomas Forster, Logic, Induction, and Sets (2003).

Let V be aset {P, P, P" P" ...} of sentential variables.
Let S be the set of sentences generated from V by closing under
X+ X and (X, Y) -5 (X = Y).

Then § admits proof by induction, as e.g. in showing that parenthe-
Ses come 1n palrs.

Moreover, N and C are injective, and
S=V+C[S5]|+C[S x 5]
(disjoint union). Therefore S admits definition by recursion.

For example, truth assignments are so defined: If ¢: V — Fy, we
extend to all of S by

P~ X)=1+0(X), (X =Y))=1+0¢(X)+o(X)o(Y).



Also Detachment is given recursively by
DX, U)=U, itU ey,
D(X,~Y)=~Y,
A if X =Y
DIX,(Y = Z) =" AT
(Y = Z), otherwise.

Let the set 7 of theorems be the subset of S generated by closure
under D of some axioms, perhaps

(X = (VY = X)),
(~ X =~Y)= (Y = X)),
(X=Y=22)=(X=Y)=(X=72).

Then 7 admits proof by induction, but not definition of functions by
recursion.

Hence the non-triviality of decision problems.
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ALGEBRAIC CHARACTERIZATIONS
Let X be aset, and n: X — w.

An algebra with signature X is a pair
(A, s +— s%)

or 2, where A is a nonempty set, s ranges over ¥, and s%: A" — A,

The term algebra on B with signature X is the set of strings obtained
by closing B under each function

(t1, ... ,tn(5)> — St (s
Call this algebra Tmy(B).

An algebra 21 with signature > admits
e proof by induction, if 2 = Tmy(2)/J for some congruence J;

e definition by recursion, if A = Tmy(9).

Again, http://dialinf .wordpress.com/
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