Why do we learn and teach foundations wrongly?

According to Spivak’s *Calculus* (2d ed., 1980):

Ch. 1 **Numbers** have twelve “simple and obvious properties”.

Ch. 27 These are the defining properties of an **ordered field**.

Ch. 1 Without ordering, one cannot prove $1 + 1 \neq 0$: consider \mathbb{F}_2.

Ch. 8 \mathbb{R} has the **least upper bound property**.

Ch. 28 \mathbb{R} is constructed from \mathbb{Q}.

Ch. 2 The **natural numbers** are 1, 2, 3, ...; these compose \mathbb{N}.

“Basic assumptions” about the natural numbers are the

- principle of **mathematical induction**,
- **well-ordering** principle, and
- principle of **“complete” induction**, namely $A = \mathbb{N}$ if $1 \in A$ and $\{1, \ldots, k\} \subseteq A \implies k + 1 \in A$.

From each “basic assumption,” the others can be proved. **No!**
The “basic assumptions” are not equivalent.

1. Induction is about \((\mathbb{N}, 1, x \mapsto x + 1)\).
2. Well-ordering is about \((\mathbb{N}, \leq)\).
3. “Complete” induction (à la Spivak) is about \((\mathbb{N}, \leq, 1, x \mapsto x + 1)\).

Each is logically distinguishable from the others by appropriate models (as \(\mathbf{F}_2\) shows the field-axioms do not imply \(1 + 1 \neq 0\)):

- Only induction works in \(\mathbb{Z}/(2)\): the transitive closure of \(x \mapsto x + 1\) is not an ordering.
- The proper subset \(\omega\) of \(\omega + \omega\) is closed under 0 and \(x \mapsto x \cup \{x\}\), but the transitive closure of the latter is a well-ordering.

Induction involves quantification over all subsets of \(\mathbb{N}\).

Why not define \(\mathbb{N}\) by quantification over all supersets of \(\mathbb{N}\)? That is,

\[
\mathbb{N} = \bigcap \{X \subseteq \mathbb{R} : 1 \in X \land \forall y (y \in X \Rightarrow y + 1 \in X)\}.
\]

Then induction, well-ordering, and complete induction follow from this.
Dedekind gets things straight in *The Nature and Meaning of Numbers* (1887, 1893):

“59. Theorem of **complete induction.** In order to show that the chain A_o [that is, $\bigcap\{X: A \subseteq X \& \phi[X] \subseteq X\}$] is part of any system Σ...it is sufficient to show,

- $\rho.$ that $A \nexists \Sigma$, and $[A \subseteq \Sigma]$
- $\sigma.$ that the transform of every common element of A_o and Σ is likewise element of Σ.”

“71...the essence of a **simply infinite system** N consists in the existence of a transformation ϕ of N and an element 1 which satisfy the following conditions $\alpha, \beta, \gamma, \delta$:

- $\alpha.$ $N' \nexists N$. $[\phi[N] \subseteq N]$
- $\beta.$ $N = 1_o$. $[N = \bigcap\{X \subseteq N: 1 \in X \& \phi[X] \subseteq X\}]$
- $\gamma.$ The element 1 is not contained in N'. $[1 \notin \phi[N]]$
- $\delta.$ The transformation ϕ is similar.” $[\phi$ is injective$]$
“126. Theorem of the **definition by induction**. If there is given a... transformation θ of a system Ω into itself, and besides a determinate element ω in Ω, then there exists one and only one transformation ψ of the number-series N, which satisfies the conditions

I. $\psi(N) \not\in \Omega$ \\
[\(\psi[N] \subseteq \Omega\)] \\
II. $\psi(1) = \omega$ \\
III. $\psi(n') = \theta \psi(n)$, where n represents every number.”

That is, from $(N, \phi, 1)$ to (Ω, θ, ω) there is a unique homomorphism.

“130. Remark... it is worth while to call attention to a circumstance in which [**definition by induction (126)**] is essentially distinguished from the theorem of **demonstration by induction** [(59)], however close may seem the relation between the former and the latter...”

In particular,

- $\mathbb{Z}/(2)$ allows demonstration by induction; but
- there is no homomorphism from $\mathbb{Z}/(2)$ into $\mathbb{Z}/(3)$.
Peano (1889) acknowledges Dedekind.

For every a in \mathbb{N}, there is a successor $a + 1 \in \mathbb{N}$. Then Peano defines

$$a + (b + 1) = (a + b) + 1.$$ \hfill (\ast)

This defines *instances* of $a + (b + 1)$; assuming:

1. that $b + 1$ uniquely determines b;
2. that $a + b$ is already defined;
3. that $a + (b + 1)$ is *not* already defined.

By induction, all $a + b$ can be defined. But it is not immediate that (\ast) holds for all a and b in \mathbb{N}, because of (3).

Dedekind’s (126) gives addition satisfying (\ast) immediately.

Following Kalmár, Landau (1929) shows implicitly that addition *can* be defined with induction alone. Hence it can be defined on finite structures:
Likewise, the recursive definition of multiplication,

\[a \times 1 = a, \quad a \times (b + 1) = a \times b + a, \]
is justified by induction alone. However:

Theorem. The identities

\[a^1 = a, \quad a^{b+1} = a^b \times a \]

hold on \(\mathbb{Z}/(n) \) if and only if \(|n| \in \{0, 1, 2, 6\} \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(n^2)</th>
<th>(n^3)</th>
<th>(n^4)</th>
<th>(n^5)</th>
<th>(n^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

In \(\mathbb{Z}/(6) \):

\[
\begin{array}{cccccc}
2 & 3 & 4 & 4 & 4 & 4 \\
5 & 1 & 5 & 1 & 5 & 1 \\
\end{array}
\]

In \(\mathbb{Z}/(3) \):

\[
\begin{array}{cccccccc}
\hline
n & n^2 & n^3 & n^3 \times n & n^4 \\
\hline
2 & 1 & 2 & 1 & 2 \\
\end{array}
\]

Alexandre Borovik: Detecting a failure of \((\dagger)\) modulo \(pq \) gives a 1/4 chance of factorizing \(pq \). See *A Dialogue on Infinity*,

http://dialinf.wordpress.com/
Mac Lane & Birkhoff, *Algebra* (1st ed. 1967):

P. 35 ‘Peano Postulates’ for \((\mathbb{N}, 0, \sigma)\):

(i) \(\sigma\) is injective;

(ii) \(0 \notin \sigma(\mathbb{N})\);

(iii) if \(0 \in U\), and \(n \in U \Rightarrow \sigma(n) \in U\), then \(U = \mathbb{N}\).

P. 36 Natural numbers index iterates of an operation \(f\) on a set \(X\):

\[
f^0 = 1_X, \quad f^{\sigma n} = f \circ f^n.
\]

P. 38 Any two of the Postulates have a model in which the third fails.

P. 67 The possibility of recursive definitions is the Peano–Lawvere Axiom (or Dedekind–Peano Axiom in Lawvere & Rosebrugh 2003); this is logically equivalent to the three ‘Peano Postulates’.

A more general setting: SENTENTIAL LOGIC

Let \mathcal{V} be a set $\{ P, P', P'', P''', \ldots \}$ of sentential variables.

Let \mathcal{S} be the set of sentences generated from \mathcal{V} by closing under

$$X \xleftarrow{N} \sim X \quad \text{and} \quad (X, Y) \xleftarrow{C} (X \Rightarrow Y).$$

Then \mathcal{S} admits proof by induction, as e.g. in showing that parentheses come in pairs.

Moreover, N and C are injective, and

$$\mathcal{S} = \mathcal{V} + C[\mathcal{S}] + C[\mathcal{S} \times \mathcal{S}]$$

(disjoint union). Therefore \mathcal{S} admits definition by recursion.

For example, truth assignments are so defined: If $\phi : \mathcal{V} \rightarrow F_2$, we extend to all of \mathcal{S} by

$$\phi(\sim X) = 1 + \phi(X), \quad \phi((X \Rightarrow Y)) = 1 + \phi(X) + \phi(X)\phi(Y).$$
Also Detachment is given recursively by

\[D(X, U) = U, \quad \text{if } U \in V, \]
\[D(X, \sim Y) = \sim Y, \]
\[D(X, (Y \Rightarrow Z)) = \begin{cases}
Z, & \text{if } X = Y, \\
(Y \Rightarrow Z), & \text{otherwise.}
\end{cases} \]

Let the set \(\mathcal{T} \) of theorems be the subset of \(\mathcal{S} \) generated by closure under \(D \) of some axioms, perhaps

\[((X \Rightarrow (Y \Rightarrow X)), \]
\[(((X \Rightarrow (Y \Rightarrow (X \Rightarrow Z)))) \Rightarrow ((X \Rightarrow (Y \Rightarrow Z)) \Rightarrow ((X \Rightarrow (Y \Rightarrow (X \Rightarrow Z))))). \]

Then \(\mathcal{T} \) admits proof by induction, but not definition of functions by recursion.

Hence the non-triviality of decision problems.
ALGEBRAIC CHARACTERIZATIONS

Let Σ be a set, and $n: \Sigma \to \omega$.

An algebra with signature Σ is a pair

$$(A, s \mapsto s^A)$$

or \mathfrak{A}, where A is a nonempty set, s ranges over Σ, and $s^A: A^n(s) \to A$.

The term algebra on B with signature Σ is the set of strings obtained by closing B under each function

$$(t_1, \ldots, t_{n(s)}) \mapsto st_1 \cdots t_{n(s)}.$$

Call this algebra $\text{Tm}_\Sigma(B)$.

An algebra \mathfrak{A} with signature Σ admits

- **proof by induction**, if $\mathfrak{A} \cong \text{Tm}_\Sigma(\emptyset)/\mathcal{I}$ for some congruence \mathcal{I};
- **definition by recursion**, if $\mathfrak{A} \cong \text{Tm}_\Sigma(\emptyset)$.

Again, http://dialinf.wordpress.com/