
INDUCTION AND RECURSION David Pierce Bern, 

Why do we learn and teach foundations wrongly?

According to Spivak’s Calculus (d ed., ):

Ch.  Numbers have twelve “simple and obvious properties”.

Ch.  These are the defining properties of an ordered field.

Ch.  Without ordering, one cannot prove 1 + 1 6= 0: consider F2.

Ch.  R has the least upper bound property.

Ch.  R is constructed from Q.

Ch.  The natural numbers are 1, 2, 3, . . . ; these compose N.

“Basic assumptions” about the natural numbers are the

• principle of mathematical induction,

• well-ordering principle, and

• principle of “complete” induction, namely A = N if 1 ∈ A and

{1, . . . , k} ⊆ A =⇒ k + 1 ∈ A.

From each “basic assumption,” the others can be proved. No!
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The “basic assumptions” are not equivalent.

. Induction is about (N, 1, x 7→ x + 1).

. Well-ordering is about (N,6).

. “Complete” induction (à la Spivak) is about (N,6, 1, x 7→ x + 1).

Each is logically distinguishable from the others by appropriate models
(as F2 shows the field-axioms do not imply 1 + 1 6= 0):

• Only induction works in Z/(2): the transitive closure of x 7→ x + 1
is not an ordering.

• The proper subset ω of ω + ω is closed under 0 and x 7→ x∪ {x},
but the transitive closure of the latter is a well-ordering.

Induction involves quantification over all subsets of N.

Why not define N by quantification over all supersets of N? That is,

N =
⋂

{X ⊆ R : 1 ∈ X N ∀y (y ∈ X ⇒ y + 1 ∈ X)}.

Then induction, well-ordering, and complete induction follow from this.
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Dedekind gets things straight in The Nature and Meaning of Numbers

(, ):

“. Theorem of complete induction. In order to show that the chain
Ao [that is,

⋂

{X : A ⊆ X N φ[X ] ⊆ X}] is part of any system Σ. . . it
is sufficient to show,

ρ. that A Z Σ, and [A ⊆ Σ]

σ. that the transform of every common element ofAo and Σ is likewise
element of Σ.” [φ[Ao ∩ Σ] ⊆ Σ]

“. . . the essence of a simply infinite system N consists in the ex-
istence of a transformation φ of N and an element 1 which satisfy the
following conditions α, β, γ, δ:

α. N ′ Z N . [φ[N ] ⊆ N ]

β. N = 1o. [N =
⋂

{X ⊆ N : 1 ∈ X N φ[X ] ⊆ X}]

γ. The element 1 is not contained in N ′. [1 /∈ φ[N ]]

δ. The transformation φ is similar.” [φ is injective]

These are the ‘Peano axioms’ before Peano.
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“. Theorem of the definition by induction. If there is given
a. . . transformation θ of a system Ω into itself, and besides a determinate
element ω in Ω, then there exists one and only one transformation ψ
of the number-series N , which satisfies the conditions

I. ψ(N) Z Ω [ψ[N ] ⊆ Ω]

II. ψ(1) = ω

III. ψ(n′) = θψ(n), where n represents every number.”

That is, from (N, φ, 1) to (Ω, θ, ω) there is a unique homomorphism.

“. Remark. . . it is worth while to call attention to a circumstance
in which [definition by induction ()] is essentially distinguished
from the theorem of demonstration by induction [()], however
close may seem the relation between the former and the latter. . . ”

In particular,

• Z/(2) allows demonstration by induction; but

• there is no homomorphism from Z/(2) into Z/(3).
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Peano () acknowledges Dedekind.

For every a in N, there is a successor a + 1 ∈ N. Then Peano defines

a+ (b+ 1) = (a + b) + 1. (∗)

This defines instances of a+ (b + 1); assuming:

. that b + 1 uniquely determines b;

. that a + b is already defined;

. that a + (b + 1) is not already defined.

By induction, all a+ b can be defined. But it is not immediate that (∗)
holds for all a and b in N, because of ().

Dedekind’s () gives addition satisfying (∗) immediately.

Following Kalmár, Landau () shows implicitly that addition can

be defined with induction alone. Hence it can be defined on finite
structures:

� � � � �

1 2 3 · · · n n + 1
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Likewise, the recursive definition of multiplication,

a× 1 = a, a× (b + 1) = a× b + a,

is justified by induction alone. However:

Theorem. The identities

a1 = a, ab+1 = ab × a (†)

hold on Z/(n) if and only if |n| ∈ {0, 1, 2, 6}.

In Z/(6):

n n2 n3 n4 n5 n6

2 4 2 4 2 4
3 3 3 3 3 3
4 4 4 4 4 4
5 1 5 1 5 1

In Z/(3):
n n2 n3 n3 × n n4

2 1 2 1 2

Alexandre Borovik: Detecting a failure of (†) modulo pq gives
a 1/4 chance of factorizing pq. See A Dialogue on Infinity,

http://dialinf.wordpress.com/
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Mac Lane & Birkhoff, Algebra (st ed. ):

P.  ‘Peano Postulates’ for (N, 0, σ):

(i) σ is injective;

(ii) 0 /∈ σ∗(N);

(iii) if 0 ∈ U , and n ∈ U ⇒ σ(n) ∈ U , then U = N.

P.  Natural numbers index iterates of an operation f on a set X :

f 0 = 1X, fσn = f ◦ fn.

P.  Any two of the Postulates have a model in which the third fails.

P.  The possibility of recursive definitions is the Peano–Lawvere

Axiom (or Dedekind–Peano Axiom in Lawvere & Rosebrugh
); this is logically equivalent to the three ‘Peano Postulates’.

See also Burris, Logic for Mathematics and Computer Science ().
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A more general setting: SENTENTIAL LOGIC

Cf. Thomas Forster, Logic, Induction, and Sets ().

Let V be a set {P,P ′, P ′′, P ′′′, . . . } of sentential variables.

Let S be the set of sentences generated from V by closing under

X
N
7−→ ∼X and (X, Y )

C
7−→ (X ⇒ Y ).

Then S admits proof by induction, as e.g. in showing that parenthe-
ses come in pairs.

Moreover, N and C are injective, and

S = V + C[S ] + C[S × S ]

(disjoint union). Therefore S admits definition by recursion.

For example, truth assignments are so defined: If φ : V → F2, we
extend to all of S by

φ(∼X) = 1 + φ(X), φ((X ⇒ Y )) = 1 + φ(X) + φ(X)φ(Y ).





Also Detachment is given recursively by

D(X,U) = U, if U ∈ V,

D(X,∼Y ) = ∼Y,

D(X, (Y ⇒ Z)) =

{

Z, if X = Y,

(Y ⇒ Z), otherwise.

Let the set T of theorems be the subset of S generated by closure
under D of some axioms, perhaps

(X ⇒ (Y ⇒ X)),

((∼X ⇒ ∼Y ) ⇒ (Y ⇒ X)),

((X ⇒ (Y ⇒ Z)) ⇒ ((X ⇒ Y ) ⇒ (X ⇒ Z))).

Then T admits proof by induction, but not definition of functions by
recursion.

Hence the non-triviality of decision problems.
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ALGEBRAIC CHARACTERIZATIONS

Let Σ be a set, and n : Σ → ω.

An algebra with signature Σ is a pair

(A, s 7→ sA)

or A, where A is a nonempty set, s ranges over Σ, and sA : An(s) → A.

The term algebra on B with signature Σ is the set of strings obtained
by closing B under each function

(t1, . . . , tn(s)) 7→ st1 · · · tn(s).

Call this algebra TmΣ(B).

An algebra A with signature Σ admits

• proof by induction, if A ∼= TmΣ(∅)/I for some congruence I;

• definition by recursion, if A ∼= TmΣ(∅).

Again, http://dialinf.wordpress.com/
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