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In a differential field, how can we tell whether all consistent systems of equations
and inequations have solutions? I shall review the history of answers to this
question, and I shall update the accounts in [P1, P2].

To begin with the Robinsonian beginnings, I remind or inform the reader-listener
of the following. The class of substructures of models of a theory T is elementary,
and its theory is T∀. The class of structures in which a structure M embeds
is elementary, and its theory is diag(M). The class of models of T is closed
under unions of chains if and only if T = T∀∃ [R2, 3.4.7]. The theory T is called
model-complete [R1] if T ∪ diag(M) is complete whenever M |= T . If T ⊆ T ∗,
and T∀ = T ∗∀, then T ∗ is the model-completion [R2] of T if T ∗ ∪ diag(M) is
complete whenever M |= T ; but T ∗ is merely the model-companion of T if T ∗

is model-complete. A derivation of a field K is an additive endormorphism D
of K that respects the Leibniz rule, D(x · y) = Dx · y + x ·Dy. A differential
field is a field equipped with one or more derivations.
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