Model-theory of elliptic curves

David Pierce

preliminary version: 2005.04.28

These notes are intended for a talk to be given at Bilgi University, Istanbul, April 29, 2005.

Contents

0 Introduction

Model-theory: mathematics done 'self-consciously'—with an eye on language and interconnections.

General question: When are two structures mathematically the same (that is, isomorphic)?

Necessary model-theoretic condition: when they are elementarily equivalent.

When is this condition sufficient?

Is it sufficient when the structures are function-fields of curves over an algebraically closed field?

|Yes, unless the curves are elliptic curves with complex multiplication.

1 Powers of sets

$$
\omega = \{0, 1, 2, \dots\}
$$

= closure of $\{\emptyset\}$ under $A \mapsto A \cup \{A\}$
= $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \dots\}.$

Then $0 = \emptyset$ and $1 = \{0\} = \{\emptyset\}.$ $n \in \omega$ means $n = \{0, 1, 2, \ldots, n-1\}$, so $n \subset_f \omega$. Let $I \subset_f \omega$, let $M \neq \varnothing$, and define

 $M^I = \{$ functions from I to M $\}$.

Typical element: $(a_i : i \in I)$ or $i \mapsto a_i$ or \vec{a} . Special case: Elements of M^n are also $(a_0, a_1, \ldots, a_{n-1})$, and M^n itself is

$$
\underbrace{M\times\cdots\times M}_{n}.
$$

 $M^0 = \{0\} = 1.$ $M^1 = M.$

Each $\mathcal{P}(M^{I})$ is a Boolean algebra, equipped with:

- (0) the operations \cap , \cup and \circ ;
- (1) the distinguished elements \varnothing and M^I ; and

(2) the relation \subseteq .

Special case:

$$
\mathcal{P}(M^0) = \mathcal{P}(\{0\}) = \{0, \{0\}\} = \{0, 1\} = 2.
$$

One can think of 2 as $\{\textsf{F},\textsf{T}\}$ and identify the study of $\mathcal{P}(M^0)$ with **propo**sitional logic.

 $\mathcal{P}(M^2)$ contains $\{(a, a) : a \in M\}$, the **diagonal** Δ_M . Let also $J \subset_f \omega$, and let $\alpha : I \to J$. This induces

$$
M^J \xrightarrow{\alpha^*} M^I
$$

$$
(b_j : j \in J) \longmapsto (b_{\alpha(i)} : i \in I)
$$

and hence

$$
\mathcal{P}(M^J) \xrightarrow{\alpha^* \text{ or } (\alpha^*)''} \mathcal{P}(M^I)
$$

$$
B \longmapsto \{\alpha^*(\vec{b}) : \vec{b} \in B\}
$$

as well as

$$
\mathcal{P}(M^I) \xrightarrow{\alpha_* \text{ or } (\alpha^*)^{-1}} \mathcal{P}(M^J)
$$

$$
A \longmapsto {\vec{b} : \alpha^*({\vec{b}}) \in A}.
$$

For example, $\Delta_M = \alpha^* M$ when $\alpha : 2 \to 1$. Also, let ι be the inclusion of n in $n + 1$. Then

$$
\iota^*(b_0,\ldots,b_{n-1},b_n)=(b_0,\ldots,b_{n-1}).
$$

If $B \subseteq M^{n+1}$, then $\iota^* B = \{\vec{a} \in M^n : (\vec{a}, b) \in B \text{ for some } b \text{ in } M \}.$ If $A \subseteq M^n$, then $\iota_* A = A \times M$.

2 Structures

M becomes a **structure** \mathfrak{M} when equipped with some (or no):

- (0) maps $f^{\mathfrak{M}}$ from $M^{n(f)}$ to M for some $n(f)$ in $\omega \setminus \{0\}$; then $f^{\mathfrak{M}}$ is an $n(f)$ any anomation on M. $n(f)$ -ary operation on M;
- (1) distinguished elements $c^{\mathfrak{M}}$ of M ;
- (2) subsets $R^{\mathfrak{M}}$ of $M^{n(R)}$ for some $n(R)$ in $\omega \setminus \{0\}$; then $R^{\mathfrak{M}}$ is an $n(R)$ -ary relation on M.

Then the **signature** $\mathcal L$ of $\mathfrak M$ consists of the various symbols f, c and R, names for the corresponding operations, elements and relations.

M is the universe of \mathfrak{M} , and \mathfrak{M} is an $\mathcal{L}\text{-structure}$.

For example, $\mathbb R$ is a structure with signature $\{+,-,\cdot,0,1,\leqslant\}$.

Structures with more than one universe are possible, e.g. vector-spaces.

Different structures can have the same signature. Any ordered field is a structure with the same signature as ^R.

Since $M = M^1$ and $1 = M^0$, elements of M are 0-ary operations on M. Any *n*-ary operation f on M is identified with the $(n + 1)$ -ary relation

$$
\{(\vec{a}, f(\vec{a})) : \vec{a} \in M^n\}.
$$

Hence the operations, distinguished elements and relations of \mathfrak{M} correspond to certain elements of various $\mathcal{P}(M^n)$: the **primitive relations** of \mathfrak{M} .

Suppose $D_I^{\mathfrak{M}} \subseteq \mathcal{P}(M^I)$ and \coprod $\overline{1}$ $D^{\mathfrak{M}}_I$ $\frac{\mathfrak{M}}{I}$ is the smallest subset X of \prod $I\!\subset_{\mathrm{f}}\!\omega$ $\mathfrak{P}(M^I)$

such that:

- (0) X contains Δ_M and each primitive relation of $\mathfrak{M};$
- (1) $X \cap \mathcal{P}(M^I)$ is a sub-algebra of $\mathcal{P}(M^I)$;
- (2) if $\alpha: I \to J$, then $\alpha_*(X \cap \mathcal{P}(M^I)), \alpha^*(X \cap \mathcal{P}(M^J)) \subseteq X$.

The elements of $\prod D_l^{\mathfrak{M}}$ $\frac{\mathfrak{M}}{I}$ are the **definable relations** of \mathfrak{M} .

 $\overline{1}$ $\mathcal{L}\text{-structures } \mathfrak{M}$ and \mathfrak{N} are isomorphic.

 $m \approx m$.

if there is a bijection from M to N taking each primitive relation of \mathfrak{M} to the corresponding relation of N.

 \mathfrak{M} and \mathfrak{N} are elementarily equivalent.

$$
\mathfrak{M}\equiv \mathfrak{N},
$$

if there is an isomorphism from $\prod D^{\mathfrak{M}}_I$ $\prod_I^{\mathfrak{M}}$ to $\coprod D_I^{\mathfrak{N}}$ $I_I^{\mathfrak{N}}$ taking each primitive re-

lation of \mathfrak{M} to the corresponding relation of \mathfrak{N} . Then

$$
\mathfrak{M}\cong \mathfrak{N}\implies \mathfrak{M}\equiv \mathfrak{N}.
$$

Example. All algebraically closed fields of the same characteristic are elementarily equivalent. Their definable sets are the constructible sets over the prime field.

3 Formulas

Every definable relation X of the L-structure \mathfrak{M} has a non-unique name ϕ : a string of symbols from

$$
\mathcal{L} \cup \{x_n : n \in \omega\} \cup \{=, \wedge, \neg, \exists\}.
$$

Also symbols from $\{\vee, \to, \leftrightarrow, \forall\}$ can be used. Then ϕ is a **formula** (of firstorder logic), and X is the interpretation

$$
\phi^{\mathfrak{M}}
$$

of ϕ in \mathfrak{M} .

Dictionary: (Here, $n = n(f) = n(R)$, and $\alpha : n \to I$.)

If $\phi^{\mathfrak M}\subseteq M^0,$ then ϕ is a **sentence** $\sigma.$ If $\sigma^{\mathfrak{M}} = 1$, then σ is **true in** \mathfrak{M} **:**

$$
\mathfrak{M}\vDash\sigma.
$$

So truth is a relation between sentences and structures. Let $\text{Th}(\mathfrak{M}) = \{\sigma : \mathfrak{M} \models \sigma\}$, the **theory of** \mathfrak{M} ; then

$$
\mathfrak{M}\equiv \mathfrak{N}\iff \mathrm{Th}(\mathfrak{M})=\mathrm{Th}(\mathfrak{N}).
$$

4 Curves

Let $K = K^{\text{alg}}$. (Perhaps $K = \mathbb{C}$.) If $K \subseteq L$, let

$$
\mathbb{A}^n(L) = L^n.
$$

Any irreducible p in $K[X, Y]$ determines a curve C over K:

$$
C(L) = \{(x, y) \in \mathbb{A}^2(L) : p(x, y) = 0\}.
$$

Let $(\alpha, \beta) \in C$ and $\{\alpha, \beta\} \nsubseteq K$; then (α, β) is a **generic point of** C **over** K. The field of rational functions on C over K , denoted

$$
K(C),
$$

is generated by

$$
\begin{array}{c}\n(x,y) \longmapsto x \\
(x,y) \longmapsto y\n\end{array}\n\bigg\} : C \longrightarrow A.
$$

these are coordinates of a generic point of C ; hence

$$
K(C) \cong K(\alpha, \beta).
$$

Say also D is a curve over K, with generic point (γ, δ) , and

$$
h: K(\gamma, \delta) \longrightarrow K(\alpha, \beta)
$$

over K. Let $h(\gamma) = f(\alpha, \beta)$ and $h(\delta) = g(\alpha, \beta)$. Then

$$
(x,y)\longmapsto (f(x,y),g(x,y)):C\dashrightarrow D,
$$

a dominant rational map (its image contains a generic point). Any such map ϕ induces the K-embedding ϕ^* of $K(D)$ in $K(C)$ given by

$$
\phi^*(f) = f \circ \phi.
$$

Then

 $\deg \phi = [K(C) : \phi^* K(D)].$

Example. $K(\mathbb{A}^1) \cong K(X)$. Then

$$
deg(x \mapsto x^n : \mathbb{A}^1 \to \mathbb{A}^1) = [K(X) : K(X^n)] = n.
$$

Example. Let C be given by $x^2 + y^2 = 1$, and let

$$
\phi: (x, y) \longmapsto \frac{y}{1 + x} : C \longrightarrow A.
$$
\n
$$
(-1, 0)
$$
\n
$$
(x, y)
$$

Let (α, β) be a generic point of C; then

$$
\phi^* : f(X) \longmapsto f\left(\frac{\beta}{1+\alpha}\right) : K(X) \longrightarrow K(\alpha, \beta);
$$

$$
\deg \phi = \left[K(\alpha, \beta) : K\left(\frac{\beta}{1+\alpha}\right)\right] = 1
$$

since ϕ^* is invertible: If $t = \beta/(1 + \alpha)$, then

$$
t^{2} = \frac{\beta^{2}}{(1+\alpha)^{2}} = \frac{1-\alpha^{2}}{(1+\alpha)^{2}} = \frac{1-\alpha}{1+\alpha}; \qquad \alpha = \frac{1-t^{2}}{1+t^{2}}; \qquad \beta = \frac{2t}{1+t^{2}}
$$

:

Each curve C has a genus $g(C)$ in ω . (A curve over C is a Riemann surface, hence an orientable surface over ^R; its genus is the number of holes.)

If $\phi: C \dashrightarrow D$, dominant, then (by the Hurwitz formula)

- (0) $g(C) > g(D)$, or
- (1) $g(C) = g(D) \in \{0, 1\}$, or
- (2) h is an isomorphism.

If $g(C) < g(D)$, then every point of $D(K(\alpha, \beta))$ has coordinates in K.

Theorem.

- K is a definable subset of $K(C)$.
- If $g(C) \neq 1$ or $g(D) \neq 1$, then

$$
K(C) \equiv K(D) \iff K(C) \cong K(D).
$$

(Jean-Louis Duret proved this in case char $K = 0$.)

5 Function-fields (optional)

A function-field over K is $K(\alpha_0,\ldots,\alpha_n)$ (finitely generated). If L_i are such, then

$$
L_0 \equiv L_1 \implies \text{tr. deg}(L_0/K) = \text{tr. deg}(L_1/K)
$$

by the Tsen-Lang Theorem:

A quadratic form over K is a polynomial

$$
\vec{x}~\cdot A\cdot\vec{x}~^{\rm t}
$$

where $A^t = A$ with entries from K. Then A is diagonalizable, so by change of variables, the form becomes

$$
\sum_{i
$$

By Tsen and Lang, this form has a non-trivial zero from a function-field L over K if and only if

$$
n > 2^{\text{tr. deg}(L/K)}.
$$

Every form $ax^2 + by^2 + cz^2$ has a non-trivial zero if and only if every nontrivial equation $ax^2 + by^2 = 1$ has a solution. So a function-field L over K is the function-field of a curve if and only if

$$
L \vDash \forall z \; \forall w \; \exists x \; \exists y \; (zw = 0 \lor zx^2 + wy^2 = 1).
$$

Hence in particular

$$
K(X) \not\equiv K(X, Y).
$$

6 Elliptic curves

A curve of genus 1 is an elliptic curve.

A lattice is a subgroup $\langle \omega_0, \omega_1 \rangle$ of C, where $\omega_0 \omega_1 \neq 0$ and $\omega_0/\omega_1 \notin \mathbb{R}$. Over ^C, an elliptic curve is a torus

 \mathbb{C}/Λ .

 Λ a lattice. Then we may assume $\Lambda = \langle 1, \tau \rangle$ for some τ in \mathfrak{H} . How is \mathbb{C}/Λ a curve? The Weierstraß φ -function for Λ is given by

$$
\wp(z) = \wp(z; \Lambda) = \frac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right).
$$

 \wp is doubly periodic:

$$
\wp(z+\omega)=\wp(z)
$$

if $\omega \in \Lambda$. So \wp is well-defined on \mathbb{C}/Λ . Now let

$$
G_k = G_k(\Lambda) = \sum_{\omega \in \Lambda \setminus \{0\}} \frac{1}{\omega^{2k}},
$$

and let E be the curve given by

$$
y^2 = 4x^3 - 60G_2x - 140G_3.
$$

Then $(\wp, \wp') \in E$, so $\mathbb{C}(E) = \mathbb{C}(\wp, \wp')$, and there is an isomorphism

$$
z \mapsto (\wp(z), \wp'(z)) : \mathbb{C}/\Lambda \dashrightarrow E.
$$

The induced group-structure of E is given by polynomials:

$$
4(\wp(a)+\wp(b)+\wp(a+b))=\lambda^2,
$$

where

$$
\lambda = \begin{cases} \frac{\wp'(b) - \wp'(a)}{\wp(b) - \wp(a)}, & \text{if } a \neq b; \\ \wp''(a), & \text{if } a = b. \end{cases}
$$

Let E_i be \mathbb{C}/Λ_i . A non-zero homomorphism from E_0 to E_1 is an **isogeny** and corresponds to α in \mathbb{C}^\times such that

$$
\alpha\Lambda_0\subseteq\Lambda_1;
$$

the degree of the isogeny is $|\Lambda_1/\alpha\Lambda_0|$.

Any integer induces an endomorphism of \mathbb{C}/Λ ; if any other complex numbers do, then \mathbb{C}/Λ has complex multiplication.

Theorem. Let E_i be elliptic curves over K algebraically closed. The following are equivalent:

- (0) There are two isogenies from E_0 to E_1 of relatively prime degrees.
- (1) $K(E_0)$ and $K(E_1)$ agree on all sentences

$$
\forall x_0 \ \forall x_1 \cdots \forall x_{n-1} \ \exists x_n \ \phi(\vec{x} \),
$$

where ϕ is quantifier-free.

(2) $K(E_0)$ and $K(E_1)$ agree on all $\forall \exists$ sentences.

If one of the E_i has no complex multiplication, then the following is equivalent to the foregoing:

(3) $K(E_0) \cong K(E_1)$.

If one of the E_i does have complex multiplication, and char $K = 0$, then the following is equivalent to (0) et al.:

(4) $\text{End}(E_0) \cong \text{End}(E_1)$.

(Duret proved (1) \Longleftrightarrow (3) when char $K = 0$.)

Relevant facts:

- There are just 13 elliptic curves over $\mathbb C$ that are determined by their endomorphism-rings.
- Say $E = \mathbb{C}/\langle 1, \tau \rangle$. Then

$$
End(E) \cong \{ \alpha \in \mathbb{C} : \alpha \langle 1, \tau \rangle \subseteq \langle 1, \tau \rangle \} \leq \langle 1, \tau \rangle.
$$

If E has complex multiplication, then τ is quadratic (and conversely). since then

 $(x + A\tau)\tau \in \langle 1, \tau \rangle$

for some non-zero A. If $|A|$ is minimal, then

$$
End(E) \cong \langle 1, A\overline{\tau} \rangle.
$$

Example. End $(\mathbb{C}/\langle 1, \tau \rangle) \cong \langle 1, \tau \rangle$ when τ is i or $(1 + i\sqrt{\sqrt{2}})$ $(3)/2.$

• Every isogeny $\alpha: E_0 \to E_1$ has a **dual**

$$
\widehat{\alpha}: E_1 \to E_0
$$

of the same degree d; then $\hat{\alpha} \circ \alpha = [d]$ (multiplication by d).

Ideas of proof:

 $(1) \Longrightarrow (0)$. If p always divides $[K(E_0) : \phi^* K(E_1)],$ then for some E_2 ,

$$
\phi^* K(E_1) \subseteq \phi^* K(E_2) \subseteq K(E_0);
$$

$$
[K(E_0) : K(E_2)] = p.
$$

Then $K(E_0)$ says—but $K(E_1)$ does not—that every point of E_1 is the image of a point of some E_2 under a map of degree p .

 $(0) \implies (2)$. By (0) , when $n > 1$, some isogeny has degree prime to n. Say $K(E_0) \models \forall \vec{x} \exists \vec{y} \phi(\vec{x}, \vec{y})$, where ϕ is quantifier-free. Let n be the factorial of the degrees of the polynomials in ϕ , and say

$$
\gcd(n, [K(E_0) : K(E_1)]) = 1.
$$

If \vec{a} is from $K(E_1)$, then $\phi(\vec{a}, \vec{y})$ must have a solution from $K(E_1)$. (0) \Longrightarrow (4). If $\alpha_i : E_0 \to E_1$ and $\deg \alpha_i = d_i$ and $\sum a_i d_i = 1$, then

$$
\operatorname{End}(E_1) \xrightarrow{\cong} \operatorname{End}(E_0)
$$

$$
\beta \longmapsto \sum a_i \widehat{\alpha}_i \circ \beta \circ \alpha_i
$$

:

 $(4) \Longrightarrow (0)$. Say End $(E_0) \cong$ End (E_1) . Then we may assume

$$
E_0 = \mathbb{C}/\langle 1, \tau \rangle, \quad E_1 = \mathbb{C}/\langle 1, n\tau \rangle,
$$

$$
A\tau^2 + B\tau + C = 0, \quad \gcd(A, B, C) = 0, \quad n \mid A.
$$

Hence

$$
\mathrm{Hom}(E_0, E_1) \cong \langle n, A\overline{\tau} \rangle \, .
$$

If $\alpha = nx + Ay\bar{\tau}$, then

$$
\deg(z \mapsto \alpha z) = \frac{1}{n} |\alpha| = nx^2 - Bxy + \frac{AC}{n}y^2,
$$

$$
\gcd\left(n, B, \frac{AC}{n}\right) = 1,
$$

so the degree takes two relatively prime values.