Model-theory of elliptic curves

David Pierce

preliminary version: 2005.04.28

These notes are intended for a talk to be given at Bilgi University, Istanbul, April 29, 2005.

Contents

0	Introduction	1
1	Powers of sets	1
2	Structures	2
3	Formulas	4
4	Curves	5
5	Function-fields (optional)	7
6	Elliptic curves	8

0 Introduction

Model-theory: mathematics done 'self-consciously'—with an eye on language and interconnections.

General question: When are two *structures* mathematically the same (that is, *isomorphic*)?

Necessary model-theoretic condition: when they are *elementarily equivalent*.

When is this condition sufficient?

Is it sufficient when the structures are function-fields of curves over an algebraically closed field?

-Yes, unless the curves are elliptic curves with complex multiplication.

1 Powers of sets

$$\omega = \{0, 1, 2, \dots\}$$

= closure of $\{\varnothing\}$ under $A \mapsto A \cup \{A\}$
= $\{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}, \dots\}.$

Then $0 = \emptyset$ and $1 = \{0\} = \{\emptyset\}$. $n \in \omega$ means $n = \{0, 1, 2, \dots, n-1\}$, so $n \subset_{\mathrm{f}} \omega$. Let $I \subset_{\mathrm{f}} \omega$, let $M \neq \emptyset$, and define

 $M^{I} = \{ \text{functions from } I \text{ to } M \}.$

Typical element: $(a_i : i \in I)$ or $i \mapsto a_i$ or \vec{a} . Special case: Elements of M^n are also $(a_0, a_1, \ldots, a_{n-1})$, and M^n itself is

$$\underbrace{M\times\cdots\times M}_{n}.$$

 $M^0 = \{0\} = 1.$ $M^1 = M.$

Each $\mathcal{P}(M^I)$ is a Boolean algebra, equipped with:

- (0) the operations \cap , \cup and ^c;
- (1) the distinguished elements \emptyset and M^I ; and

(2) the relation \subseteq .

Special case:

$$\mathcal{P}(M^0) = \mathcal{P}(\{0\}) = \{0, \{0\}\} = \{0, 1\} = 2.$$

One can think of 2 as $\{\mathsf{F},\mathsf{T}\}$ and identify the study of $\mathcal{P}(M^0)$ with **propositional logic**.

 $\mathcal{P}(M^2)$ contains $\{(a, a) : a \in M\}$, the **diagonal** Δ_M . Let also $J \subset_{\mathrm{f}} \omega$, and let $\alpha : I \to J$. This induces

$$M^J \xrightarrow{\alpha^*} M^I$$
$$(b_j : j \in J) \longmapsto (b_{\alpha(i)} : i \in I)$$

and hence

$$\begin{aligned} \mathfrak{P}(M^J) &\xrightarrow{\alpha^* \text{ or } (\alpha^*)''} \mathfrak{P}(M^I) \\ B &\longmapsto \{\alpha^*(\vec{b}\) : \vec{b}\ \in B\} \end{aligned}$$

as well as

$$\mathcal{P}(M^{I}) \xrightarrow{\alpha_{*} \text{ or } (\alpha^{*})^{-1}} \mathcal{P}(M^{J})$$
$$A \longmapsto \{\vec{b} : \alpha^{*}(\vec{b} \) \in A\}.$$

For example, $\Delta_M = \alpha^* M$ when $\alpha : 2 \to 1$. Also, let ι be the inclusion of n in n + 1. Then

$$\iota^*(b_0,\ldots,b_{n-1},b_n) = (b_0,\ldots,b_{n-1}).$$

If $B \subseteq M^{n+1}$, then $\iota^* B = \{ \vec{a} \in M^n : (\vec{a}, b) \in B \text{ for some } b \text{ in } M \}$. If $A \subseteq M^n$, then $\iota_* A = A \times M$.

2 Structures

M becomes a structure \mathfrak{M} when equipped with some (or no):

- (0) maps $f^{\mathfrak{M}}$ from $M^{n(f)}$ to M for some n(f) in $\omega \smallsetminus \{0\}$; then $f^{\mathfrak{M}}$ is an n(f)-ary operation on M;
- (1) distinguished elements $c^{\mathfrak{M}}$ of M;
- (2) subsets $R^{\mathfrak{M}}$ of $M^{n(R)}$ for some n(R) in $\omega \smallsetminus \{0\}$; then $R^{\mathfrak{M}}$ is an n(R)-ary relation on M.

Then the signature \mathcal{L} of \mathfrak{M} consists of the various symbols f, c and R, **names** for the corresponding operations, elements and relations.

M is the **universe** of \mathfrak{M} , and \mathfrak{M} is an \mathcal{L} -structure.

For example, \mathbb{R} is a structure with signature $\{+, -, \cdot, 0, 1, \leq\}$.

Structures with more than one universe are possible, e.g. vector-spaces.

Different structures can have the same signature. Any ordered field is a structure with the same signature as \mathbb{R} .

Since $M = M^1$ and $1 = M^0$, elements of M are 0-ary operations on M. Any *n*-ary operation f on M is identified with the (n + 1)-ary relation

$$\{(\vec{a}, f(\vec{a})) : \vec{a} \in M^n\}$$

Hence the operations, distinguished elements and relations of \mathfrak{M} correspond to certain elements of various $\mathcal{P}(M^n)$: the **primitive relations** of \mathfrak{M} .

Suppose $D_I^{\mathfrak{M}} \subseteq \mathfrak{P}(M^I)$ and $\prod_I D_I^{\mathfrak{M}}$ is the smallest subset X of $\prod_{I \subset_{\mathfrak{f}} \omega} \mathfrak{P}(M^I)$

such that:

- (0) X contains Δ_M and each primitive relation of \mathfrak{M} ;
- (1) $X \cap \mathcal{P}(M^{I})$ is a sub-algebra of $\mathcal{P}(M^{I})$;
- (2) if $\alpha: I \to J$, then $\alpha_*(X \cap \mathcal{P}(M^I)), \alpha^*(X \cap \mathcal{P}(M^J)) \subseteq X$.

The elements of $\prod_{I} D_{I}^{\mathfrak{M}}$ are the **definable relations** of \mathfrak{M} .

 \mathcal{L} -structures \mathfrak{M} and \mathfrak{N} are isomorphic,

 $\mathfrak{M}\cong\mathfrak{N}.$

if there is a bijection from M to N taking each primitive relation of \mathfrak{M} to the corresponding relation of \mathfrak{N} .

 \mathfrak{M} and \mathfrak{N} are elementarily equivalent,

$$\mathfrak{M}\equiv\mathfrak{N}$$

if there is an isomorphism from $\prod D_I^{\mathfrak{M}}$ to $\prod D_I^{\mathfrak{M}}$ taking each primitive relation of \mathfrak{M} to the corresponding relation of $\overset{I}{\mathfrak{N}}$. Then

$$\mathfrak{M}\cong\mathfrak{N}\implies\mathfrak{M}\equiv\mathfrak{N}.$$

Example. All algebraically closed fields of the same characteristic are elementarily equivalent. Their definable sets are the constructible sets over the prime field.

3 Formulas

Every definable relation X of the \mathcal{L} -structure \mathfrak{M} has a non-unique name ϕ : a string of symbols from

$$\mathcal{L} \cup \{x_n : n \in \omega\} \cup \{=, \land, \neg, \exists\}.$$

Also symbols from $\{\lor, \rightarrow, \leftrightarrow, \forall\}$ can be used. Then ϕ is a **formula** (of first-order logic), and X is the **interpretation**

$$\phi^{\mathfrak{M}}$$

of ϕ in \mathfrak{M} .

Dictionary: (Here, n = n(f) = n(R), and $\alpha : n \to I$.)

8	sm
x_k	$\vec{a} \mapsto a_k = \iota^*(\vec{a}), \text{ where } \iota : \{k\} \subseteq I$
$\begin{cases} f x_{\alpha(0)} \cdots x_{\alpha(n-1)} \\ R x_{\alpha(0)} \cdots x_{\alpha(n-1)} \end{cases}$	$\vec{a} \mapsto f^{\mathfrak{M}}(\alpha^*(\vec{a}))$
$Rx_{\alpha(0)}\cdots x_{\alpha(n-1)}$	$\alpha_*(R^{\mathfrak{M}})$
=	Δ_M
Λ	\cap
-	с
$\exists x_k \ \phi$	$\iota^*(\phi^{\mathfrak{M}}), \text{ where } \iota: I \smallsetminus \{k\} \subseteq I$

If $\phi^{\mathfrak{M}} \subseteq M^0$, then ϕ is a sentence σ . If $\sigma^{\mathfrak{M}} = 1$, then σ is true in \mathfrak{M} :

$$\mathfrak{M} \models \sigma$$
.

So truth is a *relation* between sentences and structures. Let $\operatorname{Th}(\mathfrak{M}) = \{ \sigma : \mathfrak{M} \models \sigma \}$, the **theory of** \mathfrak{M} ; then

$$\mathfrak{M} \equiv \mathfrak{N} \iff \operatorname{Th}(\mathfrak{M}) = \operatorname{Th}(\mathfrak{N}).$$

4 Curves

Let $K = K^{\text{alg.}}$ (Perhaps $K = \mathbb{C}$.) If $K \subseteq L$, let

$$\mathbb{A}^n(L) = L^n$$

Any irreducible p in K[X, Y] determines a **curve** C over K:

$$C(L) = \{ (x, y) \in \mathbb{A}^2(L) : p(x, y) = 0 \}.$$

Let $(\alpha, \beta) \in C$ and $\{\alpha, \beta\} \not\subseteq K$; then (α, β) is a generic point of C over K. The field of rational functions on C over K, denoted

is generated by

$$\begin{array}{c} (x,y)\longmapsto x\\ (x,y)\longmapsto y \end{array} \} : C \longrightarrow \mathbb{A}.$$

these are coordinates of a generic point of C; hence

$$K(C) \cong K(\alpha, \beta).$$

Say also D is a curve over K, with generic point (γ, δ) , and

$$h: K(\gamma, \delta) \longrightarrow K(\alpha, \beta)$$

over K. Let $h(\gamma) = f(\alpha, \beta)$ and $h(\delta) = g(\alpha, \beta)$. Then

$$(x,y) \longmapsto (f(x,y),g(x,y)): C \dashrightarrow D,$$

a **dominant** rational map (its image contains a generic point). Any such map ϕ induces the K-embedding ϕ^* of K(D) in K(C) given by

$$\phi^*(f) = f \circ \phi$$

Then

$$\deg \phi = [K(C) : \phi^* K(D)].$$

Example. $K(\mathbb{A}^1) \cong K(X)$. Then

$$\deg(x \mapsto x^n : \mathbb{A}^1 \to \mathbb{A}^1) = [K(X) : K(X^n)] = n.$$

Example. Let C be given by $x^2 + y^2 = 1$, and let

$$\phi: (x, y) \longmapsto \frac{y}{1+x} : C \longrightarrow \mathbb{A}$$

Let (α, β) be a generic point of C; then

$$\phi^* : f(X) \longmapsto f\left(\frac{\beta}{1+\alpha}\right) : K(X) \longrightarrow K(\alpha, \beta);$$
$$\deg \phi = \left[K(\alpha, \beta) : K\left(\frac{\beta}{1+\alpha}\right)\right] = 1$$

since ϕ^* is invertible: If $t = \beta/(1+\alpha)$, then

$$t^{2} = \frac{\beta^{2}}{(1+\alpha)^{2}} = \frac{1-\alpha^{2}}{(1+\alpha)^{2}} = \frac{1-\alpha}{1+\alpha}; \qquad \alpha = \frac{1-t^{2}}{1+t^{2}}; \qquad \beta = \frac{2t}{1+t^{2}}.$$

Each curve C has a **genus** g(C) in ω . (A curve over \mathbb{C} is a Riemann surface, hence an orientable surface over \mathbb{R} ; its genus is the number of holes.)

If $\phi: C \dashrightarrow D$, dominant, then (by the Hurwitz formula)

- (0) g(C) > g(D), or
- (1) $g(C) = g(D) \in \{0, 1\}$, or
- (2) h is an isomorphism.

If g(C) < g(D), then every point of $D(K(\alpha, \beta))$ has coordinates in K.

Theorem.

- K is a definable subset of K(C).
- If $g(C) \neq 1$ or $g(D) \neq 1$, then

$$K(C) \equiv K(D) \iff K(C) \cong K(D).$$

(Jean-Louis Duret proved this in case char K = 0.)

5 Function-fields (optional)

A function-field over K is $K(\alpha_0, \ldots, \alpha_n)$ (finitely generated). If L_i are such, then

$$L_0 \equiv L_1 \implies \text{tr. } \deg(L_0/K) = \text{tr. } \deg(L_1/K)$$

by the Tsen–Lang Theorem:

A quadratic form over K is a polynomial

$$\vec{x} \cdot A \cdot \vec{x}^{t}$$

where $A^{t} = A$ with entries from K. Then A is diagonalizable, so by change of variables, the form becomes

$$\sum_{i < n} a_i x_i^2.$$

By Tsen and Lang, this form has a non-trivial zero from a function-field L over K if and only if

$$n > 2^{\operatorname{tr.deg}(L/K)}.$$

Every form $ax^2 + by^2 + cz^2$ has a non-trivial zero if and only if every nontrivial equation $ax^2 + by^2 = 1$ has a solution. So a function-field L over K is the function-field of a curve if and only if

$$L \vDash \forall z \; \forall w \; \exists x \; \exists y \; (zw = 0 \lor zx^2 + wy^2 = 1).$$

Hence in particular

$$K(X) \not\equiv K(X,Y).$$

6 Elliptic curves

A curve of genus 1 is an elliptic curve.

A lattice is a subgroup $\langle \omega_0, \omega_1 \rangle$ of \mathbb{C} , where $\omega_0 \omega_1 \neq 0$ and $\omega_0 / \omega_1 \notin \mathbb{R}$. Over \mathbb{C} , an elliptic curve is a torus

 \mathbb{C}/Λ ,

Λ a lattice. Then we may assume $\Lambda = \langle 1, \tau \rangle$ for some τ in \mathfrak{H} . How is \mathbb{C}/Λ a curve? The Weierstraß \wp -function for Λ is given by

$$\wp(z) = \wp(z;\Lambda) = \frac{1}{z^2} + \sum_{\omega \in \Lambda \smallsetminus \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right).$$

 \wp is doubly periodic:

$$\wp(z+\omega) = \wp(z)$$

if $\omega \in \Lambda$. So \wp is well-defined on \mathbb{C}/Λ . Now let

$$G_k = G_k(\Lambda) = \sum_{\omega \in \Lambda \smallsetminus \{0\}} \frac{1}{\omega^{2k}},$$

and let E be the curve given by

$$y^2 = 4x^3 - 60G_2x - 140G_3.$$

Then $(\wp, \wp') \in E$, so $\mathbb{C}(E) = \mathbb{C}(\wp, \wp')$, and there is an isomorphism

$$z \mapsto (\wp(z), \wp'(z)) : \mathbb{C}/\Lambda \dashrightarrow E.$$

The induced group-structure of E is given by polynomials:

$$4(\wp(a) + \wp(b) + \wp(a + b)) = \lambda^2,$$

where

$$\lambda = \begin{cases} \frac{\wp'(b) - \wp'(a)}{\wp(b) - \wp(a)}, & \text{if } a \neq b; \\ \wp''(a), & \text{if } a = b. \end{cases}$$

Let E_i be \mathbb{C}/Λ_i . A non-zero homomorphism from E_0 to E_1 is an **isogeny** and corresponds to α in \mathbb{C}^{\times} such that

$$\alpha \Lambda_0 \subseteq \Lambda_1;$$

the degree of the isogeny is $|\Lambda_1/\alpha\Lambda_0|$.

Any integer induces an endomorphism of \mathbb{C}/Λ ; if any other complex numbers do, then \mathbb{C}/Λ has **complex multiplication**.

Theorem. Let E_i be elliptic curves over K algebraically closed. The following are equivalent:

- (0) There are two isogenies from E_0 to E_1 of relatively prime degrees.
- (1) $K(E_0)$ and $K(E_1)$ agree on all sentences

$$\forall x_0 \; \forall x_1 \cdots \forall x_{n-1} \; \exists x_n \; \phi(\vec{x}),$$

where ϕ is quantifier-free.

(2) $K(E_0)$ and $K(E_1)$ agree on all $\forall \exists$ sentences.

If one of the E_i has no complex multiplication, then the following is equivalent to the foregoing:

(3) $K(E_0) \cong K(E_1)$.

If one of the E_i does have complex multiplication, and char K = 0, then the following is equivalent to (0) et al.:

(4) $\operatorname{End}(E_0) \cong \operatorname{End}(E_1).$

(Duret proved $(1) \iff (3)$ when char K = 0.)

Relevant facts:

- There are just 13 elliptic curves over C that are determined by their endomorphism-rings.
- Say $E = \mathbb{C}/\langle 1, \tau \rangle$. Then

$$\operatorname{End}(E) \cong \{ \alpha \in \mathbb{C} : \alpha \langle 1, \tau \rangle \subseteq \langle 1, \tau \rangle \} \leqslant \langle 1, \tau \rangle.$$

If E has complex multiplication, then τ is quadratic (and conversely), since then

 $(x + A\tau)\tau \in \langle 1, \tau \rangle$

for some non-zero A. If |A| is minimal, then

$$\operatorname{End}(E) \cong \langle 1, A\bar{\tau} \rangle.$$

Example. End($\mathbb{C}/\langle 1, \tau \rangle$) $\cong \langle 1, \tau \rangle$ when τ is *i* or $(1 + i\sqrt{3})/2$.

• Every isogeny $\alpha: E_0 \to E_1$ has a **dual**

$$\widehat{\alpha}: E_1 \to E_0$$

of the same degree d; then $\widehat{\alpha} \circ \alpha = [d]$ (multiplication by d).

Ideas of proof:

(1) \implies (0). If p always divides $[K(E_0) : \phi^* K(E_1)]$, then for some E_2 ,

$$\phi^* K(E_1) \subseteq \phi^* K(E_2) \subseteq K(E_0);$$

[K(E_0) : K(E_2)] = p.

Then $K(E_0)$ says—but $K(E_1)$ does not—that every point of E_1 is the image of a point of some E_2 under a map of degree p.

 $(0) \Longrightarrow (2)$. By (0), when n > 1, some isogeny has degree prime to n. Say $K(E_0) \vDash \forall \vec{x} \exists \vec{y} \ \phi(\vec{x}, \vec{y})$, where ϕ is quantifier-free. Let n be the factorial of the degrees of the polynomials in ϕ , and say

$$gcd(n, [K(E_0) : K(E_1)]) = 1.$$

If \vec{a} is from $K(E_1)$, then $\phi(\vec{a}, \vec{y})$ must have a solution from $K(E_1)$. (0) \Longrightarrow (4). If $\alpha_i : E_0 \to E_1$ and $\deg \alpha_i = d_i$ and $\sum a_i d_i = 1$, then

$$\operatorname{End}(E_1) \xrightarrow{\cong} \operatorname{End}(E_0)$$
$$\beta \longmapsto \sum a_i \widehat{\alpha}_i \circ \beta \circ \alpha_i.$$

 $(4) \Longrightarrow (0)$. Say $\operatorname{End}(E_0) \cong \operatorname{End}(E_1)$. Then we may assume

$$E_0 = \mathbb{C} / \langle 1, \tau \rangle, \quad E_1 = \mathbb{C} / \langle 1, n\tau \rangle,$$

$$A\tau^2 + B\tau + C = 0, \quad \gcd(A, B, C) = 0, \quad n \mid A.$$

Hence

$$\operatorname{Hom}(E_0, E_1) \cong \langle n, A\bar{\tau} \rangle.$$

If $\alpha = nx + Ay\overline{\tau}$, then

$$\deg(z \mapsto \alpha z) = \frac{1}{n} |\alpha| = nx^2 - Bxy + \frac{AC}{n}y^2,$$
$$\gcd\left(n, B, \frac{AC}{n}\right) = 1,$$

so the degree takes two relatively prime values.