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0 Introduction
Model-theory: mathematics done `self-consciously'|with an eye on lan-guage and interconnections.General question: When are two structures mathematically the same (thatis, isomorphic)?Necessary model-theoretic condition: when they are elementarily equivalent.When is this condition su�cient?Is it su�cient when the structures are function-�elds of curves over an alge-braically closed �eld?|Yes, unless the curves are elliptic curves with complex multiplication.
1 Powers of sets

! = f0; 1; 2; : : : g= closure of f?g under A 7! A [ fAg= f?; f?g; f?; f?gg; : : : g:Then 0 = ? and 1 = f0g = f?g.n 2 ! means n = f0; 1; 2; : : : ; n� 1g, so n �f !.Let I �f !, let M 6= ?, and de�neM I = ffunctions from I to Mg:Typical element: (ai : i 2 I) or i 7! ai or ~a .Special case: Elements of Mn are also (a0; a1; : : : ; an�1), and Mn itself isM � � � � �M| {z }n :
M0 = f0g = 1.M1 = M .Each P(M I) is a Boolean algebra, equipped with:(0) the operations \, [ and c;(1) the distinguished elements ? and M I ; and
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(2) the relation �.Special case: P(M0) = P(f0g) = f0; f0gg = f0; 1g = 2:One can think of 2 as fF;Tg and identify the study of P(M0) with propo-sitional logic.P(M2) contains f(a; a) : a 2Mg, the diagonal �M .Let also J �f !, and let � : I ! J . This inducesMJ ���!M I(bj : j 2 J) 7�! (b�(i) : i 2 I)and hence
P(MJ) �� or (��)00������! P(M I)B 7�! f��(~b ) : ~b 2 Bgas well as
P(M I) �� or (��)�1�������! P(MJ)A 7�! f~b : ��(~b ) 2 Ag:

For example, �M = ��M when � : 2! 1.Also, let � be the inclusion of n in n+ 1. Then��(b0; : : : ; bn�1; bn) = (b0; : : : ; bn�1):If B �Mn+1, then ��B = f~a 2Mn : (~a ; b) 2 B for some b in Mg.If A �Mn, then ��A = A�M .
2 Structures
M becomes a structure M when equipped with some (or no):(0) maps fM from Mn(f) to M for some n(f) in ! r f0g; then fM is ann(f)-ary operation on M ;(1) distinguished elements cM of M ;(2) subsets RM ofMn(R) for some n(R) in !rf0g; then RM is an n(R)-aryrelation on M .
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Then the signature L of M consists of the various symbols f , c and R,|names for the corresponding operations, elements and relations.M is the universe of M, and M is an L-structure.For example, R is a structure with signature f+;�; �; 0; 1;6g.Structures with more than one universe are possible, e.g. vector-spaces.Di�erent structures can have the same signature. Any ordered �eld is astructure with the same signature as R.Since M = M1 and 1 = M0, elements of M are 0-ary operations on M .Any n-ary operation f on M is identi�ed with the (n+ 1)-ary relationf(~a ; f(~a )) : ~a 2Mng:Hence the operations, distinguished elements and relations ofM correspondto certain elements of various P(Mn): the primitive relations of M.Suppose DMI � P(M I) and aI DMI is the smallest subset X of aI�f!P(M I)such that:(0) X contains �M and each primitive relation of M;(1) X \ P(M I) is a sub-algebra of P(M I);(2) if � : I ! J , then ��(X \ P(M I)); ��(X \ P(MJ)) � X.The elements of aI DMI are the de�nable relations of M.
L-structures M and N are isomorphic,

M �= N;if there is a bijection from M to N taking each primitive relation of M tothe corresponding relation of N.M and N are elementarily equivalent,
M � N;if there is an isomorphism from aI DMI to aI DNI taking each primitive re-lation of M to the corresponding relation of N. Then

M �= N =) M � N:Example. All algebraically closed �elds of the same characteristic are ele-mentarily equivalent. Their de�nable sets are the constructible sets over theprime �eld.
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3 Formulas
Every de�nable relation X of the L-structure M has a non-unique name �:a string of symbols fromL [ fxn : n 2 !g [ f=;^;:;9g:Also symbols from f_;!;$;8g can be used. Then � is a formula (of �rst-order logic), and X is the interpretation�Mof � in M.Dictionary: (Here, n = n(f) = n(R), and � : n! I.)

s sMxk ~a 7! ak = ��(~a ), where � : fkg � Ifx�(0) � � �x�(n�1) ~a 7! fM(��(~a ))Rx�(0) � � �x�(n�1) ��(RM)= �M^ \: c9xk � ��(�M), where � : I r fkg � I
If �M �M0, then � is a sentence �.If �M = 1, then � is true in M:

M � �:So truth is a relation between sentences and structures.Let Th(M) = f� :M � �g, the theory of M; then
M � N () Th(M) = Th(N):
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4 Curves
Let K = Kalg. (Perhaps K = C.) If K � L, letAn(L) = Ln:Any irreducible p in K[X; Y ] determines a curve C over K:C(L) = f(x; y) 2 A2(L) : p(x; y) = 0g:Let (�; �) 2 C and f�; �g 6� K; then (�; �) is a generic point of C over K.The �eld of rational functions on C over K, denotedK(C);is generated by (x; y) 7�! x(x; y) 7�! y

) : C �! A:
these are coordinates of a generic point of C; henceK(C) �= K(�; �):
Say also D is a curve over K, with generic point (; �), andh : K(; �) �! K(�; �)over K. Let h() = f(�; �) and h(�) = g(�; �). Then(x; y) 7�! (f(x; y); g(x; y)) : C 99K D;a dominant rational map (its image contains a generic point).Any such map � induces the K-embedding �� of K(D) in K(C) given by��(f) = f � �:Then deg � = [K(C) : ��K(D)]:Example. K(A1) �= K(X). Thendeg(x 7! xn : A1 ! A1) = [K(X) : K(Xn)] = n:
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Example. Let C be given by x2 + y2 = 1, and let
� : (x; y) 7�! y1 + x : C �! A:
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s(�1; 0) s (x; y)

Let (�; �) be a generic point of C; then
�� : f(X) 7�! f � �1 + �� : K(X) �! K(�; �);

deg � = �K(�; �) : K � �1 + ��� = 1
since �� is invertible: If t = �=(1 + �), then

t2 = �2(1 + �)2 = 1� �2(1 + �)2 = 1� �1 + � ; � = 1� t21 + t2 ; � = 2t1 + t2 :
Each curve C has a genus g(C) in !. (A curve over C is a Riemann surface,hence an orientable surface over R; its genus is the number of holes.)If � : C 99K D, dominant, then (by the Hurwitz formula)(0) g(C) > g(D), or(1) g(C) = g(D) 2 f0; 1g, or(2) h is an isomorphism.If g(C) < g(D), then every point of D(K(�; �)) has coordinates in K.Theorem.� K is a de�nable subset of K(C).� If g(C) 6= 1 or g(D) 6= 1, thenK(C) � K(D) () K(C) �= K(D):
(Jean-Louis Duret proved this in case charK = 0.)
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5 Function-�elds (optional)
A function-�eld over K is K(�0; : : : ; �n) (�nitely generated). If Li aresuch, then L0 � L1 =) tr: deg(L0=K) = tr: deg(L1=K)by the Tsen{Lang Theorem:A quadratic form over K is a polynomial~x � A � ~x t
where At = A with entries from K. Then A is diagonalizable, so by changeof variables, the form becomes Xi<n aix2i :By Tsen and Lang, this form has a non-trivial zero from a function-�eld Lover K if and only if n > 2tr:deg(L=K):Every form ax2 + by2 + cz2 has a non-trivial zero if and only if every non-trivial equation ax2 + by2 = 1 has a solution. So a function-�eld L over K isthe function-�eld of a curve if and only ifL � 8z 8w 9x 9y (zw = 0 _ zx2 + wy2 = 1):Hence in particular K(X) 6� K(X; Y ):
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6 Elliptic curves
A curve of genus 1 is an elliptic curve.A lattice is a subgroup h!0; !1i of C, where !0!1 6= 0 and !0=!1 =2 R.Over C, an elliptic curve is a torus C=�;� a lattice. Then we may assume � = h1; �i for some � in H.How is C=� a curve? The Weierstra� }-function for � is given by

}(z) = }(z; �) = 1z2 + X!2�rf0g
� 1(z � !)2 � 1!2� :

} is doubly periodic: }(z + !) = }(z)if ! 2 �. So } is well-de�ned on C=�. Now letGk = Gk(�) = X!2�rf0g 1!2k ;
and let E be the curve given byy2 = 4x3 � 60G2x� 140G3:Then (}; }0) 2 E, so C(E) = C(}; }0), and there is an isomorphismz 7�! (}(z); }0(z)) : C=� 99K E:The induced group-structure of E is given by polynomials:4(}(a) + }(b) + }(a+ b)) = �2;where � = 8<:}0(b)� }0(a)}(b)� }(a) ; if a 6= b;}00(a); if a = b:Let Ei be C=�i. A non-zero homomorphism from E0 to E1 is an isogenyand corresponds to � in C� such that��0 � �1;the degree of the isogeny is j�1=��0j.Any integer induces an endomorphism of C=�; if any other complex numbersdo, then C=� has complex multiplication.
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Theorem. Let Ei be elliptic curves over K algebraically closed. The follow-ing are equivalent:(0) There are two isogenies from E0 to E1 of relatively prime degrees.(1) K(E0) and K(E1) agree on all sentences8x0 8x1 � � � 8xn�1 9xn �(~x );
where � is quanti�er-free.(2) K(E0) and K(E1) agree on all 89 sentences.If one of the Ei has no complex multiplication, then the following is equivalentto the foregoing:(3) K(E0) �= K(E1).If one of the Ei does have complex multiplication, and charK = 0, then thefollowing is equivalent to (0) et al.:(4) End(E0) �= End(E1).(Duret proved (1)() (3) when charK = 0.)Relevant facts:� There are just 13 elliptic curves over C that are determined by theirendomorphism-rings.� Say E = C= h1; �i. ThenEnd(E) �= f� 2 C : � h1; �i � h1; �ig 6 h1; �i :If E has complex multiplication, then � is quadratic (and conversely),since then (x+ A�)� 2 h1; �ifor some non-zero A. If jAj is minimal, thenEnd(E) �= h1; A��i :Example. End(C= h1; �i) �= h1; �i when � is i or (1 + ip3)=2.� Every isogeny � : E0 ! E1 has a dualb� : E1 ! E0of the same degree d; then b� � � = [d] (multiplication by d).
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Ideas of proof:(1) =) (0). If p always divides [K(E0) : ��K(E1)], then for some E2,��K(E1) � ��K(E2) � K(E0);[K(E0) : K(E2)] = p:Then K(E0) says|but K(E1) does not|that every point of E1 is the imageof a point of some E2 under a map of degree p.(0) =) (2). By (0), when n > 1, some isogeny has degree prime to n. SayK(E0) � 8~x 9~y �(~x ; ~y ), where � is quanti�er-free. Let n be the factorialof the degrees of the polynomials in �, and saygcd(n; [K(E0) : K(E1)]) = 1:If ~a is from K(E1), then �(~a ; ~y ) must have a solution from K(E1).(0) =) (4). If �i : E0 ! E1 and deg�i = di and P aidi = 1, then
End(E1) �=�! End(E0)� 7�!X aib�i � � � �i:

(4) =) (0). Say End(E0) �= End(E1). Then we may assumeE0 = C= h1; �i ; E1 = C= h1; n�i ;A� 2 +B� + C = 0; gcd(A;B;C) = 0; n j A:Hence Hom(E0; E1) �= hn;A��i :If � = nx+ Ay�� , then
deg(z 7! �z) = 1n j�j = nx2 �Bxy + ACn y2;

gcd�n;B; ACn � = 1;
so the degree takes two relatively prime values.
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