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This is a sketch of a proof of Morley’s Categoricity Theorem. Readers
who think some parts are too sketchy (or even wrong) will kindly inform
me. My main reference is Marker [], where the ingredients of the proof
are scattered about.

Some material that might be developed during the course of the proof,
but is not strictly needed for the proof, is in an appendix. (I typed up
some of this because I was also looking at Chang and Keiser’s somewhat
different account [].)

This document is typeset for a paper (so two of its pages fit on one side
of the usual a paper).
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. The spectrum function

Given a theory T and an infinite cardinal κ, we let I(T, κ) denote the
number of non-isomorphic models of T of cardinality κ. Some examples
are as in Table , where κ is now an arbitrary uncountable cardinal. If

T is the theory of: I(T,ω) I(T, κ)
) bare sets 1 1
) vector spaces over Fq 1 1
) vector spaces over Q ω 1
) algebraically closed fields of characteristic p ω 1
) an infinite, co-infinite singulary relation 1 κ
) an infinite, co-infinite singulary relation

with ∞ distinguished elements
ω κ

) (ω, x 7→ x+ 1) ω 1
) an equivalence with ∞ classes, all size ∞ 1 2κ

) an equivalence with ∞ classes, all size ∞,
each having ∞ distinguished elements

2ω 2κ

Table : Numbers of nonisomorphic models

I(T, κ) = 1 for some infinite κ, then T is κ-categorical. If T is so for
some κ that is not less than |T |, and T has no finite models, then T is
complete, by the Łoś–Vaught Test.

Here |T | is the number of inequivalent formulas (in countably many vari-
ables) with respect to T . For example, if the signature of T consists of





uncountably many constants, but according to T they are all equal, then
T is countable.

Henceforth T will range over the complete countable theories with infinite
models. Our aim is to characterize those T that are κ-categorical for
some uncountable κ and to show that they must be κ-categorical for all
uncountable κ.

A type is a complete set of formulas in a given tuple of variables. We can
understand types through the following formal development. Let Ln(T )
be the n-th Lindenbaum algebra of T , namely the Boolean algebra of
equivalence classes with respect to T of formulas in the tuple (xi : i < n)
of variables. (Then by definition |T | = supn∈ω|Ln(T )|.) An n-type
of T is an ultrafilter of Ln(T ). The set of all of these is Sn(T ). This
is the Stone space of Ln(T ), a compact (and in particular Hausdorff)
topological space that has, as basic open and closed sets, the sets [ϕ],
where ϕ ∈ Ln(T ) and

[ϕ] = {p ∈ Sn(T ) : ϕ ∈ p}.

If M |= T and A ⊆ M , when we may denote Sn(Th(MA)) simply by
Sn(A). (Thus Sn(T ) is also Sn(∅).) Then T is ω-stable just in case for
all n in ω

|A| 6 ω =⇒ |Sn(A)| 6 ω.

. Necessity of ω-stability

If Ω is some set and, for some possibly finite cardinality κ, the set of κ-
element subsets of Ω is partitioned, then a subset of Ω is homogeneous
for the partition if all of its κ-element subsets belong to the same member
of the partition.

Lemma  (Ramsey’s Theorem). For every positive n in ω, if the set
of n-element subsets of an infinite set Ω is partitioned into finitely many
classes, then some infinite subset of Ω is homogeneous for the partition.

Proof. We denote the set of n-element subsets of Ω by [Ω]n. The claim
is easy when n = 1: it is an infinitary pigeonhole principle. Suppose the





claim is true when n = `, but now f : [Ω]`+1 → m for somem inω, so that
f induces a partition of [Ω]`+1. We define a sequence ((ai, Xi) : i ∈ ω)
recursively so that X0 = Ω and a0 ∈ X0, and if Xk is an infinite subset
of ω with element ak, then Xk+1 is infinite and homogeneous for the
partition of [Xk r {ak}]` given by X 7→ f(X ∪ {ak}), and ak+1 ∈ Xk+1.
In particular ak /∈ Xk+1. By the same pigeonhole principle as before,
there is some j in m such that the set of k in ω for which

{f(X ∪ {ak}) : X ∈ [Xk+1]`} = {j} (∗)

is infinite. Then the set of ak+1 such that (∗) holds is infinite and homo-
geneous for the partition induced by f .

If M is some structure, A ⊆ M , and < is a linear ordering of A, then
(A,<) is indiscernible (or A is order-indiscernible with respect to <) if
for all n in ω, all tuples (a0, . . . , an−1) of elements of A such that

a0 < · · · < an−1

have the same type in M.

Lemma . For every linear order, T has a model in which the linear
order embeds as an order-indiscernible set.

Proof. By Compactness, we need only show that, for every n in ω, for
every finite subset Γ of Ln(T ), for every r in ω, there is a model of T in
which is satisfied the conjunction of the formulas

ϕ(xf(0), . . . , xf(n−1))→ ϕ(xg(0), . . . , xg(n−1)),

where ϕ ∈ Γ and f and g are strictly increasing functions from n to r.

Let M be a model of T , and let < be a linear ordering of M . We can
now identify [M ]n with the set of ~a in Mn such that a0 < · · · < an−1.
Define h on [M ]n by

h(~a) = {ϕ ∈ Γ: M |= ϕ(~a)}.

Then h induces a finite partition of [M ]n. By Ramsey’s Theorem, M has
an infinite subset that is homogeneous for the partition; and then there
is an increasing sequence (ai : i < r) of elements of this subset. This
sequence satisfies in M the desired conjunction of formulas.





Theorem . If T is κ-categorical for some uncountable κ, then T is
ω-stable.

Proof. There is a countable theory T ∗, in an expansion of the signature
of T , such that T ⊆ T ∗, every model of T expands to a model of T ∗,
and T ∗ has Skolem functions, that is, for every formula ϕ(~x, y) of the
expanded signature, there is a term t(~x) such that

T ∗ ` ∀~x (∃y ϕ(~x, y)→ ϕ(~x, t(~x))).

Suppose κ is an infinite cardinal. By the last lemma there is a model M
of T ∗ of size κ that includes an order-indiscernible set I of size κ. Because
of the Skolem functions, we may assume that M is generated by the set
of entries in I.

Say A is a countable subset of M , and let X be a minimal subset of I
such that every element of A is t(~b) for some term t and some tuple ~b of
elements of X. Then X is countable. Let two tuples ~c and ~d of elements
of I be called X-equivalent if they have the same order type and moreover

ci < x ⇐⇒ di < x, ci = x ⇐⇒ di = x,

for all x in X. In this case, for all n-tuples (ti : i < n) of terms (in
the appropriate variables), by the order-indiscernibility of I, the tuples
(ti(~c) : i < n) and (ti(~d) : i < n) realize the same types in Sn(A). But
also the number of X-equivalance classes of tuples from I is countable.
Therefore M realizes only countably many types over A.

Suppose now T is not ω-stable. Since κ is uncountable, T has a model of
size κ realizing uncountably many types over some countable set. Such
a model cannot be isomorphic to the reduction of M to the signature of
T . Thus T is not κ-categorical.

Note that T can be ω-stable without being κ-categorical for any infinite
κ. Indeed, all theories on the table above are ω-stable.





. Necessity of having no Vaughtian pairs

A Vaughtian pair of models of T is a pair (N,M) of (distinct) models
such that M ≺ N, but some formula defines the same infinite relation in
each model. For example, the theory of an infinite, co-infinite singulary
relation has Vaughtian pairs.

Suppose ϕ defines the same infinite relation in each member of a Vaugh-
tian pair of models of T . If we expand the signature to contain a new
singulary relation-symbol P , then there is a theory T ∗ in the expanded
signature such that (N,M) |= T ∗ if and only if N |= T and M is the uni-
verse of a proper elementary substructure M of N such that ϕM = ϕN

and this is infinite. Hence for example if T does have a Vaughtian pair,
then it has a Vaughtian pair of countable models.

Lemma . If T has a Vaughtian pair, then it has a Vaughtian pair of
countable homogeneous models that realize the same types and are there-
fore (by the back-and-forth method) isomorphic to one another.

Proof. Suppose (N,M) is a Vaughtian pair of countable models of T .
We can write N as {bn : n ∈ ω}. Then we can create an elementary
chain of countable Vaughtian pairs (Nk,Mk) of models of T such that
the type of (bi : i < k) is realized in Mk for each k in ω. The union of
this chain is a Vaughtian pair (Nω,Mω) of models of T such that Mω

and therefore also Nω realize every type that N does. Now we can make
another elementary chain whose union is a Vaughtian pair of countable
models of T realizing the same types as one another.

Similarly, if (~a, b) and ~c from N are such that ~a and ~c realize the same
type in N, then (N,M) has an elementary extension (N∗,M∗) such that
(~a, b) and (~c, d) realize the same type in N∗ for some d in N∗. We can
do the same for M. By repeating, we obtain an elementary chain whose
union is a Vaughtian pair of homogeneous models of T .

By interweaving chains, we achieve what is desired.

Theorem . If T is κ-categorical for some uncountable κ, then it has
no Vaughtian pairs.





Proof. Suppose T has a Vaughtian pair. There is an elementary chain
(Mα : α 6 κ) of countable homogeneous models of T that realize the same
types, with some formula defines the same infinite relation in each one.
Indeed, (M1,M0) is a pair as given by the last lemma. If (Mα+1,Mα)
has been defined as desired, we obtain (Mα+2,Mα+1) as a Vaughtian pair
such that Mα+1 and Mα+2 are isomorphic under a map that restricts to
an isomorphism from Mα to Mα+1. If β is a limit, then we let

Mβ =
⋃
α<β

Mα;

the Mα being homogeneous and realizing the same types, Mβ too is
homogeneous and realizes the same types that the Mα realize. Then Mκ

is a model of T of size κ with a countably infinite definable subset. But
T also has a model of size κ in which every infinite definable subset has
size κ. Thus T is not κ-categorical for any infinite κ.

. Minimal formulas

We have the following general method for proving that T is not ω-
stable.

Lemma . Suppose that, for some property of basic open subsets of type
spaces, for some A, for some n, every nonempty subset [ϕ] of Sn(A)
with the property has disjoint nonempty subsets [ϕ0] and [ϕ1] with the
property. Then T is not ω-stable.

Proof. Under the given conditions, by recursion we obtain for each k in
ω, for each α in 2k, a certain formula ϕα such that [ϕα] is nonempty and
has the given property, and

[ϕα0] ∪ [ϕα1] ⊆ [ϕα], [ϕα0] ∩ [ϕα1] = ∅.

By compactness of Sn(A), for each σ in 2ω, the descending chain

[ϕσ�0] ⊃ [ϕσ�1] ⊃ [ϕσ�2] ⊃ · · ·

has nonempty intersection, with an element pσ. The function σ 7→ pσ
on 2ω is injective. There are countably many formulas ϕα, so we can go
back and assume A is countable. Thus T is not ω-stable.





If M |= T , a formula ϕ (with parameters from M) is minimal for M
if ϕM is infinite, but for every formula ψ in the same variables, either
ϕ ∧ ψ or ϕ ∧ ¬ψ defines a finite set. Then an immediate application of
the Lemma  is the following.

Lemma . If T is ω-stable, then every model of T has a minimal for-
mula.

The relation defined by a minimal formula is a minimal set. Suppose
D is a minimal set. If A ⊆ D, then an element of D is algebraic over A
if it belongs to a finite subset of D defined by a formula with parameters
from A and from the formula defining D in the first place. The set of
elements of D that are algebraic over A can be denoted by

acl(A).

Lemma . In a minimal set, if a ∈ acl({b} ∪C), then either a ∈ acl(C)
or b ∈ acl({a} ∪ C).

Proof. Suppose a satisfies ∃6nx ϕ(x, b). If the formula

ϕ(a, y) ∧ ∃6nx ϕ(x, y)

has only finitely many solutions, then since b is one of them, it is in
acl({a} ∪ C) as desired. So suppose there are infinitely many solutions.
Then for some m

∃6my ¬(ϕ(a, y) ∧ ∃6nx ϕ(x, y)).

Suppose the formula ∃6my ¬(ϕ(x, y) ∧ ∃6nx ϕ(x, y)) has solutions ai,
where i 6 n. Then the negation of the formula∧

i6n

ϕ(ai, y) ∧ ∃6nx ϕ(x, y)

has at most m · (n+ 1) solutions. In particular, the formula itself has at
least one solution. But then the ai must not all be distinct. This shows
a ∈ acl(C).





Now the proofs that work for fields and vector spaces work here: a mini-
mal set has a basis, namely a maximal algebraically independent subset
or a minimal subset over which the whole set is algebraic; also all bases
have the same size.

Lemma . If T has no Vaughtian pairs, then every minimal formula for
a model of T is minimal for every elementary extension of that model.

Proof. Suppose ϕ(x) is minimal for some model M of T , but not for some
elementary extension of M. Then there is a formula θ(x, y) such that,
for each n in ω,

T ` ∃y (∃>nx (ϕ(x) ∧ θ(x, y)) ∧ ∃>nx (ϕ(x) ∧ ¬θ(x, y))).

In particular, there is a formula θ(x, y) and, for each n in ω, a tuple
bn from M such that θ(x, bn) has finitely many solutions, but at least
n solutions. Thus if M ≺ N, then θ(x, bn) defines in each structure the
same subset of size at least n. By Compactness, T has a Vaughtian
pair.

A minimal formula that satisfies the conclusion of the lemma is strongly
minimal. By the last two lemmas, if T is ω-stable with no Vaughtian
pairs, then every model of T has a strongly minimal formula.

. Sufficiency

Lemma . If T is ω-stable, then the isolated points of each space Sn(A)
are dense.

Proof. Suppose the isolated points of some Sn(A) are not dense. Then
some nonempty subset [ϕ] contains no isolated points. Consequently
[ϕ] is the union of two disjoint nonempty subsets [ϕ0] and [ϕ1], neither
of which (of course) contains isolated points. (Indeed, [ϕ] has distinct
elements p and q, and then q /∈ [ψ] for some ψ in p; now let ϕ0 be ϕ∧ψ,
and let ϕ1 be ϕ ∧ ¬ψ.) By Lemma , T must not be ω-stable.





If M |= T and A ⊆ M , then M is prime over A if MA embeds elemen-
tarily in every other model of Th(MA).

Lemma . If T is ω-stable, M |= T , and A ⊆ M , then M has an
elementary substructure that is prime over A.

Proof. For some maximal ordinal γ, for all β in γ, we can define elements
bβ of M recursively so that bβ realizes an isolated type over {bα : α < β},
but is not in A∪{bα : α < β}. Let B = A∪{bα : α < γ}. By Lemma  and
the Tarski–Vaught Test, B is the universe of an elementary substructure
B of M. Now suppose MA ≡ NA. By recursion we can embed BA

elementarily in NA.

Theorem . If T is ω-stable with no Vaughtian pairs, then T is κ-
categorical for all uncountable κ, and I(T,ω) 6 ω.

Proof. Suppose T is ω-stable with no Vaughtian pairs. By Lemmas , 
and , T has a prime model M0 with a strongly minimal formula ϕ. If M
is a model of T of size κ, then we may assume M0 4 M, so ϕ defines in
M a minimal set. Since T has no Vaughtian pairs, M must be prime over
its interpretation of ϕ, by Lemma . This interpretation has a countable
basis, if κ = ω; but if κ is uncountable, then this is the size of a basis.

Suppose N is a model of T such that the bases of ϕN and ϕM have the
same size. By induction, a bijection between the bases is elementary and
extends to an isomorphism of the minimal sets themselves, and then to
an isomorphism of the structures.

A. Appendix

A model of T is saturated if it realizes all types in a small set of param-
eters, where small means having cardinality less than the model itself.
All saturated models of T having the same size are isomorphic to one an-
other; indeed, an isomorphism can be constructed by the back-and-forth
method.





One can say more generally that a model of T is κ-saturated if it realizes
all types in fewer than κ parameters. So a model of size κ is saturated if
and only if it is κ-saturated.

By contrast, T itself is κ-stable if every model realizes only κ types in κ
parameters. That is, T is κ-stable just in case for all n in ω

|A| 6 κ =⇒ |Sn(A)| 6 κ.

Another application of Lemma  is the following.

Theorem . If T is ω-stable, then T is κ-stable for all infinite κ.

Proof. Suppose [ϕ] is a subset of Sn(A) that is larger than κ. Let p be
the subset of Ln(A) that contains ψ if [ϕ∧ ψ] is larger than κ; otherwise
let p contain ¬ψ. Then [ϕ] consists of every point in⋃

ψ∈p

[ϕ ∧ ¬ψ],

along with p if this is indeed a point of Sn(A). Thus for some ψ, both
[ϕ ∧ ψ] and [ϕ ∧ ¬ψ] are larger than κ.

A formula ϕ in Ln(T ) is complete if [ϕ] has only one element. This one
element is then just an isolated point in Sn(T ). The theory T is atomic
if every formula is entailed (with respect to T ) by a complete formula,
that is, the isolated points of each Sn(T ) are dense in the space.

More generally if M |= T and A ⊆ M , then M is atomic over A if the
type over A of every tuple of elements of M is isolated.

Theorem . The prime model over A guaranteed by Lemma  is also
atomic over A.

Proof. With the notation of the proof of Lemma , suppose β < γ, and
for all n inω, for all (α(i) : i < n) from βn, the type of (bα(0), . . . , bα(n−1))
is isolated. We have to show that the type of (bα(0), . . . , bα(n−1), bβ) is
isolated. Suppose

BA |= χ(bα(0), . . . , bα(n−1), bβ).





The type of bβ over {bα : α < β} is isolated by some formula

ϕ(bα(n), . . . , bα(n+m−1), y),

so we have

BA |= ∀y (ϕ(bα(n), . . . , bα(n+m−1), y)→ χ(bα(0), . . . , bα(n−1), y)).

By inductive hypothesis, the type of (bα(0), . . . , bα(n+m−1)) is isolated by
a formula θ(x0, . . . , xn+m−1), so we have

BA |= ∀x0 · · · ∀xn+m−1 (θ(x0, . . . , xn+m−1)→
∀y (ϕ(xn, . . . , xn+m−1, y)→ χ(x0, . . . , xn−1, y))),

equivalently

BA |= ∀x0 · · · ∀xn−1 ∀y
(∃xn · · · ∃xn+m−1 (θ(x0, . . . , xn+m−1) ∧ ϕ(xn, . . . , xn+m−1, y))

→ χ(x0, . . . , xn−1, y)).

Thus the formula

∃xn · · · ∃xn+m−1 (θ(x0, . . . , xn+m−1) ∧ ϕ(xn, . . . , xn+m−1, y))

isolates the type of (bα(0), . . . , bα(n−1), bβ).
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