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Preface

This document began as a record of a two-week course called
Geometriler at the Nesin Mathematics Village, Şirince, Selçuk,
Izmir, Turkey, September –, .

I gave a similar course the next summer, July –August ,
, though I have for this course only a handwritten record,
in a coil-bound yellow A notebook from the Village.

In December of , I published a relevant article, “Thales
and the Nine-point Conic” [].

The first week of my Şirince course was on projective ge-
ometry, with Pappus [] as a text; the second, hyperbolic,
with Lobachevsky []. The present document covers only the
former week.

Otherwise, I have spelled out many details in my course
notes, sometimes after further consultation with Hilbert []
or Coxeter []. I have mostly kept the original ordering of
topics, and the chapters are still titled with the days of the
week.

I now draw diagrams with the pst-eucl, which has com-
mands for drawing parallels and for naming the intersections
of straight lines that themselves pass through named points.
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. Monday

.. Quadrangle Theorem

Suppose five points, A through E, fall on a straight line, and F
is a random point not on the straight line. Join FA, FB, and
FD, as in Fig. a. Now let G be a random point on FA, and
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(a) Point F is chosen
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Figure . Quadrangle Theorem set up

join GC and GE, as in Fig. b. Supposing these two straight
lines cross FB and FD at H and K respectively, join HK as
in Fig. . If this straight line crosses the original straight line
AB at L, we shall show that L depends only on the original
five points, not on F or G. Let us call this the Quadrangle

Theorem. It is about how the straight line AB crosses the
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Figure . Quadrangle Theorem

six straight lines that pass through pairs of the four points F ,
G, H , and K. Any such collection of four points, no three
of which are collinear, together with the six straight lines that
they determine, as in Fig. , is called a complete quadrangle
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Figure . Complete quadrangles

(tam dörtgen). Similarly, any collection of four straight lines,
no three passing through the same point, together with the six
points at the intersections of pairs of these six straight lines,
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as in Fig. , is a complete quadrilateral (tam dörtkenar).
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Figure . Complete quadrilateral

As stated, the Quadrangle Theorem is a consequence of what
we shall call Lemma IV of Pappus. Pappus was the last great
mathematician of antiquity, and Lemma IV is one of the lem-
mas in Book VII of his Collection [, , , ] that are in-
tended for use with Euclid’s now-lost three books of Porisms.

We shall prove Lemma IV in §. (p. ). Lemmas I, II, V, VI,
and VII (not proved in these notes) treat other cases, such as
when HK in Fig.  is parallel to AE. We shall give a second
proof of the Quadrangle Theorem in §. (p. ).

.. Thales’s Theorem

... Proportion Theorem

Pappus’s proofs of results such as Lemma IV rely heavily on
what for now I shall call the Proportion Theorem. This is
Proposition  of Book VI of Euclid’s Elements [, ]:

If a straight line be drawn parallel to one of the sides of a
triangle, it will cut the sides of the triangle proportionally,
[and conversely].
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Figure . Proportion Theorem

Symbolically, if the triangle is ABC as in Fig. , and D and
E are on AB and AC respectively, or possibly on the exten-
sions of these bounded straight lines, then, according to the
Proportion Theorem,

DE ‖ BC ⇐⇒ AD :DB :: AE : EC. ()

This result is known in some countries as Thales’s Theorem

[], but for now I want to reserve this name for a related
result, as follows.

... Thales’s Theorem

In () we can read the proportion

AD :DB :: AE : EC ()

in any of several ways:
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. AD, DB, AE, and EC are proportional.
. AD is to DB as AE is to EC.
. AD has to DB the same ratio that AE has to EC.

In particular, the proportion expresses not the equality of the
ratios AD :DB and AE : EC, but their sameness.

Having the same ratio is an equivalence relation. In partic-
ular, it is transitive. See §. (p. ). Thus, if () holds, and
also

AE : EC :: AH :HG

as in Fig. , then
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bD
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Figure . Thales’s Theorem

AD :DB :: AH :HG.

By the Proportion Theorem,

DE ‖ BC & EH ‖ CG =⇒ DH ‖ BG. ()

Let us call this Thales’s Theorem. We can count () as true,
even if G lies on AB, since then DH and BG lie on the same
straight line.

Historical notes on Thales are in Appendix A.
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... Affine plane

Truth of Thales’s Theorem in the sense just defined is a fun-
damental property of an affine plane. By definition, an affine

plane is a collection of points and straight lines of which the
following axioms are true.

. There exist at least three points, not all on the same
straight line.

. Any two distinct points lie on a unique straight line.
. To a given straight line, through a given point not on

the line, there is a unique parallel straight line.
. Thales’s Theorem holds.

We can understand axiom  here as the first of Euclid’s five
postulates. In axiom ,

• existence of the parallel is a consequence of Proposition
 of Book I of the Elements;

• uniqueness, Propositions  and , the latter relying on
the fifth postulate.

... Ratios

In an affine plane, the relation of having the same ratio is
indeed an equivalence relation, if we take the Proportion The-
orem as a definition of proportion. We shall do this. Then for
any triangle ABC and point D on AB, there is unique point
E on AC such that () holds. The ratio AD : DB is now
the equivalence class consisting of all ordered triples (A,E,C)
such that E lies on AC and

• if C is not on AB, then

DE ‖ BC;

• if C is on AB, then for some G not on AB and some H
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on AG,

DH ‖ BG & HE ‖ GC.

... Product of ratios

We can now define the product of two ratios. In Fig. , with
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b
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b
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Figure . Multiplication of ratios

A′B ‖ A′′B′, ()

we let

(OA : AA′)(OB :BB′) :: OA : AA′′. ()

Since ratios are equivalence classes, we have to confirm that
this is a valid definition; but it is, by Thales’s Theorem. As a
special case, from which we can now derive (), we have

(OA : AA′)(OA′ : A′A′′) :: OA : AA′′. ()
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... Associativity of multiplication

Thales’s Theorem gives us also associativity of multiplication,
since, still in Fig. , if, in addition to (), also

A′′B′ ‖ A′′′B′′, B′C ‖ B′′C ′,

then

(OB : BB′)(OC : CC ′) :: OB :BB′′,

(OA : AA′)(OB :BB′′) :: OA : AA′′′.

By this and (),

(OA : AA′)
(

(OB :BB′)(OC : CC ′)
)

::
(

(OA : AA′)(OB : BB′)
)

(OC : CC ′)

⇐⇒ A′′′C ′ ‖ A′′C;

but the parallelism holds by Thales’s Theorem.
The commutativity of multiplication of ratios will need Pap-

pus’s Lemma VIII, which is one case of Pappus’s Theorem, to
be defined in §. (p. ).

.. Equivalence relations

... Equality

In Euclid, two bounded straight lines may be equal without
being the same. For example, in an isosceles triangle, two
of the sides are equal. Equality of bounded straight lines is
an equivalence relation. This means equality is transitive,

symmetric, and reflexive.
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. Equality is transitive, by the first of the Common No-
tions in Euclid’s Elements:

Equals to the same thing are equal to one another.

. That equality is symmetric is implicit in the same com-
mon notion, as well as in one of the definitions at the
head of the Elements that we have just alluded to:

Of trilateral figures,

• an equilateral triangle is that which has its
three sides equal;

• an isosceles triangle, that which has two of its
sides alone equal; and

• a scalene triangle, that which has its three sides
unequal.

If the sides AB and AC of a triangle are equal, we can
write this indifferently as AB = AC or AC = AB.

. That equality is reflexive in the Elements is seen in how
Proposition  of Book I is applied. This proposition is
the theorem about triangles that we now call Side-Angle-
Side, or SAS. In triangles ABC and DEF of Fig. a,

BA = ED

∠BAC = ∠EDF

AC = DF











=⇒



















∠ABC = ∠DEF

AC = DF

∠ACB = ∠DFE

△ABC = △ABC.

()

The equality of triangles here is in the sense to be dis-
cussed in §. (p. ). The point now is that, when ()
is applied in Proposition , to prove that the base angles
of isosceles triangle ABC in Fig. b are equal, we have
AB = AC, and we make also AF = AG, and therefore
angles ABG and ACF are equal, since also angles BAG
and CAF are equal, being the same angle.
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Figure . Elements Propositions I. and 

Equality being an equivalence relation, we may say that equal
straight lines have the same length. Length is an abstraction,
which we cannot draw in a diagram. We can define the length
of a line AB as the equivalence class, denoted by

|AB|,

consisting of all of the straight lines XY such that AB = XY .
Equality has a criterion in the fourth of Euclid’s Common

Notions that his editor Heiberg [] accepts as genuine:

Things congruent with one another
are equal to one another.

I discuss this in “On Commensurability and Symmetry” [].
Two equal straight lines can have different directions and end-
points: this is seen in

• Euclid’s third postulate, that a circle can be drawn with
any center and passing through any other point;

• Proposition I., whereby, from any straight line, we can
cut off a part that is equal to any shorter straight line.
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We shall be interested in seeing how far we can go, treating
only opposite sides of a parallelogram as equal. This is the only
kind of equality that we can talk about in an affine plane. It
is also the equality of which our sign = of equality is an icon;
see the paper [] just mentioned.

... Sameness of ratio

Being an equivalence relation is even more fundamental to
sameness than to equality. In ancient Greek mathematics at
least, any definition of proportion should make it obvious that
sameness of ratio is indeed an equivalence relation. There are
two theories of proportion in the Elements:

) for magnitudes, such as bounded straight lines, in Books
V and VI;

) for numbers, in Books VII, VIII, and IX.
By the definition at the head of Book VII,

[Four] numbers are proportional when the first is the same
multiple, or the same part, or the same parts, of the second
that the third is of the fourth.

If we take seriously the use of the word “same” here, then, in
the context of the whole of Book VII of the Elements, the def-
inition of proportion of numbers must mean that, for counting
numbers k, ℓ, m, and n, we have k : ℓ :: m : n precisely when
the Euclidean algorithm has the same steps, whether applied
to (k, ℓ) or (m,n). Thus for example 32 : 14 :: 48 : 21, be-
cause of the common sequence (2, 3, 2) of multipliers in the
computations

32 = 14 · 2 + 4,

14 = 4 · 3 + 2,

4 = 2 · 2,

,

48 = 21 · 2 + 6,

21 = 6 · 3 + 3,

6 = 3 · 2.

 Geometries



I have written about this elsewhere [].
We shall look at Euclid’s definition (and Hilbert’s definition)

of proportion of bounded straight lines in §. (p. ).
As we cannot draw lengths as such in a diagram, so can we

not draw ratios.

... Parallelism

Parallelism is transitive by Proposition I. of the Elements.

Since it is obviously symmetric, it is an equivalence relation,
provided we understand a straight line to be parallel to itself.

That parallelism is transitive is also a theorem about affine
planes. If AB ‖ CD as in Fig. , but a third line ED meets

A C

E

DB

Figure . Parallelism in an affine plane

CD at D, then, CD being the only parallel to AB that passes
through C, ED must meet AB somewhere.

... Sameness of direction and length

Since parallelism is an equivalence relation, we may say that
parallel straight lines have the same direction. Hence having
the same direction and length is an equivalence relation.
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In Euclid and Pappus, expressions such as AB and BA for
bounded straight lines are interchangeable. We may however
distinguish them, considering AB as the ordered pair (A,B).
As in §. (p. ) we assigned to an ordered triple (A,D,B)
the ratio AD : DB, so now we assign to AB, considered as
(A,B), the directed length, or vector, denoted by

−→
AB.

This is the equivalence class consisting of all ordered pairs
(C,D) of points such that

AB ‖ CD, AB = CD,

and A is on the same side of B that C is of D. However, this
last condition is imprecise.

Propositions  and  of Book I of Euclid’s Elements consti-
tute what we shall call the Equality Theorem: two bounded
straight lines that are not part of one straight line, but are
parallel, are equal if and only if they are the sides of a paral-

lelogram. Now we can say that
−→
AB consists of those (C,D)

such that
• if A and B are the same, then so are C and D;
• if C does not lie on AB, then ABDC is a parallelogram;
• if C does lie on AB, then for some E and F , both ABEF

and EFCD are parallelograms.
If (A,B) and (C,D) represent the same vector, we may write

−→
AB ::

−−→
CD.

If
−→
AB ::

−→
AC, then B and C must be the same point. The

Side-Angle-Side Theorem, discussed in §. (p. ), now takes
the form that, in two triangles ABC and DEF ,

−→
AB ::

−−→
DE &

−−→
BC ::

−→
EF =⇒

−→
AC ::

−−→
DF.
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Let us call this the Prism Theorem, even though a prism is
normally a solid figure, and we are working in a plane.

More precisely, if, as in Figure a, ABC is a triangle,
ABED is a parallelogram, and AD does not lie along AC,
but DF is drawn parallel to AC, the Prism Theorem is

AD ‖ CF =⇒ BC ‖ EF. ()

This is an easy consequence of the Equality Theorem. For
suppose now, in Fig. a, in addition to the conditions already
stated,

AD ‖ CF. ()

Then

BE = AD, AD = CF,

by the Equality Theorem. Since equality is transitive,

BE = CF.

Again by the Equality Theorem,

BC ‖ EF. ()

This gives ().
Euclid proves the Equality Theorem, already having equal-

ity as an equivalence relation, in the sense discussed above.
We can use the Theorem as a definition of equality of paral-
lel bounded straight lines, provided we know that equality so
defined will be transitive; but then the Prism Theorem guar-
antees this transitivity, just as Thales’s Theorem guarantees
that sameness of ratio, as given by the Proportion Theorem,
is transitive.
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.. Desargues’s Theorem

The Prism Theorem and Thales’s Theorem are specials case
of Desargues’s Theorem. We shall use this result for the
second proof of the Quadrangle Theorem, mentioned at the
end of §. (p. ). Desargues was a contemporary of Des-
cartes, and the theorem named for him concerns two triangles.
If these are ABC and DEF , we assume that the lines AD, BE,
and CF that connect corresponding vertices either

• have a common point G, or
• are parallel to one another.

There are only the following three possibilities for the pairs
{BC,EF}, {AC,DF}, and {AB,DE} of corresponding sides.
Parallelism: each pair are parallel.
Intersecting: each pair intersect, and the three intersection

points lie along a common straight line.
Mixing: Two pairs intersect, and the line that the two inter-

section points determine is parallel to each line in the
third pair.

That is Desargues’s Theorem, and there are six cases in all.
The two cases of parallelism are, again, The other cases are
shown in Fig.  and Fig. .

... Parallel cases in an affine plane

By definition, in every affine plane, Thales’s Theorem is true.
The Prism Theorem is also true in every affine plane. To prove
this, we first establish a converse of Thales’s Theorem. In Fig.
, assuming that DE is drawn parallel to AB in the triangle
GAB, and the sides AC and DF of the triangles ABC and
DEF are also parallel, we have

BC ‖ EF =⇒ F lies on GC.
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Figure . Desargues’s Theorem, mixed cases
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Figure . Desargues’s Theorem, intersecting cases
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Figure . Converse of Thales’s Theorem

For, if BC ‖ EF , but F is not on GC, this intersects EF at
some other point F ′. Then Thales’s Theorem applies, yielding
DF ′ ‖ AC. Thus F ′ lies on the straight line through D that
is parallel to AC. This line being DF , F ′ must lie on this, as
well as on EF . Only one point can do this, and that point is
F . So F ′ and F must be the same point after all, and F lies
on GC.

Next we establish a converse of the Prism Theorem. In Fig.
b, ABED is a parallelogram and AC ‖ DF . If CF ∦ AD,
then they meet at a point G. Since E does not lie on BG, we
conclude by the converse of Thales’s Theorem that BC ∦ EF .
By contraposition, the converse of () holds.

Finally we prove the Prism Theorem itself in an affine plane.
In Fig. c, ABED is a parallelogram and AC ‖ DF . If
BC ∦ EF , then BC ‖ EF ′ for some F ′ on DF , and therefore
AD ‖ CF ′ by what we have just proved, so CF ∦ AD.
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(b) Proof of converse
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F ′

(c) Proof from converse

Figure . Prism Theorem

... Equality in proportions

In an affine plane, if some bounded straight line appears in
a proportion, we may now replace it with a bounded straight
line representing the same vector. For if, as in Figure ,

AC : CB :: AH :HG, ()

so that HC ‖ GB, and if all of the straight lines XX ′ are
parallel to one another, and also

AB ‖ A′B′, AG ‖ A′G′,

so that the XX ′ all represent the same vector, then

H ′C ′ ‖ HC ‖ GB ‖ G′B′,

so
A′C ′ : C ′B′ :: A′H ′ : H ′G′.
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bG′

Figure . Proportions from the Prism Theorem

Therefore, in (), we can replace any particular XY with
X ′Y ′. Thus, back in Fig. , if DF ‖ AC, then

BD :DA :: BF : FC :: BF :DE.

We can conclude from this, as an alternative form of the Pro-
portion Theorem, still in Fig. ,

BA :DA :: BC :DE.

For, if we augment Fig.  as in Fig. , where now ADEG is a
parallelogram, and the straight line through G parallel to AC
cuts AB and AC at D′ and F ′ respectively, then

BA : AD′ :: BC : CF ′,

but also

AD′ = DA, CF ′ = FC = DE.
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(b) Separation

Figure . Composition and separation of ratios

We can therefore write the rule () for multiplication of ratios
as

(OA :OA′)(OA′ : OA′′) :: OA : OA′′.

This becomes more succinct when we write a for OA, and so
forth:

(a : a′)(a′ : a′′) :: a : a′′.

.. Pappus’s Theorem

We shall prove Desargues’s Theorem in general in §. (p. ),
by means of Pappus’s Hexagon Theorem. This concerns
a hexagon, such as ABCDEF , whose vertices lie alternately
on two straight lines. Thus AC contains E, and BD contains
F , and the two straight lines either

• have a common point G, or
• are parallel to one another.
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The following are the only three possibilities for the pairs
{AB,DE}, {BC,EF}, and {CD,FA} of opposite sides of
the hexagon.

Parallelism: each pair are parallel.
Intersecting: each pair intersect, and the three intersection

points lie along a common straight line.
Mixing: Two pairs intersect, and the line that the two inter-

section points determine is parallel to each line in the
third pair.

That is Pappus’s Theorem, and just as for Desargues’s Theo-
rem, there are six cases in all.

Pascal generalized the Hexagon Theorem, though without
proof, to allow the vertices of the hexagon to lie on an arbitrary
conic section [, ].

Pappus himself proves three cases of the Hexagon Theorem:

) the parallel case with vertices on intersecting lines, as
Lemma VIII;

) the intersecting case with vertices on parallel lines, as
Lemma XII;

) the intersecting case with vertices on intersecting lines,
as Lemma XIII.

The proofs of the last two lemmas will use Lemmas III, X, and
XI, concerning the cross ratio of four straight lines. We shall
take up

• Lemma VIII, and the other parallel case, in §. (p. );
• Lemmas III and X in §. (p. );
• Lemmas XI, XII, and XIII in §. (p. );
• the mixed cases in §. (p. ).

Lemma VIII is illustrated in Figure , where

BC ‖ EF & CD ‖ FA =⇒ AB ‖ DE.
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Figure . Commutativity of multiplication of ratios

This just means multiplication of ratios is commutative, since
we have now

(GA : AC)(GB :BF ) :: GA : AE

:: GB :BD :: (GB :BF )(GA : AC).

Pappus’s proof of Lemma VIII uses only Propositions I.
and  of Euclid’s Elements, whereby, under the hypothesis
that two triangles have the same base, as in Fig. , the

A B

C D

Figure . Triangles on the same base

straight line joining the apices of the triangles is parallel to
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the common base just in case the triangles are equal to one
another.

.. Equality of polygons

Equality of triangles means not congruence of the triangles,
but sameness of their areas. We have seen in §. (p. ) that
congruence is one way to establish this sameness. Euclid’s
proof of his Proposition I., that parallelograms on the same
base and in the same parallels are equal, is by

) adding congruent pieces to the parallelograms, then
) dividing the resulting polygons into congruent pieces.

Thus in Fig. a,

α

β

γ
δ

(a) Euclid’s case

α
β

δ

(b) Simpler case

Figure . Euclid’s Proposition I.

α + γ = γ + δ

because the two sums are congruent triangles. The third of the
Common Notions of Euclid is, “If equals be subtracted from
equals, the remainders are equal”; thus

α = δ.

The second of the Common Notions is, “If equals be added to
equals, the wholes are equal,” and so

α + β = β + δ,
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which is the desired equation of parallelograms.
There is a simpler case, in Fig. b, where the parallelo-

grams themselves are composed of congruent parts. The same
is actually true in Fig. a, where we can analyze the paral-
lelograms further as in Fig. . Here, by congruence,

α

β

γ

δ

ε

ζ

Figure . Alternative proof of I.

a = δ = ζ, β = ε,

and therefore
α + β + γ = γ + ε+ ζ.

However, as Fig.  suggests, there is no bound on the number
of congruent parts that we may have to analyze the parallelo-
grams into, if we want to avoid adding congruent parts.

.. Projective plane

The first four books of Euclid’s Elements concern a Euclidean

plane. Provided we can, as we shall in §. (p. ), prove
Thales’s Theorem using only those books, and not Book VI,
which we mentioned in §. (p. ), and which we shall use
in §. (p. ), a Euclidean plane is a special case of an affine
plane, as defined in §. (p. ). Books XI–XIII of Euclid
concern Euclidean space.
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α1

α2

α3

α4

β1

β2

β3

β4

Figure . Complications of I.

We can understand Pappus’s geometry as concerning a pro-

jective plane. Here, for either of Desargues’s Theorem and
Pappus’s Theorem, the six cases can be given a single expres-
sion, because formerly parallel straight lines are now allowed
to intersect “at infinity.” In Chapter , we shall obtain a pro-
jective plane from an affine plane by adding

) new points, called points at infinity, one for each fam-
ily of parallel straight lines, to which the point is consid-
ered to be common; and

) a new straight line, the straight line at infinity, which
is common to all of the points at infinity.

Meanwhile, by definition, a projective plane satisfies the
following axioms.

. Any two distinct points lie on a single straight line.
. Any two distinct straight lines intersect at a single point.
. There is a complete quadrangle, in the sense of §. (p.

).
In not every projective plane is Pappus’s Theorem true. A
Pappian plane is a projective plane in which Pappus’s The-
orem is true, in the sense illustrated below by Fig.  in §.
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(p. ): when the vertices of a hexagon lie alternately on two
straight lines, which now necessarily intersect, then the inter-
section points, which now always exist, of opposite sides lie on
a straight line. This is Pappus’s Lemma XIII, which Pappus
proves for a Euclidean plane.

A Pappian plane has no specified line at infinity. When we
remove any straight line and its points, what remains is an
affine plane, for which the line removed may be conceived as
a line at infinity.

We shall show in §. (p. ) that Desargues’s Theorem, in
the projective sense illustrated by Fig. a, is true in every
Pappian plane.
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. Tuesday

.. Pappus’s Theorem, parallel cases

In a Euclidean plane, we prove now the parallel cases of Pap-
pus’s Theorem, stated in §. (p. ). One of them, Lemma
VIII, will give us commutativity of multiplication of ratios in
an affine plane, as we said.

In Lemma VIII, two pairs of opposite sides of the hexagon
are parallel, and the two bounding lines intersect. In particu-
lar, letting the hexagon be ΒΓΗΕ∆Ζ in Fig. a (which is close

Α

Β Γ

∆ Ε

Ζ

Η

(a) Pappus’s figure

b

b

b

Β

Α

Ζ

bΗ
b∆

b Ε

b Γ

(b) Alternative figure

Figure . Lemma VIII

to the figure in Hultsch’s text of Pappus [], except that the





lines there all look the same), we suppose

ΒΓ ‖ ∆Ε, ΗΕ ‖ ΖΒ.

We prove ΓΗ ‖ ∆Ζ using several equations of triangles:

) ∆ΒΕ = ∆ΓΕ, [Elements I., since ΒΓ ‖ ∆Ε]

) ΑΒΕ = Γ∆Α, [add ∆ΑΕ]

) ΒΖΕ = ΒΖΗ, [Elements I., since ΒΖ ‖ ΕΗ]

) ΑΒΕ = ΑΗΖ, [subtract ΑΒΖ]

) ΑΓ∆ = ΑΗΖ, [steps  and ]

) Γ∆Η = ΓΖΗ, [add ΑΓΗ]

) ΓΗ ‖ ∆Ζ. [Elements I.]

If the diagram is as in Fig. b, then we must adjust the
proof by subtracting ΒΖΕ and ΒΖΗ from ΑΒΖ in step , and
subtracting ΑΓΗ from ΑΓ∆ and ΑΗΖ in step . Note then
that the proof does not make sense in an abstract affine plane,
where there is no ordering of points on a straight line.

Possibly the intersection point Α does not exist, because
Β∆ ‖ ΓΕ. This is the situation of Fig. , where, by the
Equality Theorem of §. (p. ), being opposite sides of par-
allelograms,

Β∆ = ΓΕ, ΒΗ = ΖΕ.

Therefore

• the differences are equal in Fig. a, by the third com-
mon notion, mentioned in §. (p. );

• the sums are equal in Fig. b, by the second common
notion.
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Β
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Ε

Ζ

Η

(b)

Figure . Parallel Theorem

That is,
∆Η = ΓΖ.

These too must be the opposite sides of a parallelogram, by
the Equality Theorem again; in particular,

.ΓΗ ‖ Ζ∆. ()

Let us call this case of Pappus’s Theorem the Parallel The-

orem. We shall use it in §. (p. ). Again the proof is in a
Euclidean plane; but now there is a proof for an affine plane.
In Fig. , the triangles ΒΓΖ and Ε∆Η having corresponding
sides parallel, the straight lines ΒΕ, Γ∆, and ΖΗ must have a
common point Α, by the converse of Thales’s Theorem. Ap-
plied then to the triangles ΒΓΗ and Ε∆Ζ, Thales’s Theorem
yields ().

.. Quadrangle Theorem proved by Pappus

Pappus’s Lemma IV is that, in Fig. , where the solid lines
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Β Γ

∆ Ε

Ζ

Η

Α

Figure . Parallel Theorem in an affine plane

are straight, if the proportion

(ΑΖ : ΑΒ)(ΒΓ : ΓΖ) :: (ΑΖ : Α∆)(∆Ε : ΕΖ) ()

holds for the points Α, Β, Γ, ∆, Ε, and Ζ one one of the straight
lines, then Θ, Η, and Ζ are in a straight line. Proving this will
involve various manipulations. Pappus writes the products of
ratios in () as ratios of products:

ΑΖ · ΒΓ : ΑΒ · ΓΖ :: ΑΖ · ∆Ε : Α∆ · ΕΖ. ()

Now we apply alternation, which is the rule

a : b :: c : d =⇒ a : c :: b : d. ()

We prove this using commutativity of multiplication. From
the hypothesis a : b :: c : d, we compute

a : c :: (a : b)(b : c) :: (c : d)(b : c) :: (b : c)(c : d) :: b : d.

Now () is equivalent to

ΑΖ · ΒΓ : ΑΖ · ∆Ε :: ΑΒ · ΓΖ : Α∆ · ΕΖ. ()
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Figure . Lemma IV

The left-hand member simplifies, and then we expand it as a
product:

ΑΖ · ΒΓ : ΑΖ · ∆Ε :: ΒΓ : ∆Ε

:: (ΒΓ :ΝΚ)(ΝΚ : ΚΜ)(ΚΜ : ∆Ε). ()

Pappus has ΚΝ for ΝΚ here, and similar variants elsewhere.
He analyzes the right-hand member of () as a product of
ratios:

ΑΒ · ΓΖ : Α∆ · ΕΖ :: (ΒΑ : Α∆)(ΓΖ : ΖΕ). ()

Assuming ΚΜ is drawn parallel to ΑΖ, by Thales’s Theorem
we have

ΝΚ : ΚΜ :: ΒΑ : Α∆.

Eliminating this common ratio from the members of () given
in () and (), then reversing the order of the new members,
we obtain

ΓΖ : ΖΕ :: (ΒΓ : ΝΚ)(ΚΜ : ∆Ε),
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and therefore, by Thales’s Theorem applied to each ratio in
the compound,

ΓΖ : ΖΕ :: (ΘΓ : ΘΚ)(ΚΗ :ΗΕ). ()

Pappus says now that ΘΗΖ is indeed straight. Although he
provides a reminder, he may expect his readers to know, as
some students today know from high school, the generalization
of Thales’s Theorem known as Menelaus’s Theorem whose
diagram is in Fig. . Rewriting (), we have the hypothesis

ΓΖ : ΖΕ :: (ΓΘ : ΘΚ)(ΚΗ :ΗΕ). ()

We extend ΘΗ and let it be met at Ξ by the parallel to ΓΚ

through Ε. By Thales’s Theorem then, from () we have

ΓΖ : ΖΕ :: (ΘΓ : ΚΘ)(ΚΘ : ΕΞ) :: ΘΓ : ΕΞ.

By the same theorem in the other direction, the points Θ, Ξ,
and Ζ must be collinear, and therefore the same is true for Θ,
Η, and Ζ. This completes the proofs of

Menelaus’s Sphaerica survives in Arabic translation [, p. ]; but
we also have Menelaus’s Theorem in Ptolemy, where I read it as a student
at St John’s College, just before Toomer’s  translation [] came out;
we used the translation that Taliaferro had made for the College [, I.,
p. ]. Thomas also puts Menelaus’s Theorem in his anthology [, pp.
 ff.]. In the commentary for their translation of Desargues, Field and
Gray remark that Pappus’s Lemma IV is proved by “chasing ratios much
in the fashion Desargues was later to use. In this case collinearity could
have been established by appealing to the converse of Menelaus’ theorem,
but when Pappus reached that point he missed that trick and continued
to chase ratios until the conclusion was established—in effect, proving the
converse of Menelaus’ theorem without saying so” [, pp. –]. I would
add that the similarity of “fashion” in Pappus and Desargues is probably
due to the latter’s having studied the former. Moreover, Pappus seems
not to have “missed the trick,” since he asserts the desired collinearity at a
point when it can be recognized only by somebody who knows Menelaus’s
Theorem.
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Figure . Menelaus’s Theorem

• one direction of Menelaus’s Theorem,
• Lemma VIII.

The steps of the proof are reversible. Thus, if we are given
the complete quadrangle ΗΘΚΛ of Fig.  and the points Α,

Β, Γ, ∆, Ε, and Ζ where its sides cross a given straight line,
the proportion () must be satisfied. Therefore if five sides
of another complete quadrangle, as ΠΡΣΤ in Fig. , should
pass through the points Α, Β, Γ, ∆, and Ε, then the sixth side
would pass through Ζ. This is the Quadrangle Theorem.
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Figure . Quadrangle Theorem
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. Wednesday

.. Thales’s Theorem proved by Euclid

Proposition VI. of Euclid’s Elements is that triangles and
parallelograms under the same height are to one another in
the ratio of their bases. Thus, in Fig. ,

A

B C

D E

Figure . Thales’s Theorem

AD :DB :: ADE : DBE,

AE : EC :: ADE : EDC.

}

()

By V. and , the ratios of ADE to DBE and EDC are the
same, just in case these two triangles are equal in the sense of
§. (p. ); symbolically,

ADE : DBE :: ADE : EDC ⇐⇒ DBE = EDC. ()





Finally, by I. and , as discussed in §. (p. ),

DBE = EDC ⇐⇒ DE ‖ BC. ()

Combining (), (), and (), using the transitivity of same-
ness of ratio, we conclude

AD :DB :: AE : EC ⇐⇒ DBE = EDC.

That is Euclid’s proof of Thales’s Theorem, or more precisely
the Proportion Theorem, which is Proposition VI. of the El-

ements, as discusses in §. (p. ). The proof takes place in
a Euclidean plane, in the sense of §. (p. ), but also using
a theory of proportion. We have developed such a theory only
in an affine plane, in the sense of §. (p. ).

.. Proportion in a Euclidean plane

For Euclid, a proportion is a relation of four magnitudes.

Magnitudes come in three kinds: lines, surfaces, or solids (all
bounded). The magnitudes in the proportion are considered
in two pairs, the magnitudes in each pair having a ratio to
one another; and these ratios composing the proportion are
the same. Only magnitudes of the same kind can have a ratio.

In any proportion, we expect to be able to replace a magni-
tude by an equal magnitude in the sense of §. (p. ). We
may then confuse a magnitude with its size—its length, area,
or volume—, understood as the class of magnitudes equal to
the original one.

Given three lengths a, b, and c, we can form the products

ab, abc,

which are respectively
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• the area of a rectangle having dimensions a and b,
• the volume of a rectangular parallelepiped having dimen-

sions a, b, and c.
The order in which dimensions are given is irrelevant. Suppose
we have

ay = bx, cy = dx. ()

Then
bcx = acy = adx. ()

The fifth of Euclid’s Common Notions is, “the whole is greater
than the part.” If bc 6= ad, then we may assume bc < ad, and
thus bc is the area of a part of a surface that has area ad. In
this case, bcx is the volume of a part of a solid having volume
adx; in particular, () fails. Thus from (), and therefore
from (), we conclude

bc = ad. ()

As a consequence, the relation of ratios of segments given by
the rule

AB : CD :: EF :GH

⇐⇒ |AB| · |GH| = |CD| · |EF | ()

is transitive. It now makes some sense to take () for a defini-
tion of proportion of lengths. A convenience of this definition
is that alternation, as in (), is immediate. There remain two
problems, one more serious than the other.

. As observed in §. (p. ), one way to read the propor-
tion in () is as “AB has the same ratio to CD that EF
has to GH”; and as argued in §. (p. ), transitivity of
sameness of ratio ought to be obvious, not needing such
a proof as we have given.
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. Euclid’s proof of Thales’s Theorem uses also ratios of
areas.

... Hilbert’s definition

We can avoid these problems by using the method of Descartes
[, ] and fixing a unit length, so that we can obtain products
of lengths as lengths. However, Descartes assumes Euclid’s
theory of proportion to begin with. Hilbert does not, but
works only in a Euclidean plane. Following Hilbert’s idea [,
pp. –], in Fig. a, we suppose DB has unit length. If the

A B

C

D

E

αα

1

tanα

a

tanα · a

(a)

1 b

a

ab

0

(b) Hilbert’s diagram

Figure . Hilbert’s multiplication

size of angle EDB is α, then by definition

|BE| = tanα.

Thus every length is the tangent of the size of some angle. If
AC ‖ DE, we define

|BC| = tanα · |AB|.
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D

E

c

ac

bc

b(ac)

a(bc)

α

α

β

β

Figure . Associativity and commutativity

Hence also

|EC| = tanα · |AD|.

Hilbert does not mention tangents of angles, but just defines
multiplication using a figure like b.

To prove that this multiplication is associative and commu-
tative, Hartshorne, in Geometry: Euclid and Beyond [, pp.
–], presents the streamlined method found in later edi-
tions of Hilbert [, pp. –] and attributed to Enriques. In
Fig. , using that, “In a circle, the angles in the same segment
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b

ab

c

ac

Figure . Distributivity

are equal to one another” (Elements III.), if

tanα = a, tan β = b,

then AC has the two lengths indicated, so these are the same;
that is,

a(bc) = b(ac). ()

Letting c = 1 gives commutativity; then this with () gives

a(cb) = (ac)b

and thus associativity. It is clear how to add lengths, but see
also §. (p. ). Distributivity of multiplication over addition
follows from Fig. , where

ab+ ac = a(b+ c).

Every product of lengths is now a length. Moreover, with re-
spect to this multiplication, every length has an inverse: in
Fig. b, we can let ab = 1. Thus multiplication admits can-
cellation:

ax = bx =⇒ a = b.
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Finally,
a < b =⇒ ax < bx.

In algebraic terms, lengths are now the positive elements of
an ordered field F. We obtain the whole ordered field F by
selecting points O and U on an infinite straight line that are
the unit distance apart; then the points on the line correspond
to all of the elements of F, with O as 0 and U as 1. We can
now define the ratio AB : CD to be the quotient

|AB|

|CD|
,

in F, of the lengths of AB and CD. This makes
• sameness of ratio transitive;
• alternation, (), an easy theorem;
• () also an easy theorem.

Now we can state the Proportion Theorem, which implies
Thales’s Theorem.

... Euclid’s definition

It remains to prove the Proportion Theorem, and thus Thales’s
Theorem, under Hilbert’s definition of ratios. Meanwhile, let
us note that, for Euclid, the ratio a : b is effectively what we
now call a Dedekind cut, because of its use in Dedekind’s
development of the real numbers []. We can understand a
Dedekind cut as a partition of the positive rational numbers
into two nonempty sets A and B, where every element of A
is less than every element of B. In the cut corresponding to
a : b,

A =

{

x

y
: bx 6 ay

}

, B =

{

x

y
: bx > ay

}

.
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Here x and y are counting numbers. We can replace 6 with
<, and > with >: this moves at most one element from A
to B. We assume that A and B are indeed both nonempty,
when a and b are magnitudes of the same kind: this is the
Archimedean Axiom. In this case, the ordered pair (a, b)
defines the given cut; Dedekind’s innovation was to recognize
that he could define cuts without reference to magnitudes.

.. Thales’s Theorem proved by Hilbert

As Hilbert shows, we can prove the Proportion Theorem, un-
der the definition of ratios as quotients of lengths, without us-
ing the Archimedean Axiom. Given triangles ABC and DEF
that are similar, in the sense that the angles at A and B are
respectively equal to the angles at D and E, and therefore also
the angles at C and F are equal by Euclid’s I., we want to
show

AB :DE :: AC :DF. ()

If the angles at B and E are right angles, then () follows
from our definition of multiplication of lengths. In the general
case, we can arrange the triangles as in Fig. , so that their
corresponding sides are parallel and their incenters coincide at
a point I. Thus AI and BI bisect the angles at A and B, and
therefore CI does the same for the angle at C. Then because
of the right angles,

ar′ = a′r, br′ = b′r, cr′ = c′r,

so that

(a+ b)r′ = ar′ + br′ = a′r + b′r = (a′ + b′)r,
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Figure . Proof of Thales’s Theorem
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and likewise

(a+ c)r′ = (a′ + c′)r.

Therefore
a + b

a′ + b′
=

r

r′
=

a+ c

a′ + c′
,

which yields ().

.. Cross ratio

In Pappus’s Lemma III, straight lines Θ∆ and ΘΗ cut the
straight lines ΑΒ, ΑΓ, and Α∆ as in Fig. . We are going to
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Β
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(a) Pappus’s figure
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b

b
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Γ
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Ε

Ζ

Η

Θ

Κ

Λ

(b) alternative figure

Figure . Lemma III

show

(ΘΕ : ΕΖ)(ΖΗ :ΗΘ) :: (ΘΒ : ΒΓ)(Γ∆ : ∆Θ).
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We complete the diagram by making

ΚΛ ‖ ΑΖ, ΛΜ ‖ ΑΗ.

By Thales,

(ΘΕ : ΕΖ)(ΖΗ :ΗΘ) :: (ΘΛ : ΑΖ)(ΑΖ : ΘΚ) :: ΘΛ : ΘΚ. ()

Since the last ratio is independent of the choice of Η along Α∆,
we are done.

In (), the first product of ratios, written also as

ΘΕ · ΖΗ : ΕΖ ·ΗΘ,

and which we shall denote by

[Θ,Ε,Ζ,Η],

is the cross ratio (çapraz oran) of the ordered quadruple
(Θ,Ε,Ζ,Η). Some permutations of the points do not change
the cross ratio. For example, we can reverse their order:

[Η,Ζ,Ε, Θ] :: ΗΖ · ΕΘ : ΖΕ · ΘΗ

:: ΘΕ · ΖΗ : ΕΖ ·ΗΘ :: [Θ,Ε,Ζ,Η].

Thus, by Lemma III, if four straight lines in a plane intersect
at a point, then the cross ratio of the four points where some
other straight line crosses the lines is always the same; we can
see this using Fig. .

Lemma X is a converse to Lemma III. The hypothesis is
that, in Fig. ,

[Θ,Η,Ζ,Ε] :: [Θ,∆,Γ,Β]. ()
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Figure . Invariance of cross ratio

We shall show that Γ, Α, and Ζ are collinear. Through Θ we
draw a line parallel to ΓΑ, and this line is cut at Λ and Κ by
the extensions of ΕΒ and ∆Η. We let ΛΜ be parallel to ∆Η

and meet the extension of ΕΘ at Μ. We compute

[Θ,∆,Γ,Β] :: ΘΚ : ΘΛ [Lemma III proof]

:: ΘΗ : ΘΜ [Thales]

:: ΘΗ · ΕΖ : ΘΜ · ΕΖ.

By definition,

[Θ,Η,Ζ,Ε] :: ΘΗ · ΖΕ :ΗΖ · ΕΘ.

Our hypothesis () then yields

ΖΗ · ΕΘ = ΘΜ · ΕΖ,

ΕΘ : ΘΜ :: ΕΖ : ΖΗ,

ΕΘ : ΕΜ :: ΕΖ : ΕΗ, [componendo]

ΕΘ : ΕΖ :: ΕΜ : ΕΗ [alternation]

:: ΕΛ : ΕΑ. [Thales]

By the converse of Thales’s Theorem,

ΑΖ ‖ ΛΘ,

and this yields the claim.
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Figure . Lemma X
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. Friday

In Euclid, a bounded straight line (sınırlanmış doğru çizgi)
is called more simply a straight line (doğru çizgi), and more
simply still, a “straight” (doğru). In English, this is usually
called a line segment (doğru parçası), although for Euclid,
and sometimes in English too, a line (çizgi) may be curved.
For example, a circle is a certain kind of line. For us though,
henceforth lines will always be straight and unbounded.

In §. (p. ), we saw how to understand the points of a
line in a Euclidean plane as the elements of a commutative
field. Now we are going to do the same thing in an arbitrary
affine plane, except that the field may not be commutative: it
may be a skew field, usually called today a non-commutative
division ring. To ensure that the field of ratios is commutative,
to the axioms for an affine plane we can add one axiom:

. Pappus’s Lemma VIII, proved in §. (p. ) on the basis
of Book I of the Elements.

The commutative field in this case still need not be ordered.
Here is where we are going:
• Today, after obtaining the field of ratios, we shall inde-

pendently prove the remaining cases of Pappus’s Theo-
rem, stated in §. (p. ), of which Lemma VIII is a
special case.

• Tomorrow we shall look at geometry over fields, possibly
skew.

• The day after that, we shall prove Desargues’s Theorem
in general, in §. (p. ).





.. Arithmetic in an affine plane

... Multiplication

We have seen in §. (p. ) and §. (p. ) that we can define
ratios in an affine plane to meet the following conditions.

. In Fig. a,

b
A

bB

b

D
bC

bF

b E
bG

(a)

b
A

bB

b H

bC

b K

(b)

b
A

bB

b L

b M

bC
b

b

b N

(c)

Figure . Ratios

a) if C is on AB, and E is on AD, but D is not on
AB, then

AC : AB :: AE : AD ⇐⇒ CE ‖ BD;

b) if also F and G lie on AB, then

AC : AB :: AE : AD & AE : AD :: AG : AF

=⇒ AC : AB :: AE : AD.
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. For any ratio AC :AB and any point H , there is a unique
point K such that, as in Fig. b,

AK : AH :: AC : AB.

. For any ratio AC : AB and any points L and M , there
is a unique point N such that, as in Fig. c,

LN : LM :: AC : AB.

Given a ratio r and two points A and B, we can now define

r ·A B = C,

where C lies on AB and

AC : AB :: r.

If s is another ratio, we have defined the product sr; associa-
tivity of the multiplication here gives us

(sr) ·A B = s ·A (r ·A B).

... Addition

With respect to a point A, we can form the sum of two points
B and C by completing the parallelogram, if there is one. That
is, assuming C does not lie on AB, we define

B +A C = D,

where ABDC is a parallelogram as in Fig. . This means

AB ‖ CD, AC ‖ BD.
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Figure . Addition

This definition of the sum is symmetric in B and C. If however
E lies on AB, then, using the point C, which does not lie on
AB, and using the sum B +A C, which is D, we define

E +A B = F,

where, as in Fig.  again,

F = E +C D.

Thus
E +A B = E +C (B +A C).

This definition is independent of the choice of C, by the Prism
Theorem. Indeed, if also G does not lie on AB, and

B +A G = H,

so that, as in Fig. ,

CD ‖ AB ‖ GH, AC ‖ BD, AG ‖ BH,

then
CG ‖ DH.

Likewise, since also CE ‖ DF , we have GE ‖ HF .
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Figure . Commutativity of addition

.... Commutativity

By the symmetry of the definition, as we have noted, addition
of points not collinear with the reference point is commutative.
For points that are collinear with the reference point, the def-
inition of their sum is not symmetric, but commutativity is
equivalent to the case of Pappus’s Theorem called the Parallel
Theorem, and proved for affine planes, in §. (p. ). In Fig.
 now,

B +A C = B +D (D +A C) = B +D E = F,

C +A B = C +D (D +A B) = C +D G,

and therefore

B +A C = C +A B ⇐⇒ DC ‖ GF.

We have the last parallelism by the Parallel Theorem, applied
to the hexagon DBGFEC, since

BF ‖ DE, DB ‖ FE, BG ‖ EC.

.... Associativity

To prove associativity of addition, we have three cases to con-
sider.
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. When A is not collinear with any two of B, C, and D, as
in Fig. , then

b

A

b

B

b
C

bD

b E

b
F

b
G

Figure . Associativity of addition: easy case

B +A C = E, E +A D = F, C +A D = G,

and then

B +A G = F ⇐⇒ AG ‖ BF & GF ‖ AB.

They are parallel, by the Prism Theorem. Indeed,

CG ‖ AD ‖ EF, AC ‖ DG, AE ‖ DF,

and therefore CE ‖ GF ; but also AB ‖ CE, so

AB ‖ GF.

Now we can derive AG ‖ BF similarly. Thus

(B +A C) +A D = B +A (C +A D). ()
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Figure . Associativity of addition: less easy case

. When AB contains C, but not D, then () still holds,
since in Fig. ,

(B +A C) = F, F +A D = K, C +A D = E,

so that

K = B +A E ⇐⇒ AE ‖ BK.

Now apply the Parallel Theorem to ADBKFE.
. Finally, when AB contains both C and D, then, making

use of commutativity, in Fig.  we have

C +A B = G, G+A D = K, C +A D = L,

and

B +A L = K ⇐⇒ EB ‖ MK.

By the Parallel Theorem applied to BFGMLH ,

BH ‖ GM ;

then, applied to KHBEGM , BE ‖ MK.
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Figure . Associativity of addition: hardest case

.... Negatives

Having defined vectors as in §. (p. ), we can define

−→
AB +

−−→
CD =

−→
AE,

where, as in Fig. ,

A

B

C
D

b

F

E

Figure . Addition of vectors

E = B +A F, F = (A+C D)
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By what we have shown, the vectors compose an abelian group
with respect to this addition. In particular, the 0 of the group

is
−→
AA, and

−
−→
AB =

−→
BA.

... Distributivity

By Thales’s Theorem,

r ·A (B +A C) = r ·A B +A r ·A C.

For any additional ratio s, there is a ratio t such that, for all
A and B,

r ·A B + s ·A B = t ·A B.

Then we can define

r + s = t.

We can also define

r ·
−→
AB = r ·A B.

We are not writing out all details of the proofs here. Ratios
now compose a field, possibly a skew field, and the vectors
themselves compose a vector space over this field.

.. A skew field

An example of a skew field is the field H of quaternions,

discovered by Hamilton. We can obtain this field from the
field C of complex numbers as we can obtain C from R.
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... Complex numbers

We define

C =

{(

x y
−y x

)

: (x, y) ∈ R2

}

.

This is a subspace of the space of all 2 × 2 matrices over R.
Using the abbreviations

(

x 0
0 x

)

= x,

(

0 1
−1 0

)

= i,

we have
(

x y
−y x

)

=

(

x 0
0 x

)

+

(

0 y
−y 0

)

= x+ yi.

In particular, (1, i) is a basis of C over R. Moreover, since

i2 = −1,

C is closed under multiplication, and multiplication is commu-
tative on C. Finally,

(x+ yi)(x− yi) = x2 + y2,

which is in R, and therefore C is a field. We define

x+ yi = x− yi.

... Quaternions

By analogy, we define

H =

{(

z w
−w z

)

: (z, w) ∈ C2

}

.
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This is not a subspace of the space of 2×2 matrices over C. It
is however a real subspace. Moreover, using the abbreviations

(

z 0
0 z

)

= z,

(

0 1
−1 0

)

= j,

we have
(

z w
−w z

)

=

(

z 0
0 z

)

+

(

0 w
−w 0

)

= z + wj,

but also

wj = jw, j2 = −1.

Thus H is a sub-ring of the ring of 2× 2 matrices over C, and
moreover, H in turn has the sub-ring

{(

z 0
0 z

)

: z ∈ C

}

,

which is isomorphic to C, and H is both a left and a right

vector-space over this, with basis (1, j) in each case. Also

(z + wj)(z − wj) = zz + wjz − zwj− wjwj = zz + ww,

which is in R, and therefore H is a field, albeit a skew field.
H is also a two-sided real vector space, with basis (1, i, j,k),

where

k = ij.

In analytic geometry, in R2, we define lines by equations

ax+ by = c,
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where not both of a and b are 0. We can do the same in H2,
or else we can use equations

xa + yb = c,

but we cannot do both. For example, the solution sets of

ix+ y = 0, xi+ y = 0

have (0, 0) and (i, 1) in common, but are not identical: (j,−k)
solves the former equation, not the latter; (j,k), the latter,
not the former. We shall continue with these ideas tomorrow.

.. Pappus’s Theorem, intersecting cases

Pappus’s Lemma XI is that, in Fig. a or b (Pappus only
alludes to the latter),

∆Ε · ΖΗ : ΕΖ ·Η∆ :: ΓΒ : ΒΕ.

This is, in the notation for cross ratios of §. (p. ), with a
correction of the ordering of points,

[∆,Ε,Ζ,Η] :: ΓΒ : ΕΒ. ()

By Lemma III, if Α∆ and ΕΓ met at a point Κ, then

[∆,Ε,Ζ,Η] :: [Κ,Ε,Β,Γ] :: (ΕΚ : ΓΚ)(ΓΒ : ΕΒ).

This yields (), if ΕΚ : ΓΚ becomes identity when K is at
infinity. Pappus does not argue this way, but, drawing ΓΘ

parallel to ∆Ε, he has by Thales

ΓΘ : ΖΗ :: ΓΑ : ΑΗ :: Ε∆ : ∆Η,
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Figure . Lemma XI

Ε∆ · ΖΗ = ΓΘ · ∆Η,

Ε∆ · ΖΗ : ∆Η · ΕΖ :: ΓΘ · ∆Η : ∆Η · ΕΖ

:: ΓΘ : ΕΖ

:: ΓΒ : ΕΒ,

which is (). Alternatively, from the proof of Lemma III, we
know

[Ε,Η,∆,Ζ] :: ΕΓ : ΕΒ.

From this we obtain () in modern notation as follows.

[∆,Ε,Ζ,Η] =
∆Ε · ΖΗ

ΕΖ ·Η∆
=

(∆Η+ΗΕ) · ΖΗ

ΕΖ ·Η∆

=
∆Η · ΖΗ+ΗΕ · ΖΗ

ΕΖ ·Η∆
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=
∆Η · (ΖΕ+ ΕΗ) +ΗΕ · ΖΗ

ΕΖ ·Η∆

= 1 +
∆Η · ΕΗ+ΗΕ · ΖΗ

ΕΖ ·Η∆

= 1−
Η∆ · ΕΗ+ ΕΗ · ΖΗ

ΕΖ ·Η∆

= 1−
Ζ∆ · ΕΗ

ΕΖ ·Η∆

= 1− [Ε,Η,∆,Ζ] = 1−
ΕΓ

ΕΒ
=

ΓΒ

ΕΒ
.

Lemma XII is that, in Fig.  and Fig. , where ΑΒ ‖ Γ∆,

b b

b bb

b

b

bb

b

b

Α Β

Γ ∆

Ε

Ζ

Η

Θ
Κ

Λ

Μ

Figure . Lemma XII

the points Η, Μ, and Κ are on a straight line. The proof
considers the parts of the diagram shown in Fig. . Applying
Lemma XI to the first two parts yields

[Ε,Γ,Η, Θ] :: ∆Ζ : ΓΖ :: [Ε,Λ,Κ,∆]

By Lemma X then, ΗΜΚ is straight.
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Figure . Lemma XII, alternative figures
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Figure . Steps of Lemma XII
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Figure . Lemma XIII: Pappus’s figure

Lemma XIII is the same, except that ΑΒ and Γ∆ meet at
a point Ν, as in Fig.  and Fig. , so that Lemma III is used
in place of Lemma XI. This gives us the intersecting cases of
Pappus’s Theorem.

.. Pappus’s Theorem by projection

The mixed cases of Pappus’s Theorem are as in Fig. , where
• the hexagon is ΒΓΗΕ∆Ζ,
• ΒΓ and Ε∆ meet at Κ,
• ΓΗ and ∆Ζ meet at Λ.

The theorem is,

ΒΖ ‖ ΗΕ =⇒ ΗΕ ‖ ΚΛ.

We can prove this, and all other cases of Pappus’s Theorem,
except for the Parallel Theorem, using only Lemma VIII and
projection.

If a diagram is drawn on a transparent notebook cover, and
the cover is raised at an angle to the first page, and a shadow of
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Figure . Lemma XIII: alternative figure
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(b) Parallel bounding lines

Figure . Pappus’s Theorem: mixed cases
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the diagram is cast on that page, all straight lines will remain
straight, but some parallel lines will cease to be so, and some
intersecting lines will become parallel.

For example, adding to Fig. a, we draw ΜΝ through Α,
parallel to ΒΖ, and we conceive of the diagram as lying in a
vertical plane in Fig.  where ΜΝ is horizontal. We let Ι

lie not on ΜΝ, but in a horizontal plane that contains ΜΝ,
and we project the diagram from Ι onto another horizontal
plane, so that Β becomes Β′, and Γ becomes Γ′, and so on.
All straight lines, such as ΒΖ and ΗΕ, that were parallel to
ΜΝ remain parallel to one another in the new diagram. Lines
such as ΒΓ and ∆Ε that were parallel to one another, but not
to ΜΝ, now intersect; but their intersection points all lie on
a single line, ΚΛ, which represents the line at infinity of the
old diagram. Lines such as ΑΒ and ΑΖ that intersected on
ΜΝ become parallel in the new diagram. Thus we obtain the
mixed cases of Pappus’s Theorem with parallel bounding lines
(Fig. b). Similarly,

• if ΜΝ is parallel to ΒΖ, but does not contain Α, we obtain
the mixed case with intersecting bounding lines (Fig.
a);

• if ΜΝ is not parallel to any other lines of the figure, and
– does not contain Α, we obtain Lemma XIII (Fig.

);
– but does contain Α, we obtain Lemma XII (Fig. ).

Tomorrow we shall obtain a third proof of Pappus’s Theorem
by coordinatizing a projective plane.
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Figure . Mixed case by projection
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. Saturday

.. Cartesian coordinates

In §. (p. ), we have obtained a field K of ratios in an
affine plane. Given a triangle ABC in such a plane, we can
consider the plane as a left vector space over K with neutral
point C and basis (A,B). In particular, for any point M of the
plane, there is a unique ordered pair (s, t) of ratios, meaning
(s, t) ∈ K2, such that

M = s ·C A+C t ·C B,

or equivalently

−−→
CM = s ·

−→
CA+ t ·

−−→
CB. ()

Here (s, t) is the ordered pair of Cartesian coordinates of
M with respect to ABC. Conversely, every element of K2

corresponds to a point of the plane in this way.

.. Barycentric coordinates

Since
−→
CC is the neutral or zero vector, we can rewrite () as

−−→
CM = s ·

−→
CA+ t ·

−−→
CB + (1− s− t) ·

−→
CC. ()

The point of doing this is that now the coefficients on the right
add up to 1. Since, for all points X and D,

−−→
CX =

−−→
CD +

−−→
DX,





substitution into () yields

−−→
DM = s ·

−−→
DA+ t ·

−−→
DB + (1− s− t) ·

−−→
DC,

or equivalently

M = s ·D A +D t ·D B +D (1− s− t) ·D C.

Since D is arbitrary, we may write simply

M = sA+ tB + (1− s− t)C.

Conversely, if p, q, and r are three ratios (elements of K) for
which

p + q + r = 1, ()

then the linear combination

pA + qB + rC

is unambiguous, defining the point

p ·C A+C q ·C B.

We may write the same point as

(p : q : r)

when we consider ABC as fixed. But now we can allow

(p : q : r) = (pt : qt : rt) ()

for any nonzero t in K. It will be important that the multiplier
t is on the right. Given arbitrary ratios p, q, and r for which
the equation

p+ q + r = 0 ()
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fails, we have

(p : q : r) = ptA+ qtB + rtC = pt ·C A+ qt ·C B, ()

where
t = (p+ q + r)−1.

The point (p : q : r) has the barycentric coordinates p,
q, and r, but each must be considered together with the sum
p + q + r. The idea is that the point is the center of gravity
(the barycenter, from βαρύς, -εῖα, -ύ “heavy”) of the system
with weights p, q, and r at A, B, and C respectively.

.. Ceva’s Theorem

Given (p, q, r) satisfying (), if we define

D = (q + r)−1qB + (q + r)−1rC = (q + r)−1q ·C B, ()

then D is a point on BC, and since t in () is 1 we have

(p : q : r) = pA+ (q + r)D.

Thus (p : q : r) is a point on AD. Similarly, when we define

E = (p+ r)−1pA+ (p+ r)−1rC,

F = (p+ q)−1pA+ (p+ q)−1qC,

these points are on AC and AB respectively, so (p : q : r) is
on BE and CF . We have for example

BD :DC :: (BD :BC)(BC :DC),

which from () is

(q + r)−1qr−1(q + r).
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Figure . Ceva’s Theorem

This ratio is just qr−1, if K is commutative, and in this case
we have Ceva’s Theorem: in Fig. , the lines AD, BE, and
CF have a common point if and only if

BD :DC & CE : EA & AF : FB = 1.

.. Projective coordinates

We have given geometric meaning to (p : q : r) whenever the
equation () fails. We can still understand (p : q : r) to be
the equivalence class defined by (), even when () holds.
In this case, we shall give geometric meaning to (p : q : r), if
at least one of p, q, and r is not 0.

For every straight line in the plane, there are ratios a, b,
and c, where at least one of a and b is not 0, such that the
straight line consists of the points such that, if their Cartesian
coordinates are (s, t), then

as+ bt + c = 0.

Here it will be important that the coefficients are on the left.
If the same point (s, t) has barycentric coordinates (p : q : r),
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where () holds, then (s, t) = (p, q), and so

0 = ap+ bq + c(p+ q + r)

= (a+ c)p+ (b+ c)q + cr.

Thus the same line is given by

ax+ by + c = 0

in Cartesian coordinates and

(a+ c)x+ (b+ c)y + cz = 0 ()

in barycentric coordinates. The straight lines parallel to this
one are obtained by changing c alone. Since at least one of
a and b is not 0, the coefficients in () are not all the same.
We obtain all parallel lines by adding the same ratio to each
coefficient.

Relabelling, we now have that every straight line is given by
an equation

ax+ by + cz = 0 ()

in barycentric coordinates, where one of the coefficients a, b,
and c is different from the others. As (p : q : r) and (pt : qt : rt)
are the same point if t 6= 0, so then () and

tax+ tby + tcz = 0 ()

define the same line. If (p : q : r) satisfies () and therefore
(), and also () holds, although (p, q, r) 6= (0, 0, 0), then
(p : q : r) satisfies the equation of every straight line parallel
to the one defined by (), and no other straight line. Thus we
can understand (p : q : r) as the point at infinity of the straight
lines parallel to (). The line at infinity is then defined by

x+ y + z = 0.
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A projective plane now consists of points (p : q : r), where
(p, q, r) 6= (0, 0, 0). The expression (p : q : r) consists of pro-

jective coordinates for the point. The definition in §. (p.
) of a projective plane is indeed satisfied by such points and
the lines defined by the equations (). For, given two such
equations, the coefficients in one not being the same multiples
of the coefficients of the other, by Gaussian elimination we
can find a nonzero solution, unique up to scaling. (If K is not
commuting, we cannot use Cramer’s Rule.) In the same way,
two distinct points determine uniquely, again up to scaling,
the coefficients in the equation of the line that contains them.
Finally, no three of the points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)
and (1 : 1 : 1) are collinear.

.. Change of coordinates

Any triangle ABC determines a system of barycentric coordi-
nates for the points of the affine plane of the triangle, hence
a system of projective coordinates for the projective plane.
However, suppose a fourth point D in this plane does not lie
on any of the three sides of ABC. Then D has projective
coordinates (µ : ν : ρ), with µνρ 6= 0. There is now a bijection

(x : y : z) 7→ (µ−1x : ν−1y : ρ−1z)

from the set of points of the projective plane to itself. This
bijection preserves linearity; in particular, it takes the line
given by () to the line given by

aµx+ bνy + cρz = 0.

The bijection fixes A, B, and C, which are (1 : 0 : 0), (0 : 1 : 0),
and (0 : 0 : 1) respectively, but takes D to (1 : 1 : 1), the
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barycenter of ABC. In particular, the points that used to be
on the line at infinity, defined by (), are sent to the line
given by

µx+ νy + ρz = 0, ()

while of course the points now at infinity satisfy ().
If µ, ν, and ρ are not all equal to one another, that is, D

is not the barycenter of ABC, then, as noted in the previous
section, there is a unique point satisfying both () and ().

.. Pappus’s Theorem, third proof

We show that Pappus’s Hexagon Theorem holds a projective
plane if and only if the field K of ratios is commutative. For
convenience, let us write

Z(ax+ by + cz)

for the line given by ().
We have a hexagon ABCDEF , vertices lying alternately on

two lines, opposite sides intersecting at G, H , and K respec-
tively, as in Fig. . The three lines through A pass respec-
tively through B, E, and K. Assuming these last three points
are not collinear, we may let

A = (1 : 1 : 1), B = (1 : 0 : 0),

E = (0 : 1 : 0), K = (0 : 0 : 1).

In particular, K is the barycenter of ABC. For the lines
through A we have equations as follows:

AB = Z(y − z), AE = Z(x− z), AK = Z(x− y).
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Figure . Hexagon Theorem in projective coordinates

For some p, q, and r then,

G = (p : 1 : 1), C = (1 : q : 1), F = (1 : 1 : r).

Consequently,

BF = Z(z − ry), EG = Z(x− pz), KC = Z(y − qx).

Since these three lines have a common point, namely D, this
is each of

(1 : q : rq), (pr : 1 : r), (p : qp : 1).

Hence for example

(1, q, rq) = (qpr, q, qr),
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and therefore
1 = qpr. ()

In the same way, the products prq and rqp are 1. But we have
also

BC = Z(y − qz), EF = Z(z − rx), KG = Z(x− py).

The intersection of the first two of these is H , so

H = (1 : qr : r).

This lies on KG if and only if pqr = 1. Comparison with ()
yields the claim.

 Geometries



. Sunday, September , 

.. Projective plane

Given an affine plane, we have obtained a field K of ratios,
possibly not commutative. Using this, we have extended the
affine plane to a projective plane. This plane has points and
lines.

... Points

We have obtained the set

{

(x : y : z) : (x, y, z) ∈ K3 r {(0, 0, 0)}
}

of points of the projective plane, where

(p : q : r) =
{

(pt, qt, rt) : t ∈ Kr {0}
}

.

Thus the set of points of the projective plane is the quotient
of K3 r {(0, 0, 0)} by the equivalence relation L given by

(p, q, r) R (p′, q′, r′) ⇐⇒ (p : q : r) = (p′ : q′ : r′).

... Lines

We have shown that the set of lines in the projective plane is

{

Z(ax+ by + cz) : (a, b, c) ∈ K3 r {(0, 0, 0}
}

,





whose elements are well-defined by the rule

Z(ax+ by + cz) = {(p : q : r) : ap + bq + cr = 0}.

There is an equivalence relation L on K3r{(0, 0, 0)} such that

(a, b, c) L (a′, b′, c′)

⇐⇒ Z(ax+ by + cz) = Z(a′x+ b′y + c′z).

The equivalence class of (a, b, c) with respect to L is
{

(ta, tb, tc) : t ∈ Kr {0}
}

.

... Duality

There is no particular reason not to let Z(ax+ by+ cz) simply
be the L-class of (a, b, c). There is then no reason why points
should be R-classes, and lines, L-classes, and not the other
way around. It just depends on the side we want to write
coefficients on. We have chosen the left in the equation ()
for a line.

The field K gives us the sets

M3

1
(K), M1

3
(K),

of 3× 1 matrices, or column vectors, and of 1× 3 matrices, or
row vectors, respectively. The sets are isomorphic an abelian
groups with respect to addition. If we write column vectors as
x, we can write row vectors as x⊤. We are interested in three
matrix multiplications.

• With respect to
(x, t) 7→ xt

from M3

1
(K) × K to M3

1
(K), the latter is a right vector

space over K.
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• With respect to
(t,x⊤) 7→ tx⊤

from K × M1

3
(K) to M3

1
(K), the latter is a left vector

space over K.
• Using

(x⊤,y) 7→ x⊤y

from M1

3
(K) ×M3

1
(K) to K, we shall define the relation

of a line to a point, whereby the point is on the line, or
the line contains or passes through the point.

These multiplications are associative, in the sense that

(tx⊤)y = t(x⊤y), (x⊤y)t = x⊤(yt).

We have also
tx⊤ = (xt)⊤.

For all a and b, the condition

a⊤b = 0

is equivalent to either of the following:
(i) for all nonzero t in K,

a⊤(bt) = 0;

(ii) for all nonzero t in K,

(ta⊤)b = 0.

We can understand the relations R and L defined above as
being on M3

1
(K)r {0} and M1

3
(K)r {0⊤} respectively. Thus,

if a and b are nonzero, the two conditions

a R b, a⊤ L b⊤
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are equivalent to one another and to the existence of a nonzero
t such that

at = b.

Therefore, for all nonzero a, b, and c,

a⊤b = 0 & b R c =⇒ a⊤c = 0,

and equivalently

b⊤a = 0 & b⊤ L c⊤ =⇒ c⊤a = 0.

If the R-class of a is [a], and the L-class of b⊤ is [b⊤], we can
understand [a] as a point, and [b⊤] as a line. The point is on
the line if and only if

b⊤a = 0.

... Plane

Given a field K, we can denote by

P2(K)

the projective plane that we have just described. The points
and lines compose the quotients

(M3

1
(K)r {0})/R, (M1

3
(K)r {0⊤})/L

respectively. Typical elements are respectively

{

at : t ∈ Kr {0}
}

,
{

ta⊤ : t ∈ Kr {0}
}

,

denoted by

[a], [a⊤].

 Geometries



We already conceive of K3 as consisting of points in a three-
dimensional space. Then M3

1
(K) and M1

3
(K) are somehow the

same space, and each of [a] and [a⊤] consists of the nonzero
points on a line that passes through zero and the same nonzero
point. However, when K is non-commutative, the lines may
be different, as we noted at the end of §. (p. ). Returning
to our earlier notation, we have the one-to-one correspondence

(p : q : r) ! Z(p∗x+ q∗y + r∗z)

between (M3

1
(K)r {0})/R and (M1

3
(K)r {0⊤})/L, where

t∗ =

{

t−1, if t 6= 0,

0, if t = 0.

.. Fano Plane

For the simplest example of a projective plane, we may let K
be the two-element field F2, thus obtaining the Fano Plane.

The four points of F2
2 in barycentric coordinates are

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1).

There are three points at infinity in P2(K):

(1 : 1 : 0), (1 : 0 : 1), (0 : 1 : 1).

If we call these A, B, C, D, E, F , and G respectively, then
the seven lines are as follows:

Z(x) = BCG, Z(y − z) = ADG,

Z(y) = ACF, Z(x− z) = BDF,

Z(z) = ABE, Z(x− y) = CDE,
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and finally,
Z(x+ y + z) = EFG,

the line at infinity. All of this can be depicted as in Fig. .

(1 : 1 : 1)

(1 : 0 : 0) (0 : 1 : 0)

(0 : 0 : 1)

(0 : 1 : 1)(1 : 0 : 1)

(1 : 1 : 0)

Figure . Fano Plane

.. Desargues’s Theorem proved

... In the projective plane over a field

We now prove Desargues’s Theorem in P2(K) for arbitrary K.
First we prove it in K3. We suppose triangles ABC and DEF
lie in two different planes, and

• AB and DE intersect at H ,
• BC and EF intersect at K,
• CA and FD intersect at L.

In particular, the two lines in each of the three respective pairs
are not identical. There are two conclusions.
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. The two lines in each of the three respective pairs lie in
a common plane, and the three resulting planes have a
common point G (possibly at infinity), which is where
AD, BE, and CF intersect.

. Each of H , K, and L lies in both the plane of ABC and
the plane of DEF , and therefore in the intersection of
those planes, which is a straight line.

If the planes of ABC and DEF are parallel, then they meet
at their common line at infinity.

If now ABC and DEF lie in the same plane, and AD, BE,
and CF intersect at G, the triangles are projections of trian-
gles in different planes meeting the conditions above. Thus
Desargues’s Theorem holds in P2(K).

... In a Pappian plane

If K is not commutative, then Pappus’s Theorem does not hold
in P2(K). However, in a Pappian plane, as defined in §. (p.
), we can prove Desargues’s Theorem as follows. There will
be two cases. First we assume

• C is not on DE,
• D is not on BC,

as in Fig. . This is the general case proved by Hessenberg
in , in a paper [] using diagrams.

. Let BC and DE intersect at M .
. Because ABC and DEF are proper triangles, not lines,

M cannot be A or F .
. Because BC and EF are not the same line, so that BC

does not contain G, also M cannot be G.
. Because of our additional assumptions for the present

case, M cannot be any of the points B, C, D, or E.
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Figure . Hessenberg’s proof

. Thus the vertices of the hexagon ABGMDC are dis-
tinct.

. Let the intersection of
• DC and BE (which is BG) be N ,
• CA and GM be P .

. Since the vertices of hexagon ABGMDC lie alternately
on two distinct straight lines, by Pappus’s Theorem the
intersections H , N , and P of the pairs of opposite sides
are collinear.

. Let DF and GM intersect at Q.
. Since the vertices of hexagon CDFEGM are distinct
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and lie alternately on two distinct straight lines, the in-
tersections K, N , and Q are collinear.

. Since CD does not contain B, it does not contain M
either.

. Since AD is not identical with CF , the point P , which
lies on AC, can lie also on CD only by being the point
C; but then MC would contain both B and G, so BC
would contain G, and it doesn’t. Thus CD does not
contain P .

. Likewise, Q can lie on CD only by being D, but then
DE would contain G; so CD does not contain Q.

. Now Pappus applies to the hexagon CMDQNP , and
the points H , K, and L are collinear.

In the other case, as in Fig. ,

• C lies on DE,
• B lies on DF ,
• A lies on EF .

By applying Pappus’s Theorem in turn to hexagons GCELBA,
GAELBC, and SRDCAF , we have that FHS, DKR and fi-
nally LKH are straight. This proof is by Cronheim, in a 
paper [] that uses no diagrams.

.. Duality

The dual of a statement about a projective plane is obtained
by interchanging points and lines. Thus the dual of Pappus’s
Theorem is that if the sides of a hexagon alternately contain
two points, then the straight lines containing pairs of opposite
vertices have a common point. So, in the hexagon ABCDEF ,
let AB, CD, and EF intersect at G, and let BC, DE, and
FA intersect at H , as in Fig. . If the diagonals AD and
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Figure . Cronheim’s proof

BE meet at K, then the diagonal CF also passes through
K. For we can apply Pappus’s Theorem itself to the hexagon
ADGEBH , since AGB and DEH are straight. Since AD and
EB intersect at K, and DG and BH at C, and GE and HA
at F , it follows that KCF is straight.

It now follows that the dual of Desargues’s Theorem is true
in a Pappian plane. But the dual is precisely the converse.
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D
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Figure . Dual of Pappus’s Theorem

.. Quadrangle Theorem proved by

Desargues

We now use the converse of Desargues’s Theorem twice, and
the original Theorem once, to prove the Quadrangle Theorem.
We shall show that, in Fig. , the line PQ passes through F .

. By the converse of Desargues’s Theorem applied to tri-
angles GHL and MNQ, since

• GH and MN meet at A,
• GL and MQ meet at D, and
• HL and NQ meet at E,

and ADE is straight, it follows that GM , HN , and LQ
intersect at a common point R.

. Likewise, in triangles GHK and MNP , since
• GH and MN meet at A,
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Figure . Quadrangle Theorem from Desargues
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• GK and MP meet at B, and
• HK and NP meet at C,

and ABC is straight, it follows that KP passes through
the intersection point of GM and HN , which is R.

. Since now HN , KP , and LQ intersect at R, the respec-
tive sides of triangles HKL and NPQ intersect along a
straight line, by Desargues’s Theorem. But

• HK and NP meet at C,
• HL and NQ meet at E, and
• KL and CE meet at F ;

therefore PQ must also meet CE at F .
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A. Thales himself

There is little evidence that Thales knew, in full generality,
the theorem named for him. I learned this while preparing for
the Thales Meeting held on Saturday, September , , in
Thales’s home town of Miletus []. See also my “Thales and
the Nine-point Conic” []. Thales supposedly measured the
heights of the Pyramids by considering their shadows; but he
may have done this just when his own shadow was as long as a
person is tall, since in this case the height of the pyramid would
be the same as the length of its own shadow (as measured from
the center of the base).

Thales may have recognized that two triangles are congruent
if they have two angles equal respectively to two angles and
the common sides equal. (This is the so-called Angle-Side-
Angle or ASA Theorem.) According to the commentary by
Proclus on Book I of Euclid’s Elements [], Thales also knew
the following three theorems found in that book:

) the diameter of a circle divides the circle into two equal
parts;

) vertical angles formed by intersecting straight lines are
equal to one another;

) the base angles of an isosceles triangle are equal to one
another.

According to Diogenes Laërtius [, i.–], Thales also knew
that

) the angle inscribed in a semicircle is right.

Dates of activity for the persons we have named are roughly as





in Fig. . All four of the listed theorems can be understood

 b.c.e. Thales
 Euclid
 c.e. Diogenes Laërtius
 Pappus
 Proclus

Figure . Dates of some ancient writers and thinkers

to be true by symmetry. For example, the equation

∠ABC = ∠CBA

basically establishes the equality of vertical angles. Also, sup-
pose we complete the diagram of an angle inscribed in a semi-
circle as in Fig. . Here the quadrilateral BCDE has four

A
B

C

D

E

Figure . Angle in a semicircle

equal angles. If it follows that those angles must be right, then
the theorem of the semicircle is proved.

A. Thales himself 



Those four equal angles are right in Euclidean geometry.
Here, by Euclid’s fifth postulate, if the angles at DCB and
CBE are together less then two right angles, then CD and
BE must intersect when extended. In that case, for the same
reason, they intersect when extended in the other direction;
but this would be absurd.
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B. Origins

The origin of this course is my interest in the origins of mathe-
matics. This interest goes back at least to a tenth-grade geom-
etry class in –. We students were taught to write proofs
in the two-column, statement–reason format. I understood the
purpose of the class, not as learning geometry as such, but as
learning proof. That was good, but I did not much care for our
textbook, by Weeks and Adkins. Their example of congruence
was a machine in a photograph, stamping out foil trays for TV
dinners [, p. ].

Weeks and Adkins confuse equality with sameness, as I men-
tion in “On Commensurability and Symmetry” []. A geomet-
rical equation like AB = CD means not that the segments AB
and CD are the same, but that their lengths are the same.
Length is an abstraction from a segment, as ratio is an ab-
straction from two segments. This is why Euclid uses “equal”
to describe two equal segments, but “same” to describe the
ratios of segments in a proportion. One can maintain the dis-
tinction symbolically by writing a proportion as A :B :: C :D,
rather than as A/B = C/D. I noticed the distinction many
years after high school; but even in tenth grade I thought we
should read Euclid. I went on to read him at St John’s College
[], along with Homer, Aeschylus, and Plato, and Apollonius,
Ptolemy, Newton, and Lobachevski.

In , the first course I taught at the Nesin Mathematics
Village was an opportunity to review some of that reading.
Called “Conic Sections à la Apollonius of Perga,” my course





reviewed the propositions of Book I of the Conics [, ] that
pertained to the parabola. I shall say more about this later;
for now, while the course was great for me, I don’t think it
meant much for the students who sat and watched me at the
board. One has to engage with the mathematics for oneself,
especially when it is something so unusual as Apollonius. A
good way to do this is to have to go to the board and present
the mathematics, as at St John’s.

In  at Metu in Ankara, I taught the course called His-
tory of Mathematical Concepts in the manner of St John’s.
We studied Euclid, Apollonius, and (briefly) Archimedes in
the first semester; Al-Khwārizmı̄, Thābit ibn Qurra, Omar
Khayyám, Cardano, Viète, Descartes, and Newton in the sec-
ond [].

At Metu I loved the content of the course called Funda-
mentals of Mathematics, required of all first-year students. I
even wrote a text for the course, a rigorous text that might
overwhelm students, but whose contents I thought at least
teachers should know. In the end I didn’t think it was right
to try to teach equivalence relations and proofs to beginning
students, independently from a course of traditional mathe-
matics. When I oved to Mimar Sinan in , my colleagues
and I were able to develop a course in which first-year stu-
dents read and presented the proofs that taught mathematics
to practically all mathematicians until the twentieth century.
Among other things, students would learn the non-trivial (be-
cause non-identical) equivalence relation of congruence. I did
not actually recognize this opportunity until I had seen the
way students tended to confuse equality of line segments with
sameness.

Our first-semester Euclid course is followed by an analytic
geometry course. Pondering the transition from the one course
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to the other led to some of the ideas about ratio and proportion
that are worked out in the present course. My study of Pap-
pus’s Theorem arose in this context, and I was disappointed
to find that the Wikipedia article called “Pappus’s Hexagon
Theorem” did not provide a precise reference to its namesake.
I rectified this condition on May , , when I added to
the article a section called “Origins,” giving Pappus’s proof.

In order to track down that proof, I had relied on Heath, who
in A History of Greek Mathematics summarizes most of Pap-
pus’s lemmas for Euclid’s lost Porisms [, p. –]. In this
summary, Heath may give the serial numbers of the lemmas
as such: these are the numbers given here as Roman numerals.
Heath always gives the numbers of the lemmas as propositions
within Book VII of Pappus’s Collection, according to the enu-
meration of Hultsch []. Apparently this enumeration was
made originally in the th century by Commandino in his
Latin translation [, pp. –, ].

According to Heath, Pappus’s Lemmas XII, XIII, XV, and
XVII for the Porisms, or Propositions , , , and 
of Book VII, establish the Hexagon Theorem. The latter two
propositions can be considered as converses of the former two,
which consider the hexagon lying respectively between parallel
and intersecting straight lines.

In Mathematical Thought from Ancient to Modern Times,

Searching for Commandino’s name in Jones’s book reveals an inter-
esting tidbit on page : Book III of the Collection is addressed to an
otherwise-unknown teacher of mathematics called Pandrosion. She must
be a woman, since she is given the feminine form of the adjective κράτιστος,

-η, -ον (“most excellent”); but “in Commandino’s Latin translation her
name vanishes, leaving the absurdity of the polite epithet κρατίστη being
treated as a name, ‘Cratiste’; while for no good reason Hultsch alters the
text to make the name masculine.”

B. Origins 



Kline cites only Proposition  as giving Pappus’s Theorem
[, p. ]. This proposition, Lemma XIII, follows from Lem-
mas III and X, as XII follows from XI and X. For Pappus’s
Theorem in the most general sense, one should cite also Propo-
sition , Lemma VIII, which is the case where two pairs of
opposite sides of the hexagon are parallel; the conclusion is
then that the third pair are also parallel. Heath’s summary
does not seem to mention this lemma at all. The omission
must be a simple oversight. For Hilbert, the lemma is Pascal’s
Theorem; he never mentions Pappus [].

In the catalogue of my home department at Mimar Sinan,
there is an elective course called Geometries, meeting two
hours a week. I offered it in the fall of ; it had last been
taught in the fall of . For use in the first half of the course,
from Hultsch’s text [] I translated the first  of Pappus’s 
lemmas for Euclid’s Porisms []; in the second half, we used
the existing English translation of Lobachevski []. I was able
to go over the same material in the following summer at the
Nesin Mathematics Village in Şirince.

I had not thought there was an English version of the Pap-
pus; but at the end of my work, I found Jones’s. This helped
me to parse a few confusing words. What I found first, on
Library Genesis, was the first volume of Jones’s work [];
Professor Jones himself supplied me with Volume II, the one
with the commentary and diagrams [].

Book VII of Pappus’s Collection is an account of the so-
called Treasury of Analysis (ἀναλυόμενος τόπος). This Trea-

sury consisted of works by Euclid, Apollonius, Aristaeus, and
Eratosthenes, most of them now lost. As a reminder of the
wealth of knowledge that is no longer ours, I ultimately wrote
out, on the back of my Pappus translation, a table of the
contents of the Treasury. Pappus’s list of the contents is in-
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cluded by Thomas in his Selections Illustrating the History

of Greek Mathematics in the Loeb series [, pp. –].
Thomas’s anthology includes more selections from Pappus’s
Collection, but none involving the Hexagon Theorem. He does
provide Proposition  of Book VII, that is, Lemma IV for
the Porisms of Euclid, the lemma that I am calling the Quad-
rangle Theorem.

B. Origins 



C. Involutions

Pappus’s Lemma IV is that if the points ABCC ′B′A′ in Fig.
 satisfy the proportion

A B C C ′ B′

O

D

E
F

A′

Figure . Lemma IV (Quadrangle Theorem)

(AB :BC)(CA′ : A′A) :: (A′B′ :B′C ′)(C ′A : AA′), ()

then EFA′ is straight. Eliminating AA′, Chasles [, p. ]
rewrites () in the form

BC · C ′A · A′B′ = AB · B′C ′ · CA′.

We can write this as

BC · C ′A : AB · C ′B′ :: CA′ : B′A′,





which makes it easier to see that, when ABCC ′B′ are given,
then some unique A′ exists so as to satisfy (). As A′ varies,
the ratio CA′ : B′A′ takes on all possible values but unity. If
BC · C ′A = AB · C ′B′, that is,

AB :BC :: C ′A : C ′B′,

then EF ‖ AB′ by Lemma I. Otherwise, by Lemma IV, EF
must pass through the A′ that satisfies (). Thus the converse
of the lemma holds as well. We might speculate whether this
converse was one of Euclid’s original porisms. Chasles seems
to think it was.

Thomas observes [, pp. –],

[The converse of Lemma IV] is one of the ways of expressing
the proposition enunciated by Desargues: The three pairs

of opposite sides of a complete quadrilateral are cut by any

transversal in three pairs of conjugate points of an involution.

Following Coxeter, I would call the “complete quadrilateral”
here a complete quadrangle, as in Fig.  (p. ). The propo-
sition to which Thomas refers is apparently the Involution

Theorem, which Desargues proves in his Rough Draft of an

Essay on the results of taking plane sections of a cone [, p.
].

One way to understand the Involution Theorem is to observe
that, in Fig. , if the points BCC ′B′ are conceived of as fixed,
then A determines A′. Moreover, A′ determines A in the same
way, as in Fig. . Thus we have an operation that transposes

A and A′, and so it is an involution of the straight line BB′.
Desargues proceeds towards the Involution Theorem by first

observing that if seven points OABCC ′B′A′ are arranged, as
in Fig. , on a straight line so that

C. Involutions 



A
B

C C ′ B′

O

D

E
F

A′

D′

E ′

F ′

Figure . Involution

OA ·OA′ = OB · OB′ = OC · OC ′, ()

then, without reference to O, we have [, p. ]

CB′ · C ′B′ :BC · BC ′ :: AB′ ·B′A′ : AB · BA′. ()

To prove this, by second equation in (), we have

OB′ :OC ′ :: OC :OB, ()

so by subtracting the terms of the first ratio from the terms
of the second, we obtain

OB′ :OC ′ :: CB′ :BC ′. ()
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b b b b b bbc bc

O A B C C ′ B′ A′

Figure . Points in involution

Similarly, after alternating (), we obtain

OC ′ :OB :: OB′ :OC,

OC ′ :OB :: C ′B′ :BC.

Composing the latter with () yields

OB′ :OB :: CB′ · C ′B′ :BC ·BC ′. ()

Replacing C with A and C ′ with A′ in the second equation of
() yields the first equation. Hence we can do the same in
(), obtaining

OB′ : OB :: AB′ · B′A′ : AB · BA′.

Eliminating the common ratio from the last two proportions
yields (). For meeting this condition, the three pairs AA′,
BB′ and CC ′ of points are said to be in involution, by De-
sargues’s definition.

Now suppose instead that the pairs AA′, BB′ and CC ′ con-
sist of the points where a transversal cuts the pairs of opposite
sides of a complete quadrangle, as in Thomas’s description and
as in Fig. . Then the converse of Pappus’s Lemma IV, ex-
pressed in (), gives us now

AA′ · BC : AB · CA′ :: AA′ · C ′B′ : AC ′ · B′A′. ()

This proportion is equivalent to (). However, the best way
to show this may not be obvious. One approach is to introduce

C. Involutions 



the cross ratio, as we did in §. (p. ), though apparently
Desargues does not do this [, p. ]. Despite the misgivings
expressed on page , we turn to modern notation for ratios.
If ABCD are points on a straight line, we let

AB · CD

AD · CB
= [A,B,C,D] ()

by definition. Note the pattern of repeated letters on the left.
We could use a different pattern; we just have to be consistent.
We take line segments to be directed, so that CB = −BC.
Then () is equivalent to

[A,A′, C, B] = [A,A′, B′, C ′], ()

while, since () is, in modern notation,

CB′ · C ′B′

BC · BC ′
=

AB′ · B′A′

AB · BA′
,

we obtain from this

CB′ · AB

BC · AB′
=

BC ′ · B′A′

C ′B′ · BA′
,

that is,
[C,B′, A, B] = [B,C ′, B′, A′]. ()

But (), obtained from Pappus, must still hold if we permute
the pairs AA′, BB′, and CC ′. Sending each pair to the next
(and the last to the first), we obtain from () the equivalent
equation

[B,B′, A, C] = [B,B′, C ′, A′]. ()

We shall have that this is equivalent to (), once we under-
stand how cross ratios are affected by permutations of their
entries.
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The cross ratios that can be formed from ABCD are per-
muted transitively by a group of order 24. Then there are at
most 6 different cross-ratios, since

[C,D,A,B] = [A,B,C,D],

[B,A,D,C] = [A,B,C,D].

Moreover, from () we can read off

[A,D,C,B] =
1

[A,B,C,D]
,

while

[A,C,B,D] =
AC · BD

AD ·BC

=
(AB +BC) · (BC + CD)

AD · BC

=
AC · BC +BC · CD

AD ·BC
− [A,B,C,D]

= 1− [A,B,C,D].

The involutions x 7→ 1/x and x 7→ 1 − x of the set of ratios
generate a group of order 6. (Here we either exclude the ratios
0 and 1, or allow them along with ∞.) Now we have accounted
for all permutations of points. We have

[B,B′, A, C] = [B,B′, C ′, A′]

⇐⇒ [B,A,B′, C] = [B,C ′, B′, A′]

⇐⇒ [A,B,C,B′] = [B,C ′, B′, A′]

⇐⇒ [C,B′, A, B] = [B,C ′, B′, A′],

that is, () and () are equivalent, as desired.

C. Involutions 



A B

O

A′

D

B′

H

G
b

K

B

O
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D

B′

H
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b

A

K

B

O

A′

D

B′

H

b

Figure . Involution
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The involution of the straight line BB′ in Fig.  that trans-
poses A and A′ will transpose B and B′, and also C and C ′.
Following Coxeter [, ., p. ], we obtain this transposi-
tion as in Fig. , as a composition of three projections of one
straight line onto another. In Coxeter’s notation [, p. ],
the projections are

ABB′A′ D
=
∧

OBHG,

OBHG
A′

=
∧

KB′HD,

KB′HD
O
=
∧

A′B′BA,

where for example the first expression means that

ADO, B′DH, A′DG, ABB′A′, OBHG

are straight. It follows from Lemma IV that this transforma-
tion is an involution and is uniquely determined by the pairs
AA′ and BB′.

C. Involutions 



D. Locus problems

Thomas’s anthology [, –] includes the account by Pap-
pus of five- and six-line locus problems that Descartes quotes
in the Geometry [, pp. –]. Pappus suggests no solution
to such problems; but later in the Geometry, Descartes solves
a special case of the five-line problem, where, as in Fig. ,
four of the straight lines—say ℓ0, ℓ1, ℓ2, and ℓ3—are parallel

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4

Figure . A five-line locus

to one another, each a distance a from the previous, while the
fifth line—ℓ4—is perpendicular to them. What is the locus
of points such that the product of their distances to ℓ0, ℓ1,
and ℓ3 is equal to the product of a with the distances to ℓ2
and ℓ4? One can write down an equation for the locus, and
Descartes does. Effectively letting the x- and y-axes be ℓ2 and





ℓ4, the positive direction of the latter being from ℓ3 towards
ℓ0, Descartes obtains

y3 − 2ay2 − a2y + 2a3 = axy.

This may allow us to plot points on the desired locus, as in
Fig. ; but we could already do that. The equation is thus
not a solution to the locus problem, since it does not tell us
what the locus is. But Descartes shows that the locus is traced
by the intersection of a moving parabola with a straight line
passing through one fixed point and one point that moves with
the parabola. In Fig. , the parabola has axis sliding along

ℓ0 ℓ1 ℓ2 ℓ3

ℓ4 bc

bc

Figure . Solution of the five-line locus problem

ℓ2, and a is its latus rectum. The straight line passes through
the intersection of ℓ0 and ℓ4 and through the point on the axis
of the parabola whose distance from the vertex is a.

See my article “Abscissas and Ordinates” [] for more than you ever
imagined wanting to know about the term latus rectum.

D. Locus problems 



Descartes’s solution is apparently one that Pappus would
recognize as such. Thus Descartes’s algebraic methods would
seem to represent an advance, and not just a different way of
doing mathematics.
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E. Ancients and moderns

Modern mathematics is literal in the sense of relying on the
letters that might appear in a diagram, rather than the dia-
gram itself. The diagram is an integral part of ancient proofs.
In some of his lemmas, as Jones observes [, p. ],

Pappus does not take the trouble to define his figure (the
reader with Euclid’s Porisms before him perhaps would not
have needed such help).

For example, in Lemma I of Pappus, there is no enunciation

in the sense of Proclus [, , p. ], but the exposition

reads,

῎Εστω καταγραφὴ Let the diagram be
ἡ ΑΒΓ∆ΕΖΗ, ΑΒΓ∆ΕΖΗ,
καὶ ἔστω and let it be that
ὡς ἡ ΑΖ πρὸς τὴν ΖΗ, as ΑΖ is to ΖΗ,
οὕτως ἡ Α∆ πρὸς τὴν ∆Γ, so is Α∆ to ∆Γ;
καὶ ἐπεζεύχθω ἡ ΘΚ. and let ΘΚ have been joined.

Thus we are given

ΑΖ : ΖΗ :: Α∆ : ∆Γ, ()

and we can infer that Ζ lies on ΑΗ, and ∆ on ΑΓ. If Η did not
lie on ΑΓ, then we could immediately apply Thales’s Theorem;
so probably all of the points ΑΓ∆ΖΗ are on one straight line.
Pappus mentions two more points, Β and Ε; probably they are
not on ΑΓ∆ΖΗ. From the specification, we can infer that Θ
and Κ do not lie on ΑΓ:





ὅτι [I say] that
παράλληλός ἐστιν ἡ ΘΚ τῇ ΑΓ. parallel is ΘΚ to ΑΓ.

Thus we aim to show
ΘΚ ‖ ΑΓ. ()

The construction gives one more point:

῎Ηχθω διὰ τοῦ Ζ Let have been drawn through Ζ,
τῇ Β∆ παράλληλος ἡ ΖΛ to Β∆ parallel, ΖΛ.

We have now
Β∆ ‖ ΖΛ. ()

Beginning as follows, the demonstration shows, in terms of
Β, where Λ is along ΖΛ:

ἐπεὶ οὖν Since then
ἐστιν ὡς ἡ ΑΖ πρὸς τὴν ΖΗ, as ΑΖ is to ΖΗ,
οὕτως ἡ Α∆ πρὸς τὴν ∆Γ, so Α∆ to ∆Γ,
ἀνάπαλιν by inversion,
καὶ συνθέντι καὶ ἐναλλάξ componendo, alternando,

ἐστιν ὡς ἡ ∆Α πρὸς τὴν ΑΖ, as ∆Α is to ΑΖ,
τουτέστιν ἐν παραλλήλῳ that is, in parallel,
ὡς ἡ ΒΑ πρὸς τὴν ΑΛ, as ΒΑ is to ΑΛ,
οὕτως ἡ ΓΑ πρὸς τὴν ΑΗ· so ΓΑ to ΑΗ;
παράλληλος ἄρα parallel then
ἐστὶν ἡ ΛΗ τῇ ΒΓ· is ΛΗ to ΒΓ.

Thus we manipulate () to get

∆Α : ΑΖ :: ΓΑ : ΑΗ.

Also, by Thales’s Theorem, apparently

∆Α : ΑΖ :: ΒΑ : ΑΛ.
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This shows Λ must have lain along ΑΒ. Now, with (), the po-
sition of Λ is determined. Combining the last two proportions
yields

ΒΑ : ΑΛ :: ΓΑ : ΑΗ,

so by the converse of Thales,

ΒΓ ‖ ΛΗ.

What we know is in Fig. a. The demonstration continues:

Α

Β

Γ∆ Ζ Η

Λ

(a)

Α

Β

Γ∆

Ε

Ζ Η

Θ Κ

Λ

(b)

Figure . Pappus’s Lemma I

ἔστιν ἄρα ὡς ἡ ΕΒ πρὸς τὴν ΒΛ, hence as ΕΒ is to ΒΛ,
οὕτως ἐν παραλλήλῳ so in parallel
ἡ ΕΚ πρὸς τὴν ΚΖ, ΕΚ to ΚΖ,
καὶ ἡ ΕΘ πρὸς τὴν ΘΗ· and ΕΘ to ΘΗ;
καὶ ὡς ἄρα ἡ ΕΚ πρὸς τὴν ΚΖ, hence also as ΕΚ to ΚΖ,
οὕτως ἐστὶν ἡ ΕΘ πρὸς τὴν ΘΗ· so is ΕΘ to ΘΗ;
παράλληλος ἄρα parallel then
ἐστὶν ἡ ΘΚ τῇ ΑΓ. is ΘΚ to ΑΓ.

By Thales’s Theorem, apparently,

ΕΒ : ΒΛ ::

{

ΕΚ : ΚΖ,

ΕΘ : ΘΗ.

E. Ancients and moderns 



We can infer
• from the ratios,

– Ε lies on ΒΛ,
– Κ lies on ΕΖ,
– Θ lies on ΕΗ;

• from the proportions,
– Κ lies on ∆Β,
– Θ lies on ΓΒ.

Now we can complete the diagram as in Fig. b. Since, finally,

ΕΚ : ΚΖ :: ΕΘ : ΘΗ,

we obtain () by the converse of Thales.
Netz observes that Greek mathematics never simply declares

what letters in a diagram stand for [, pp. –]:

Nowhere in Greek mathematics do we find a moment of spec-
ification per se, a moment whose purpose is to make sure that
the attribution of letters in the diagram is fixed.

It may well be Descartes, he says, who first fixes such attribu-
tions. I note an early passage in La Géométrie [, p. ]:

Mais souvent on n’a pas besoin de tracer ainsi ces lignes
sur le papier, et il suffit de les désigner par quelques lettres,
chacune par une seule. Comme pour ajouter la ligne BD à
GH, je nomme l’une a et l’autre b, et écris a + b; et a − b

pour soustraire b de a; et ab pour les multiplier l’une par
l’autre . . .

We have already seen how Descartes’s abbreviations make so-
lutions to ancient unsolved problems possible.

Nonetheless, it it possible to take cleverness with notation
too far. The third proof of Pappus’s Theorem, given in §.
(p. ) is taken from Coxeter [, p. ], and it may appeal
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to modern Cartesian sensibilities; but it gives less sense of
why the theorem is true than the second proof, in §. (p.
), where we pass to a third dimension and project, starting
from the diagram of Lemma VIII. Coxeter’s diagram for Pap-
pus’s Theorem [, p. ] is labelled as in Fig. ; it allows

A1

C1

A2 C2

B1

B2

C3

A3

B3

Figure . Pappus’s Lemma XIII in modern notation

us to observe, once for all, that AiBjCk is straight whenever
{i, j, k} = {1, 2, 3}. Coxeter can also express Pappus’s Theo-
rem with a matrix,





A1 B1 C1

A2 B2 C2

A3 B3 C3



 .

Here each of the first two rows consists of collinear points, as
does each of the six diagonals AiBi±1Ci±2, indices considered
modulo 3. The theorem then is that the bottom row consists
of collinear points.

I do not know whether Pappus (or Euclid) recognized a single
theorem lying behind Lemmas VIII, XII, and XIII. He may

E. Ancients and moderns 



have recognized a similarity between the lemmas, but not a
satisfactory way to prove the lemmas once for all. He may
have thought it important to treat each case individually. By
constrast, projective geometry collapses all cases into one.

Pappus knew, and probably Euclid before him knew [, p.
], that all of the conics sections can be given a single ex-
pression as the locus of points, whose distances from a given
focus and a given directrix have a given ratio. In analytic ge-
ometry, we say that the conic sections are just the curves given
by quadratic equations. However, when Omar Khayyām used
conic sections to solve what we should call cubic equations,
he considered several cases, depending on what we should call
the signs of the coefficients of the equations [, pp. –].
For example, for the case where “a cube and sides are equal
to squares and numbers,” we can write the problem as the
equation

x3 + b2x = cx2 + b2d,

which we manipulate into

x2

b2
=

d− x

x− c
.

We can define y in terms of a solution so that

x

b
=

y

x− c
=

d− x

y
.

Thus we solve the original equation by finding the intersection
of the two conics given by

x2 − cx = by, y2 + (x− c) · (x− d) = 0.

These are normally a parabola and a circle; however, if we
have allowed negative coefficients, then we may have had to
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let b be imaginary. This matters if we want to construct real
solutions.

In Rule Four of the posthumously published Rules for the
Direction of the Mind [, , p. ], Descartes writes of a
method that is

so useful . . . that without it the pursuit of learning would, I
think, be more harmful than profitable. Hence I can readily
believe that the great minds of the past were to some ex-
tent aware of it, guided to it even by nature alone . . . This
is our experience in the simplest of sciences, arithmetic and
geometry: we are well aware that the geometers of antiquity
employed a sort of analysis which they went on to apply to
the solution of every problem, though they begrudged reveal-
ing it to posterity. At the present time a sort of arithmetic
called “algebra” is flourishing, and this is achieving for num-
bers what the ancients did for figures.

We have already observed that Book VII of Pappus’s Collec-

tion concerned the Treasury of Analysis. The term “treasury”
is a modern flourish; but our word “analysis” is a translitera-
tion of the Greek of writers like Pappus. It means freeing up,
or dissolving. As Pappus describes it, mathematical analysis
is assuming what you are trying to find, so that you can work
backwards to see how to get there. We do this today by giving
what we want to find a name x.

Today we think of conic sections as having axes: one for
the parabola, and to each for the ellipse and hyperbola. The
notion comes from Apollonius; but for him, an axis is just
a special case of a diameter. A diameter of a conic section
bisects the chords of the section that are parallel to a certain
straight line. This straight line is the tangent drawn at a point
where the diameter meets the section. Apollonius shows that

E. Ancients and moderns 



every straight line through the center of an ellipse or hyperbola
is a diameter in this sense; and every straight line parallel
to the axis is a diameter of a parabola. Like Euclid’s and
Pappus’s proofs, but unlike the proofs of analytic geometry,
Apollonius’s proofs rely on areas. There are areas of scalene
triangles and non-rectangular parallelograms. In Appendix
D we considered a locus problem in terms of distances from
several given straight lines. For Pappus, what is involved is
not distances as such, but the lengths of segments drawn to
the given lines at given angles, which are not necessarily right
angles. The apparently greater generality is trivial. This is
why Descartes can solve a five-line problem using algebra. But
if one is going to prove that a straight line parallel to the axis
of a parabola is a diameter, one cannot just treat all angles as
right. Apollonius may have had a secret weapon in coming up
with his propositions about conic sections; but I don’t think
it was Cartesian analysis.
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F. What happened in 

Of Pappus’s lemmas for Euclid’s Porisms, students presented
six: VIII, IV, III, X, XI, and XII, in that order. Lemmas VIII,
XII, and XIII are cases of what is now known as Pappus’s
Theorem, while Lemmas III, X, and XI are needed to prove
XII and XIII. We skipped Lemma XIII in class, its proof being
similar to that of XII. Lemma IV is effectively what I shall
call the Quadrangle Theorem, although Coxeter gives it no
name [, ., p. ]. There is a related theorem called
Desargues’s Involution Theorem by Field and Gray [, p. ];
Coxeter describes this as “the theorem of the quadrangular set”
[, ., p. ].

Two students volunteered to present the first two (VIII and
IV) of Pappus’s lemmas above. For the next two lemmas (III
and X), volunteers were not forthcoming, and so I picked two
more students. When they had fulfilled their assignments, only
two more students were still in class; I asked them to prepare
the last two lemmas (XI and XII) for the next day. Class met
at  a.m., a difficult time for many. Nonetheless, some absent
students did return the next day.

Every presenter of a lemma came more or less prepared for
the job, though sometimes needing help from the audience.
Class was mostly in Turkish, except on the last day or two,
when only I was speaking: with the remaining students’ per-
mission, I switched mostly to English.

In the following week, class was in the afternoon, as one re-
turning student had begged for it to be. Most students in the





second week were new. With a couple of notable exceptions,
they did not prepare their presentations well. Some of them
left the Village early, earlier than I did, without telling me,
and having accepted assignments for the day (Friday) when
they would be gone. I have doubts about how well even the
remaining students understood Lobachevski’s non-Euclidean
conception of parallelism: they seemed to persist in their Eu-
clidean notions.

On the first day of that second week, I reviewed the Eu-
clidean geometry not requiring the Fifth Postulate that Loba-
chevski summarizes in his Theorems –. This is the geome-
try of Propositions – of Book I of the Elements. There is
also some solid geometry from Book XI, though I did not go
into this. I do not know how much the review of Euclidean ge-
ometry meant to students who, unlike those at Mimar Sinan,
had not read Euclid in the first place. I gave away the plot
by describing the Poincaré half-plane model for Lobachevskian
geometry; but given the quality of later student presentations,
I have doubts that the model made much sense. If that part
of the course is repeated, it should probably be coupled with
a reading of Euclid; and then it would need a full week, if not
two.
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