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 Introduction

In mathematics we use repeated activity in several ways:

) to define sets;
) to prove that all elements of those sets have certain properties;
) to define functions on those sets.





These three techniques are often confused, but they should not be. Clar-
ity here can prevent mathematical mistakes; it can also highlight impor-
tant concepts and results such as Fermat’s (Little) Theorem, freeness in
a category, and Gödel’s Incompleteness Theorem. The main purpose of
the present article is to show this.

In the ‘Preface for the Teacher’ of his Foundations of Analysis of  [],
Landau discusses to the confusion just mentioned, but without full atten-
tion to the logic of the situation. The present article may be considered
as a sketch of how Landau’s book might be updated. It is indeed a sketch,
and that only. I make a number of historical references, when I have been
able to consult the cited articles; but the article is not a thorough-going
review of the history of the mathematical ideas discussed.

 Number theory

For an example of the three techniques, suppose we are given the field R

of real numbers.

. We may define the subset N of natural numbers by requiring that it
contain 1 and that it contain x + 1 for each of its elements x. Thus if
a real number cannot be shown to be in N by application of these rules,
repeated as needed, then that number is not in N, by definition.

. We may show that N is closed under addition, since for each element
x of N, we have by definition x + 1 ∈ N, and moreover if y ∈ N and
x+ y ∈ N, then

x+ (y + 1) = (x+ y) + 1, (∗)

which again is in N by definition. Thus if A is the set of elements y of N
such that, for all x in N, the sum x + y is in N, then A contains 1 and
is closed under adding 1. Therefore A = N, by definition of the latter.
Similarly, N is closed under multiplication, since for all x in N we have
x · 1 = x, and if x · y ∈ N, then

x · (y + 1) = x · y + x, (†)

which we now know to be in N.





. Similarly, if we have the Gamma function

x 7→

∫

∞

0

tx−1

et
d t

on (0,∞), then we can show that N is closed under it, using integration by
parts. Alternatively, we can just define this operation on N by requiring
Γ(1) = 1 and Γ(x+1) = Γ(x) ·x, so that in general Γ(x) is what is usually
denoted by (x− 1)!.

The definition of N here is inductive; the proof that N is closed under
addition and multiplication is inductive; the second definition of Γ on
N is recursive. Alternatively, the definition of N can also be called
recursive; or the second definition of Γ can be called inductive. But I
shall argue that either of these alternatives is misleading.

Our inductive definition of N may be considered as informal. Formally,
we may define N as the intersection of the set of all subsets of R that
contain 1 and are closed under adding 1. Alternatively, N is the union of
the set of subsets A of [1,∞) such that x− 1 ∈ A for every x in Ar {1}.
In any case N is the smallest subset of R that contains 1 and is closed
under adding 1. That is to say, N admits proof by induction: every
subset B of N is equal to N, provided we can show that B contains 1 and
contains x+ 1 whenever it contains x. The whole point of the inductive
definition of N is to ensure that N admits inductive proofs.

To avoid taking R for granted, we may try a direct axiomatic approach
to N. (This is the point of Landau’s book.) We can just declare that N

is a set that

) has an element 1,
) is closed under an operation x 7→ x+ 1, and
) admits inductive proofs.

Then we obtain the operations of addition and multiplication that we
obtained before. Indeed, we already know how to add 1 to an element x
of N: the result is simply x + 1. If we know what x + y is, then we can
use (∗) as a definition of x + (y + 1). So we have addition on N. We go
on to define x · 1 as x, and if we know what x · y is, we define x · (y + 1)
as in (†).





This is all true; and yet, in saying it this way, we have cheated. For, it
would be false to say by analogy that we can make the definition

x1 = x, (‡)

and if we know what xy is, then we can make the definition

xy+1 = xy · x. (§)

How can this be? Though the reader may not yet be fully in the know,
s/he may have observed that our axiomatic treatment of N has omitted
two of Peano’s axioms of  []:

) the operation x 7→ x+ 1 is injective, but
) its range does not contain 1.

These axioms turn out not to be needed for the definitions of addition
and multiplication on N; but they or at least something more is needed
for exponentiation on N.

Again, how can this be? Let us first observe that it is so, by noting
that the Induction Axiom is available in modular arithmetic, although
exponentiation as a binary operation is not generally definable there.
Indeed, in the Disquisitiones Arithmeticae of  [, ¶], which is
apparently the origin of our notion of modular arithmetic, Gauss reports
that Euler’s first proof of Fermat’s Theorem was as follows. Let p be
a prime modulus. Trivially 1p ≡ 1 (with respect to p or indeed any
modulus). If ap ≡ a (modulo p) for some a, then, since (a+1)p ≡ ap +1,
we conclude (a+1)p ≡ a+1. This can be understood as a perfectly valid
proof by induction in the ring with p elements that we denote by Z/pZ:
we have then proved ap = a for all a in this ring.

However, Dyer-Bennet showed in  [] that, with respect to a modulus
n, all congruences a ≡ b and c ≡ d entail the congruence ac ≡ bd if and
only if n is one of 1, 2, 6, 42, and 1806. We conclude:

Theorem . For all n in N, The finite ring Z/nZ has a binary op-
eration (x, y) 7→ xy satisfying the identities (‡) and (§) if and only if
n ∈ {1, 2, 6, 42, 1806}.

Dyer-Bennet names G. Birkhoff as having suggested the problem of finding these n
and as having found them independently. I found Dyer-Bennet’s article through
The on-line encyclopedia of integer sequences.





Let us observe in passing that the sequence of moduli here arises from
what Mazur [] calls the self-proving formulation of Euclid’s Proposition
IX. in the Elements []: give me some primes, and I’ll give you another
one by multiplying yours together, adding 1, and finding a prime divisor
of the result. Indeed, the product of no primes should be considered as
1, and then:

1 + 1 = 2, prime;

2 + 1 = 3, prime;

2 · 3 + 1 = 6 + 1 = 7, prime;

2 · 3 · 7 + 1 = 42 + 1 = 43, prime;

2 · 3 · 7 · 43 + 1 = 1806 + 1 = 1807.

It turns out that since 1807 = 13 · 139, the sequence of moduli in the
theorem stops, although of course the set of primes continues to grow.

Little discoveries like Theorem  are a reason to begin the natural num-
bers with 1 rather than 0. When Henkin in  [] made some of the
observations of the present article, he started the natural numbers with
0 and noted in effect that on Z/2Z, if (§) holds, then 0y = 0 for all y,
since y = z + 1 for some z; in particular 00 6= 1, so the equation x0 = 1
fails.

Of course Henkin’s argument works in Z/nZ for every n that exceeds 1.
Still, Z/nZ always has an addition given by the identity (∗) above (namely
x+ (y+1) = (x+ y) + 1). At the beginning of the Disquisitiones, Gauss
notes that addition of integers respects congruence; but apparently he
does not feel the need to prove it. However, we may establish the identity
(∗) on Z/nZ as follows.

We assume that we are given the operation x 7→ x + 1. As an inductive
hypothesis, we assume too that we ‘know’ x + b for some b; that is, we
assume there is an operation x 7→ x+b. But this is not just any operation;
it satisfies the identities

1 + y = y + 1, (x+ 1) + y = (x+ y) + 1 (¶)

when y = b. Note that these equations are vacuously true when y = 1.
If we now use (∗) when y = b to define x 7→ x+ (b+1), then as a special





case we have

1 + (b+ 1) = (1 + b) + 1,

so by the inductive hypothesis (¶) we have 1 + (b + 1) = (b + 1) + 1.
Similarly

(x+ 1) + (b+ 1) = ((x+ 1) + b) + 1 [by (∗) when y = b]

= ((x+ b) + 1) + 1 [by (¶) when y = b]

= (x+ (b+ 1)) + 1. [by (∗) when y = b]

Thus (¶) holds when y = b+1. Therefore on Z/nZ, as on N, for every y,
there is at least one operation x 7→ x+ y satisfying (¶). All we have used
to establish this is induction (along with the element 1 and the operation
x 7→ x+ 1; but the Induction Axiom assumes that these exist).

By induction also, each of the operations x 7→ x + y satisfying (¶) is
unique. Indeed, suppose when y = b there is one such function, but
f is another, that is, f(1) = b + 1 and f(x + 1) = f(x) + 1. Then
by (¶) when y = b we have 1 + b = f(1), and if f(a) = a + b, then
(a + 1) + b = (a + b) + 1 = f(a) + 1 = f(a + 1). Thus x + b = f(x) for
all x, that is, f is the function x 7→ x+ y.

Now we have a unique operation (x, y) 7→ x+y satisfying (¶). By looking
back at the proof, we conclude that (∗) is an identity. Indeed, we used
this equation to define an operation x 7→ x+(b+1) from x 7→ x+ b, and
since these operations are now known to exist uniquely, (∗) must hold.
However, Peano [, p. ] uses this equation by itself as a definition of
addition, writing:

This definition has to be read as follows: if a and b are numbers, and if
(a+b)+1 has a meaning (that is, if a+b is a number) but a+(b+1) has
not yet been defined, then a + (b + 1) means the number that follows
a+ b.

Is Peano correct? Can we take (∗) as a definition in his sense? If so,
then we should be able to take the equations (‡) and (§) as a definition
of exponentiation on, say, Z/3Z. When Peano makes his remark, he has
stated all of his axioms, and Z/3Z does not satisfy all of them; still, it
satisfies the Induction Axiom, and Peano does not appeal to any other

Peano has (∗) in the form a+ (b+ 1) = (a+ b) + 1.





axioms, or a lemma derived from them, to justify his remark. Follow-
ing Peano’s procedure in Z/3Z then, we get the successive rows of the
following table:

x 1 2 3
x1 1 2 3
x2 1 1 3
x3 1 2 3

We make no new row for x4, since 4 = 1 in Z/3Z, so x4 has already been
defined. If we did try to make a row for x4, using (§), then it would not
agree with the row for x1. Thus, although we can use equations (‡) and
(§) to give a definition, in Peano’s sense, of exponentiation in Z/3Z, those
equations are not identities under the definition.

Logically then, although we can use the rule (∗) by itself to build up an
addition table for N or Z/nZ, it does not follow that (∗) is an identity.
This needs an additional argument.

Somewhat modernized, Peano’s thinking seems to be this. Let A be the
set of all y such that an operation x 7→ x + y is defined. Then 1 ∈ A.
Moreover if b ∈ A then, since we can define x+(b+1) by (∗) when y = b,
it follows that b+1 ∈ A. By induction, A contains all y. But this gives us
no unique operation of addition. Indeed, assuming b ∈ A, we can show
b + 1 ∈ A by defining x + (b + 1) as x + b or even 1. What we must
do is something like what we did: let A be the set of all y such that an
operation x 7→ x+ y is defined so as to satisfy (¶).

Now I claim to have shown what I said at the beginning, that the defini-
tion of addition by means of (∗) should not be called inductive, because
such definitions are not generally justified by induction alone. The under-
lying observation here is not original; again, Henkin makes it, and before
him, Landau. (Landau in turn credits Kalmár with the special proof that
addition can indeed be established by induction alone. Landau does not
mention that only induction is used; nor does he give an example like
exponentiation, where induction is definitely not enough.) Using y′ for
y + 1, Landau writes in his ‘Preface for the Teacher’:

On the basis of his five axioms, Peano defines x+ y for fixed x and all





y as follows:

x+ 1 = x
′

x+ y
′ = (x+ y)′,

and he and his successors then think that x + y is defined generally;
for, the set of y’s for which it is defined contains 1, and contains y′ if
it contains y.

But x+ y has not been defined.

Landau once shared the confusion of Peano and his successors; the fact
of this earlier confusion is a reason for publishing his book. Nevertheless,
despite the warnings of Landau, Henkin, and others, confusion about
these basic matters persists.

I suggest that Landau himself is a bit confused about what an axiom is;
at least, he fails to make a distinction that we find it worthwhile to make
today. Peano himself gives nine axioms for N, but three of them are the
reflexive, symmetric, and transitive properties of equality of numbers,
and another is that something equal to a number is a number. Landau
rightly sets these aside as being purely logical properties, not specific
to elements of N. Peano’s remaining five axioms are those mentioned
by Landau and also given earlier in the present article. However, two of
those, namely that N contains 1 and is closed under adding 1, are simply
features of the structure of N, features whose properties are fixed by the
remaining three axioms.

Burris gives these three axioms at the head of ‘The Dedekind–Peano
Number System’, an appendix to his Logic for Mathematics and Com-
puter Science [], an excellent book from which I have learned a lot. After
stating the axioms, Burris defines addition as Peano does. As we have
seen, the definition is justified; but it is not obviously justified. The stu-
dent may come away from that appendix with the wrong impression.

Dedekind was perhaps the first to give such a warning; see below.
Perhaps Peano himself, or one of the followers mentioned by Landau, had already

done this setting aside.
That is, they are formally entailed by considering N as a structure in a signature

with a constant for 1 and a singulary operation-symbol for x 7→ x + 1. See §
below.





A similarly wrong impression may be got from Mac Lane and Birkhoff’s
Algebra [, p. ], where right after the Peano axioms are given, it is
said that the natural numbers can serve to index iterates of singulary
(‘unary’) operations. If this is so, then one might expect elements of
Z/3Z to serve as indices of iterated products—that is, as exponents of
powers—in Z/3Z (or in any Z/nZ, or Z itself); but as we have seen, this
is not possible.

Also in his ‘Preface for the Teacher’, Landau warns,

My book is written, as befits such easy material, in merciless tele-
gram style (‘Axiom’, ‘Definition’, ‘Theorem’, ‘Proof’, occasion-
ally ‘Preliminary Remark’, rarely words which do not belong to one
of these five categories).

But the material is not easy. Perhaps it is the assumption that the
material is easy that led Landau and others to be confused about it in the
first place. Such confusion could have real mathematical consequences:
it might lead one to replace Fermat’s Theorem with a false belief that
ap+1 ≡ a is an identity modulo p.

Landau is not concerned with noting what can be proved by induction
alone; the point of his book is just to construct the fields of real and com-
plex numbers, so the analyst can use them in good conscience. Nonethe-
less, it seems worthwhile to note that, after defining addition on N as
we have done, we can go on to establish, again by induction alone, that
addition is commutative, associative, and cancellative (in the sense that
x+ z = y+ z implies x = y). Also by induction, there is a unique opera-
tion of multiplication, which is commutative and associative, and which
distributes over addition, although it need not be cancellative. Thus
we have N as a commutative semi-ring; but then we also have the set
{1, . . . , n} as a commutative semi-ring when we define x 7→ x+ 1 on this
set as in the following table, so that proof by induction is available.

x 1 . . . n− 1 n
x+ 1 2 . . . n 1

It may be said that we do not know what {1, . . . , n} means unless we have defined
the ordering of N, so that {1, . . . , n} = {x ∈ N : 1 6 x 6 n}. The theorem that
N can indeed be linearly ordered in the usual way does require all of the Peano
axioms. Without proving this theorem though, we can still define {1, 2}, then
{1, 2, 3}, and so on, as far as we like.





Here n + 1 = 1, and then by induction n + x = x, so n is neutral for
addition; also then, every element has an additive inverse, so the set
{1, . . . , n} becomes the ring Z/nZ. Of course, once one has the ring-
structure of Z, derived perhaps from the semi-ring structure of N, then
it is easy to show that congruence modulo n respects this structure, so
that Z/nZ is ring. Still, it seems worthwhile to note that most of this has
already been shown in establishing the semi-ring structure of N, because
the very same arguments work for Z/nZ.

Again, the attempt to define exponentiation by induction alone breaks
down almost completely. For every n in N, for every element x of Z/nZ,
there is of course a function y 7→ xy from N to Z/nZ satisfying the
identities (‡) and (§); but this needs more than induction. The full result
is the following.

Theorem . For every set A that has an element 1 and is closed under
an operation x 7→ x+ 1, the following are equivalent conditions.

. The operation x 7→ x+1 is injective, but its range does not contain
1, and no proper subset of A contains 1 and is closed under the
operation.

. For every set B that has an element c and is closed under an oper-
ation x 7→ f(x), there is a unique function g from A to B satisfying
the identities

g(1) = c, g(x+ 1) = f(g(x)).

Dedekind’s work on the natural numbers predates Peano’s, and his math-
ematical understanding seems to be more profound. He gives the forward
direction of Theorem  in his Nature and Meaning of Numbers of 
[, II(), p. ]. It is an accident of history that the Peano axioms are
usually so called. Peano does give us some notation, which has perhaps
helped solidify the ideas behind it. Russell and Whitehead may have
helped spread the notation through the Principia Mathematica: their
sign ⊃ for implication is derived from Peano’s reversed C, and they use
Peano’s sign ∈ for membership of an individual in a class (originally the
sign is an epsilon, for the Greek ἐστί ‘is’ [, pp. –]). Dedekind him-
self does not distinguish between this membership relation and the subset
relation: he used the same sign for both, looking something like a 3 or
perhaps a reversed epsilon ([, II(), p. ] or [, p. ].





Henkin [, p. ] proves the reverse direction of Theorem , but does
not explicitly mention any earlier proof. If the theorem is difficult, the
difficulty lies in recognizing that such a theorem might be true; once
one can recognize this possibility, proving the theorem is not that hard.

Similarly, it is not so hard to prove the independence of Euclid’s Parallel
Postulate from his others; but it seems to have taken more than two
thousand years to recognize the possibility of such a proof.

 Algebra

Theorem  can be understood as being about algebras in a signature
with one constant and one singulary operation-symbol. In the most
general sense, an algebra is a set with some distinguished operations
and elements; those operations and elements are given symbols, which
compose the signature of the algebra. Theorem  is about an algebra
(A, 1, x 7→ x+ 1), or more simply A. In a word, the second condition in
the theorem is that A admits recursion; more elaborately, the algebra
admits recursive definition of homomorphisms. Another way to say
this is that the algebra is absolutely free: that is, it is a free object in
the category of all algebras of its signature. In the first condition, the
part about not having certain proper subsets is that A has no proper
subalgebras; in a word, A is minimal.

Again, such minimality is not enough to establish recursion. Dedekind
[, ¶, p. ] notes this, observing in effect that there is no homomor-
phism from Z/2Z to Z/3Z, even though the former admits induction.
(Nonetheless, Dedekind does refer to definition by recursion as definition
by induction.)

If we understand an element of a set as a nullary operation on the set,
then Theorem  can be understood as a special case of the following.

Theorem . An arbitrary algebra is absolutely free if and only if:

One can obtain the function g as the union of the set of all sets
{(1, c), (2, f(c)), (3, f2(c)), . . . , (n, fn−1(c))}; this is Dedekind’s approach. Alter-
natively, g is the intersection of the set of all relations R from A to B such that
1 R c and (x + 1) R (f(y)) whenever x R y. In the words of Enderton [, p. ],
these are the bottom-up and top-down approaches, respectively.





) the algebra is minimal,
) each of its operations is injective,
) the ranges of any two of those operations are disjoint.

To establish the sufficiency of the three conditions, one proceeds as one
would for the corresponding implication in Theorem : given an algebra
A meeting those conditions and an arbitrary algebra B of the same sig-
nature, one obtains a unique homomorphism from A to B, either as the
intersection of the set of all relations from A to B with the appropriate
properties, or as the union of the set of certain partial functions from A
to B. For the necessity of the three conditions, one observes that all ab-
solutely free algebras of a given signature are isomorphic to one another;
then it is enough to observe that one example meets the conditions. In
the situation of Theorem , one already has such an example, or rather,
one assumes that one has an example, namely (N, 1, x 7→ x + 1). In the
case of a signature with no constants, not only are all absolutely free alge-
bras isomorphic to one another, but they are identical with one another:
they are empty.

In case there are constants, the natural example of a free algebra would
seem to be the term algebra, as described for example by Hodges [, §.,
p. ]. I want to work out one case, by way of arguing that it is indeed
mathematically worthwhile to be aware of Theorem  in its generality,
and not only Theorem .

 Propositional logic

In his ‘automathography’ [, p. ], Halmos writes:

An exposition of what logicians call the propositional calculus can an-
noy and mystify mathematicians. It looks like a lot of fuss about the
use of parentheses, it puts much emphasis on the alphabet, and it gives
detailed consideration to ‘variables’ (which do not in any sense vary).
Despite (or because of?) all the pedantic machinery, it is hard to see

See note  above. Enderton [, p. ] establishes sufficiency in case the signature
has one binary, one singulary, and arbitrarily many nullary operation-symbols. We
shall look at a similar case in § below.





what genuine content the subject has. Insofar as it talks about impli-
cations between propositions, everything it says looks obvious. Does it
really have any mathematical value?

Yes it does. . . Question: what is the propositional calculus? Answer:
the theory of free Boolean algebras with a countably infinite set of
generators.

It is good that Halmos found a way to understand logic that satisfied him;
but he seems to have missed the point. For one thing, propositional logic
is not just about free Boolean algebras: it is about certain absolutely free
algebras, in the sense above, from which Boolean algebras are obtained as
quotients. This is how the fuss and pedantry arises that Halmos decries;
but I think it is inevitable, and I hope to make it a little more interesting
below.

Meanwhile, logic should be understood as foundational for mathematics.
One can, generally does, and probably must learn mathematics before
symbolic logic; but if one wants to formalize one’s work, at least by way
of checking for mistakes, then one will reduce one’s mathematics to logic,
and not the other way around as Halmos does.

I shall describe here a version of the prositional calculus that Church
[, ch. I] develops from that of Łukasiewicz. We first choose a set V of
propositional ‘variables’. In the algebraic sense above, these variables
will indeed be constants. One does generally want V to be countably
infinite, but this will make little difference for us. Actually, it is perhaps
philosophically best to consider V as finite, as long as it can be made as
large as necessary to cover any particular situation.

We define a set of propositional formulas by three rules:

) every variable is a formula,
) 0 is a formula, and
) if F and G are formulas, then so is the implication (F → G).

Thus we obtain a term algebra in the signature V ∪ {0,→}. We may
understand this definition to pick out the formulas from the set of all
strings of our symbols, just as our original definition of N picked out its
elements from R. This set of strings might be formalized as the set of
functions from sets {1, . . . , n} or {0, . . . , n − 1} into our set of symbols.





Again though, this way of thinking is backwards or anachronistic, if we
think of symbolic logic as being developed for the sake of formalizing the
notions of sets and functions and numbers in the first place. One should
understand a string of symbols as something that can be written down,
on paper, left to right in the usual way. From the given definition of
formula, it is easy enough to show that any particular written string is a
formula; and that is all we need.

We want to know that the algebra of formulas is absolutely free. That is,
we want formulas to have unique readability. If we accept Theorem 
then, since by definition the algebra of formulas is minimal, we need only
show that () the operation (F,G) 7→ (F → G) is injective and () its
range contains neither 0 nor a variable. These facts correspond to the
two Peano axioms other than Induction; but in the present case they are
theorems. One of the theorems is trivial, since all implications have more
than one symbol. The other theorem is that if (F → G) and (H → K)
are the same formula, then F and H are the same formula (and hence
also G and K are the same), assuming F , G, H, and K are formulas
in the first place. This follows from the lemma that no proper initial
segment of a formula is a formula. One can prove this by induction on
the lengths of formulas: that is, one can prove it as a theorem about the
algebra N. Again this might be anachronistic, if one is developing logic
in order to formalize N. Alternatively, one can prove simultaneously by
induction in the algebra of formulas that every formula neither () has
a formula as a proper initial segment, nor () is itself a proper initial
segment of another formula.

It may be legitimate to consider unique readability of formulas as being
obvious. From school arithmetic, we have the sense that we can always
put in enough brackets to make a given expression unambiguous. In our
present system, every implication is surrounded by brackets; is it not
obvious that this is enough to ensure unique readability? Church seems
to think so. He first notes in passing [, p. , n. ] that brackets can
be dispensed with entirely by using the prefix notation of Łukasiewicz,
but does not dwell on the issue. Later [, §, pp. –] he gives an
algorithm for determining whether a given string is a formula. Given a
string beginning and ending with brackets, the algorithm aims to detect
(by counting brackets) an arrow of implication in the string such that,
if the string is a formula, then the two strings between the arrow and





the outer brackets must be formulas. Then the algorithm is applied
in turn to those two strings, and so on. Church calls the arrow found
by the algorithm the principal implication sign of the formula. Now,
by definition an implication must have a principal implication sign; but
Church does not exactly prove that his algorithm finds such a sign in
every well-formed implication. Even if this is granted, there remains the
question of whether the sign is unique.

Whether one proves it or not, unique readability should be stated clearly,
in order to be able to emphasize, as we shall do below, what might be
called the ‘non-unique readability’ of theorems.

Meanwhile, we need unique readability of formulas to define interpreta-

tions, namely functions h from the algebra of formulas into {0, 1} such
that h(0) = 0 and

h((F → G)) = 1 if and only if h(F ) = 0 or h(G) = 1.

(So one thinks of 0 as falsehood, and 1 as truth.) An interpretation then
is determined by its restriction to the set V of variables. In the spirit
of Halmos, we may note that an interpretation is a homomorphism into
the two-element field, if we there understand x → y to be x · y + x + 1.
Moreover, if two formulas are understood to be equivalent if their images
are equal under every interpretation, then the set of equivalence-classes of
formulas can indeed be understood as a Boolean algebra, at least when we
make the usual definitions: the negation ¬F is (F → 0), the disjunction
(F ∨G) is (¬F → G), and the conjunction (F ∧G) is ¬(¬F ∨ ¬G). But
again, the point of logic is to show how such a Boolean algebra can be
obtained in the first place. The Boolean algebra of equivalence-classes
of propositional formulas in two variables can be depicted in the Hasse
diagram in Figure ; but a question that logic must take up is how a node
in the diagram can be written down in isolation so that its position in

Burris proves unique readability for the Łukasiewicz notation only, but seems to
take unique reability of bracketed infix notation as obvious [, pp. , , ].
Enderton notes in effect [, p. ] that unique readability is immediate if the
formula (F → G) is understood to be the ordered triple (F,→, G). Again this is
anachronistic: it begs the question of whether we can write down formulas in such
a way that an arbitrary implication can be unambiguously analyzed as an ordered
triple (F,→, G). If writing the formula as a string (F,→, G) is enough, then it is
enough to write it without the commas, as (F → G). But the brackets are needed;
why is that? Here one may start to feel the need to prove that the brackets are
enough; and Enderton does in fact supply a proof.
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Figure : Hasse diagram for an algebra of equivalence-classes of formulas

the diagram can be inferred. In the foreword of his Algebra, Lang writes
[, p. v]:

Unfortunately, a book must be projected in a totally ordered way on
the page axis, but that’s not the way mathematics ‘is’, so readers have
to make choices how to reset certain topics in parallel for themselves,
rather than in succession.

Logic might be said to investigate how this projecting can be done so
that readers are indeed able to recover what they want.

Again, to define an interpretation of formulas, we use the unique read-
ability of formulas. We use this also to define a certain binary operation





on the set of formulas. Let us use the symbol ∗ for this operation, so that
we can define it by

F ∗G =

{

H, if G has the form (F → H);

G, otherwise.

Such an operation is a rule of inference (this one being called Modus
Ponens or Detachment). We do not actually need unique readability in
order to define, as logical axioms, all formulas of one of the forms

(F → (G→ F )),

((F → (G→ H)) → ((F → G) → (F → H))),

(((F → 0) → 0) → F ).

We obtain the set of theorems by taking the set of logical axioms and
closing under ∗ within the set of formulas. The set of theorems can then
be understood as a minimal algebra in a signature with ∗ and with a
constant for each logical axiom. However, unlike the algebra of formulas,
the algebra of theorems is not free.

Because of the freeness of the algebra of formulas, each formula has a
unique parsing tree; for example, one of the logical axioms has the pars-
ing tree in Figure , where P , Q, and R are propositional variables.
Strictly the tree is an ordered tree, in the sense that left branches must

((P → (Q→ R)) → ((P → Q) → (P → R)))

(P → (Q→ R))

P Q→ R

Q R

((P → Q) → (P → R))

(P → Q)

P Q

(P → R)

P R

Figure : a parsing tree

be distinguished from right branches.





The minimality of the algebra of theorems means that each theorem has
a proof, which also can be understood as a tree; but this proof is not
unique. For example, the theorem (P → P ) has the proof shown in
Figure , where F stands for a formula (G → P ), where G can be any

(P → P )

(P → F ) ((P → F ) → (P → P ))

(P → (F → P )) ((P → (F → P )) → ((P → F ) → (P → P )))

Figure : a proof, where F is (G→ P )

formula. We may debate whether a proof is ‘really’ a tree, as opposed to
a linearly ordered refinement of the tree, such as

((P → ((G→ P ) → P )) → ((P → (G→ P )) → (P → P ))),

(P → ((G→ P ) → P )),

((P → (G→ P )) → (P → P )),

(P → (G→ P )),

(P → P ).

Normally a proof is something that can be read, and reading is done
linearly; in the language of Lang, a proof is a totally ordered projection
on the page axis. But to understand a proof is to understand the relation
of each of its steps to other steps; and this relation places those steps as
nodes of a tree.

As there is an algorithm to determine whether an arbitrary string of
symbols is a formula, so there is an algorithm to determine whether an
arbitrary formula is a theorem in the present sense. Indeed, by induction
in the algebra of theorems, if F is a theorem, then 1 is its only inter-
pretation, that is, the formula is logically true. The converse of this
implication is also true, although the proof is not obvious. And there

One approach is the following. For every formula F , if h is an interpretation,
define Fh as F itself if h(F ) = 1, and otherwise let Fh be (F → 0). If the





is an algorithm to determine whether a formula is logically true: just
check its interpretations under all of the (finitely numerous) interpreta-
tions of its variables: that is, check its truth table. If the formula is indeed
logically true, then we can find a proof of it.

But this is a special feature of propositional logic; it fails in first-order
logic. I am going to try to describe this logic as tersely as possible for
present purposes; but the logic is less neat than propositional logic. Still,
we should appreciate that it is one solution found, after decades if not
millenia of labor, to the problem of how mathematics can be expressed.

 First-order logic

In first-order logic, the role of propositional variables is taken by atomic

formulas, which express equality or other relations between individuals;
these individuals are denoted by terms, that is, members of the appropri-
ate term algebra. Again this algebra has a signature, comprising n-ary
operation-symbols for various n, including 0; but there are also individ-

ual variables, which—as far as constructing terms is concerned—play
the role of constants, that is, nullary operation-symbols. Terms can be
understood as polynomials.

First order logic also introduces new operations on formulas: F 7→ ∃x F
and F 7→ ∀x F , where x is an individual variable. (One can understand
∀x ϕ as an abbreviation of ¬∃x ¬ϕ.) Every occurrence of x in ∃x F
or ∀x F is bound. A formula in which all occurrences of variables are
bound is a sentence. The set of sentences is not defined inductively;
rather, the function that assigns to each formula its set of free variables
is defined recursively, and then the set of sentences is the inverse image
of the empty set of variables under this function. Thus the definition of
sentences does require unique readability of formulas.

variables of F are among P0, . . . , Pn−1, then one shows, by induction in the
algebra of formulas, that the formula (P0

h → · · · → (Pn−1
h → Fh) · · · ) is a

theorem. In particular, if F is logically true, then (P0
h → · · · → (Pn−1

h → F ) · · · )
is always a theorem. Then one can in turn eliminate each Pi

h, using the theorem
((P → G) → ((¬P → G) → G)).

More precisely first-order predicate logic, or perhaps first-order quantifier logic.
See pages  and .





An interpretation is still a function on the set of formulas. Its codomain
is no longer {0, 1}, but is instead the family of subsets of finite Cartesian
powers of some set M . The interpretation may then be denoted by M, or
more precisely ϕ 7→ ϕM. Here ϕM can be understood as the solution set
of the formula ϕ in M, so that if ϕ has n free variables, then ϕM is a subset
of Mn. The interpretation is not determined by its restriction to the set
of variables; indeed, variables are no longer formulas. The interpretation
is determined by its restriction to the set of atomic formulas. But now
further analysis is possible. Each atomic formula is a combination of a
relation-symbol (possibly the equals sign) and the appropriate number of
terms. Each term t then has an interpretation tM, which is an operation
on M . In particular, if t has n variables, then tM is a function from Mn

to M . The map t 7→ tM is defined recursively from certain operations SM

on M that are assigned to the operation-symbols S in the logic. Then
the interpretation of an atomic formula is determined by the relations
SM on M assigned to the relation-symbols S in the logic. The whole
interpretation M is now determined by the set M and the operations
and relations SM on M for the various symbols S. The interpretation is
a structure on M .

If σ is a sentence, then by the foregoing account σM should be a subset of
M0. ButMn can be understood as the set of functions from {0, . . . , n−1}
to M ; in particular, M0 is the set of functions from the empty set to M .
There is only one such function, the empty set, which can be denoted by
0; and then M0 = {0}, which can be denoted by 1. Thus σM is either 0 or
1: it is 0, if σ is false in M, and 1 if σ is true. More generally a formula
ϕ with n free variables can be considered as true in M if ϕM =Mn; but
then a formula that is not true is not necessarily false.

A structure in which every formula in a given set is true is a model of
that set. That set then entails every formula that is true in every model
of the set. A formula entailed by the empty set is logically true. A set of
formulas that is closed under entailment is a theory. By this definition, a
theory has no obvious algebraic structure whereby the theory is minimal
in the sense discussed earlier. Nonetheless, a theory can be given such
an algebraic structure: this is the import of Gödel’s Completeness

Theorem of  [].

An algebraic structure on theories is a proof system. A proof system





then is a set of logical axioms—certain formulas—and rules of inference—
certain operations on functions; the logical axioms can be considered as
nullary operations. We require the logical axioms to be logically true,
and the rules of inference to yield only formulas that are entailed by
their arguments. Gödel’s theorem is that there is a proof system that
is complete in the sense that every algebra of formulas with respect to
this system is already a theory.

The set T of formulas entailed by a set Γ of formulas is also the smallest
algebra of formulas (with respect to a complete proof system) that in-
cludes Γ. Then Γ is a set of axioms for T . This set T is a theory, but it
need not be complete as a theory; that is, there may be a sentence such
that neither itself nor its negation is entailed by Γ. (For a formula with
free variables, neither it nor its negation need belong to a given complete
theory.) Presburger showed in  that we can write down a set Γ of
axioms such that () the semigroup (N, 1,+) is a model of Γ, and () the
theory entailed by Γ is complete. More precisely, although Γ is infinite,
we can write down as much of it as we need. Indeed, Γ contains, for each
n in N, the axiom

n
∨

k=1

(x = k ∨ ∃y x = ny + k),

where k as a term stands for 1+ · · ·+1 (with k occurrences of 1) and ny
stands for y + · · · + y (with n occurrences of y); and Γ contains finitely
many other axioms. However, by Gödel’s Incompleteness Theorem of
 [], the same cannot be done for the semi-ring (N, 1,+, ·): while the

As logical axioms of this proof system, we can take those of propositional logic,
along with the formulas ((ϕ→ ψ) → (ϕ→ ∀x ψ)) where x does not occur freely in
ϕ. The remaining axioms are (∀x ϑ → ϑx

t
), where t is a constant or variable, and

ϑx
t

is the result of replacing all free occurrences of x in ϑ with t; if t is a variable, it
must not occur freely in a subformula of ϑ where x is bound. As rules of inference,
we can take ∗ as before, along with the operations ϕ 7→ ∀x ϕ.

Gödel’s proof requires introduction of new relation-symbols; Henkin’s improvement
[] uses new constants. Church [] presents both proofs.

The other axioms are x+ y = y+ x, x+ (y+ z) = (x+ y) + z, x 6= y → ∃z (x+ z =
y ∨ y + z = x), x + y 6= x, and x + y 6= 1. See Hodges [, pp.  & ]; I have
not consulted Presburger’s original paper. One way to prove the theorem is to
introduce a relation-symbol < so that the atomic formula x < y means ∃z x+z = y;
and also, for each n in N, to allow x ≡ y (mod n) as an atomic formula. In the
enlarged signature, every formula is equivalent to a formula with the same free





set of formulas that are true in this structure is complete in the present
sense, it is not entailed by a set of formulas determined by a rule.

It is tedious to work through the number-theoretic details of Gödel’s
original argument, but a corresponding incompleteness result is more
readily established for set theory. Moreover, if one agrees with Landau
that the analyst ought not just to assume the real numbers, but should
construct them from the natural numbers, then perhaps one ought to
construct the natural numbers too, and not just assume them (as Landau
does); and this construction can be done in set theory. Finally, set theory
is a context for considering the inductive definitions and the minimal
algebras that we have mentioned.

 Set theory

From ordinary language, we have the notion of a collective noun. Singular
in form, a collective noun refers to many things as one thing. The Russell
Paradox of  [] is that there is no most general collective noun; for
if there were, it could be the word set, but then there would be a set of
all sets that did not contain themselves, and this set would both contain
itself and not.

Nonetheless, there can be a most general collective noun for our purposes;
as this noun, let us use the word collection. For mathematical study, we
distinguish certain collections as sets. We determine the properties of
sets axiomatically. Our language for doing this is first-order logic with no

variables, but without quantifiers; also, for every quantifier-free sentence, itself or
its negation is entailed by the axioms, since itself or its negation is true in (N, 1,+),
and this structure embeds in every model of the axioms.

Gödel assigns to each formula ϕ a code, which is in N. We can treat operations on
N as composing a kind of algebra: the constants of this algebra are x 7→ x+1, the
projections (x0, . . . , xn−1) 7→ xi, and the constant functions (x0, . . . , xn−1) 7→ c;
and there is one binary operation, converting an n-ary operation f and an n+ 2-
ary operation g into the n+ 1-ary operation h given recursively by h(~x, 1) = f(~x)
and h(~x, y + 1) = g(~x, y, h(~x, y)). The operations in the minimal algebra are
called recursive, and a subset of N is called recursive if it is f−1(1) for some
singulary recursive operation f . Then Gödel’s theorem is that there is no complete
theory entailed by formulas that are true in (N, 1,+, · ) and whose codes compose
a recursive set. It follows that such a set of codes cannot even be recursively

enumerable, that is, be the range of a recursive operation.





constants, no operation-symbols, and only one relation-symbol: Peano’s
∈ as mentioned above. For us this is a binary symbol that takes, as its
right argument, a set, and as its left argument, a possible element of the
set. It is then simplest to take both arguments of ∈ as sets. Our variables
then will range over sets alone.

We need not have an official symbol for equality, but can approach the
matter as follows. A given singulary formula ϕ(x) will define a collection,
namely the collection of all sets a such that ϕ(a) is true. Such a collection
will be called a class. We consider two classes to be equal if they have
the same members.

In particular, if a is a set, then we have the formula x ∈ a (with the
parameter a). We consider the class defined by this formula to be a
itself. That is, every set is a class, namely the class of its members. In
particular, two sets are equal if they have the same members. We can
now use the expression x = y as an abbreviation of the formula

∀z (z ∈ x⇔ z ∈ y).

Now we can state the following.

Axiom (Equality). Equal sets are members of the same sets:

∀x ∀y (x = y → ∀z (x ∈ z ⇔ y ∈ z)).

Alternatively, if the sign of equality were an official relation-symbol, then
the sentence

∀x ∀y (x = y ⇔ ∀z (z ∈ x⇔ z ∈ y))

would probably be taken as an axiom, the Axiom of Extensionality, as
in Zermelo’s original treatment of  [, p. ]. Then the above
Equality Axiom would be taken as logically true. Indeed, more would be
logically true, namely

∀x ∀y (x = y → (ϕ(x) ⇔ ϕ(y)))

for all singulary formulas ϕ (possibly with parameters). However, for us
the truth of all of these sentences is a theorem, which can be established
by induction in the algebra of formulas.

For our purposes, we introduce two more axioms:





Axiom (Empty Set). The empty class is a set.

Axiom (Adjunction). For all sets a and b, there is a set whose members
are b and the members of a.

The empty set is denoted by 0; the set whose members are b and the
members of a is a∪{b}. The Empty-Set and Adjunction axioms together
can be understood as saying simply that every finite collection of sets is
a set. In particular,

0, {0}, {0, {0}}, {0, {0}, {0, {0}}},

and so forth are sets, each being the collection of all previously known
sets. This sequence is 0, 0′, 0′′, 0′′′, and so forth, where in general x′ =
x ∪ {x}. We may call x′ the successor of x. We now define 1 as 0′,
and we define N as the smallest collection of sets that contains 0 and is
closed under succession. However, we should be able to prove that the
three Peano Axioms are satisfied. The Axiom of Induction is satisfied by
definition of N. Then we have the following lemma, perhaps the simplest
application of this axiom.

Lemma. Every element of N is the successor of some set.

Proof. 1 is the successor of 0, and every successor of a successor is in
particular a successor of some set.

Theorem . 1 is not the successor of any element of N.

Proof. If 1 = a′, this means {0} = a ∪ {a}, so in particular a = 0. But 0
is not in N, by the lemma.

It is not so easy to prove that succession is injective on N. We want to
show that every element of N is a′ for some unique set a that is either 0
or an element of N). By the theorem, this is true when a = 1. Suppose
it is true when a = b, but now b′ = c′, that is, b∪ {b} = c∪ {c}. If b 6= c,
then we must have b ∈ c and c ∈ b. This peculiar possibility can be ruled
out by another axiom; but there is a better way.





A class C defined by a formula ϕ is a subclass of a class D defined by
a formula ψ if ∀x (ϕ(x) → ψ(x)); we then use C ⊆ D as an abbreviation
of this sentence. Of course a subset of a class is a subclass that is a
set. We noted (on page ) that Dedekind confused the membership and
subset relations; but now we must carefully distinguish. A class contains
its elements, but includes its subclasses. In particular, the successor of a
set a both contains a and includes a, and it is the smallest set to do so.
A class C is transitive if it includes all of its elements, that is,

∀x (x ∈ C → x ⊆ C)

or ∀x ∀y (y ∈ x∧x ∈ C → y ∈ C). A subclass C of a class D is proper

if it is not the whole class D; in that case we write C ⊂ D. We can now
state and prove the following.

Theorem . The class of transitive sets contains 0 and is closed under
succession, and succession is injective on this class.

Proof. Trivially 0 is transitive. Suppose a is transitive and b ∈ a ∪ {a}.
Then either b ∈ a or b = a, and in each case b ⊆ a, so b ⊆ a′. Thus a′ is
transitive.

Finally suppose a and b are distinct transitive sets, and a′ ⊆ b′. Then
a ∈ b′, so a ∈ b (since a 6= b), hence a ⊆ b, and then a ⊂ b. Therefore b is
not a subset of a (since otherwise a would be a proper subset of itself),
so b /∈ a. Thus b /∈ a′, so b′ 6= a′.

Corollary. Succession is injective on N.

Proof. Containing 0 and being closed under succession, the class of tran-
sitive sets also contains 1; but by definition N is included in every col-
lection, and in particular every class, that contains 1 and is closed under
succession.

Thus, instead of obtaining N as a subset of R, or just assuming it exists so
as to satisfy the Peano axioms, we can construct N, satisfying the Peano
axioms, on the basis of three simple axioms about sets.

This construction does not give us N as a set. We may promulgate
the Axiom of Infinity, whereby N or rather {0} ∪ N is a set by fiat.





But what does this mean? We may state as an axiom that some set
contains 0 and is closed under succession; we may even state that there is
a smallest such set; but we cannot even conclude that there is a smallest
such class without something like the following axiom or rather scheme
of axioms.

Axiom Scheme (Separation). Every subclass of a set is a set.

If we assume now there is one set that contains 0 and is closed under
succession, then the intersection of the class of all such sets is a set,
called ω; and no proper subclass of this has the same closure properties.
But even without the assumption, we can obtain ω as a class. One way
to do this is as follows. A class C is well-founded if each of its subsets
has an element that is disjoint from that subset, that is,

∀x (x ⊆ C → ∃y (y ∈ x ∧ ∀z (z ∈ y → z /∈ x))).

A set whose every member is the successor of a member is not well-
founded. Now we define ω as the class of all transitive, well-founded sets
a such that

) every nonempty member of a is the successor of a member of a, and
) if a is not empty, it has a member whose successor is not in a.

Then 0 ∈
⋃

ω, and with a bit of work,
⋃

ω is closed under succession.
By the Separation axioms,

⋃

ω is the smallest class that contains 0 and
is closed under succession. Also

⋃

ω = ω.

Note why the members of ω must be required to be well-founded. Having
N informally as above, we may imagine a set {ak : k ∈ N}, where ak+1

′ =
ak in each case, and also the function k 7→ ak is injective. This set meets
the two numbered criteria for being in ω, but is not well-founded.

However, possibly {0} ∪ N ∪ {ak : k ∈ N} is a set, but its every infinite
subclass contains an element of {0} ∪ N. Then the set is well-founded.
It might even be transitive, if ak = {0} ∪ N ∪ {an : k < n} in each case.
We have no formal way prevent such a set from belonging to ω. This is

The theory with the Equality, Empty-Set, Adjunction, and Separation axioms is
called General Set Theory by Boolos [, p. ], but is called STZ by Burgess [,
p. ], for Szmielev and Tarski with Zermelo’s Axiom of Separation.





what troubled Skolem []: set theory is not categorical, but can have a
non-standard model, in which the class defined by the formula for ω is
actually larger than intended.

We may assume that there is a standard model of set theory in which ω

really is {0} ∪ N; but a formalization of this would be a literally infinite
statement, and we can quote such a statement only in part:

ω contains 0 and 0′ and 0′′ and. . . , and nothing else.

Suppose we nonetheless believe that there is still a standard model of set
theory, a model in which ω really is N ∪ {0}. In that case, the formal
sentences that are true in this model compose a collection. Then, using
the idea of Gödel [], we can assign to each such formula a code, which
is a certain set. Although we could avoid doing so, it will be convenient
now to introduce 0 as an official constant, and ′ as an official function-
symbol. We number the symbols used in our formulas, as for example in
the following scheme:

→ ¬ ∃ ( ) ∈ 0 ′ x y z . . .
0 1 2 3 4 5 6 7 8 9 10 . . .

Then the code of a formula ϕ is a finite sequence pϕq of elements of ω.
For example, p∃x ¬ 0′ ∈ xq is (2, 8, 1, 6, 7, 5, 8). Such a sequence can be
understood as a function from some element of ω to ω; in particular, it
is a certain finite set of ordered pairs. This is not a formal theorem of set
theory; it is just the observation that, by the Empty-Set and Adjunction
axioms, for every ordered pair (a, b) of sets, there is a set {{a}, {a, b}},
which (as Kuratowski showed in  []) can be identified with the
ordered pair; and then every finite collection of ordered pairs can be
built up one by one into a set.

If a formula ϕ has length n, then pϕq is an element of the class denoted
by ω

n. Thus the codes of all formulas belong to the class that can
be denoted by

⋃

n∈ω
ω

n or ω
<ω. If the collection of codes of all true

sentences of set theory were itself a class, then there would be a singulary
formula ϑ defining the class of codes of all singulary formulas ϕ such that
ϕ(pϕq) is false. In this case,

ϑ(pϑq) ⇔ ¬ϑ(pϑq),

See note .





which is absurd. This is a variant of the Russell Paradox, known as some-
thing like Tarski’s Theorem on the Undefinability of Truth. In stating his
version of the theorem, Tarski [, p. ] notes his debt to Gödel. The
point now is that, if N is a set or even just a class, then the collection
of codes of true sentences of set theory is not a class. In short, some
mathematical collections are definitely not classes.

In the present context, a form of Gödel’s Incompleteness Theorem can
be established as follows. The collection of codes of formally provable
sentences is a class, at least on the assumption that N is a class. Then
there is a class consisting of the codes of all singulary formulas ϕ such
that ¬ϕ(pϕq) has a formal proof. This last class is defined by a formula
ψ. Then ψ(pψq) is true if and only if the code of its negation is in the
class of codes of provable sentences. If this class never contains the codes
of both a sentence and its negation, our set theory is consistent; but in
this case neither ψ(pψq) nor its negation is provable, although ¬ψ(pψq)
is true.

If we do not want to assume that N is a class, we can still argue as
follows. There is a smallest class C comprising the codes of provable
sentences. Let ψ define the class of codes pϕq such that ¬ϕ(pϕq) is in C.
If ψ(pψq) had a formal proof, then it would be true, and so both ψ(pψq)
and ¬ψ(pψq) would be in C. If ¬ψ(pψq) had a formal proof, then both
it and ψ(pψq) would be true.
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