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There is no more impressive form of literature than the narrative epic
poem. That combination of depth and breadth of conception which some have
called sublimity has here found a natural and adequate expression. The theory
of number is the epic poem of mathematics. The mutual reflection of the two
arts will supply a sort of explanation in the intellectual dimension of the epic
quality in both. . .

But the question, what is a number? is an invitation to analyze counting
and to find out what sort of thing makes counting possible. In poetry I suppose
the corresponding question would be, what makes recounting possible? The
answer, if it were to be complete, would take us into the most abstract and
subtle mathematical thought. But the key to the problem is the simplest sort
of insight. The same peculiar combination of simplicity and subtlety is involved
in the theory of narrative, but as everyone knows, insight here belongs to the
most common of common-sense conceptions.

—Scott Buchanan, Poetry and Mathematics [, p. ]
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 DAVID PIERCE

. Numbers and sets

The set N of natural numbers is described by the so-called Peano Axioms [].
These refer to the following three features of N.

. It has a distinguished initial element, denoted by 1 or 0, depending on the
writer.

. It has a distinguished operation of succession, which converts an element into
its successor. The successor of x is often denoted by x + 1, though I shall also
use s(x) and xs.

. In particular, the operation of succession takes a single argument (unlike addition
or multiplication, which takes two arguments).

The class V of all sets also has three features. I shall develop an analogy between the
three features of N listed above and the following three features of V.

. It has a distinguished element, the empty set, denoted by ∅ or 0.
. It has one kind or ‘type’ of non-empty set. This is by the Extension Axiom,

according to which a set is determined solely by its elements (or lack of elements).
If sets are considered as boxes of contents, then the contents may vary, but the
boxes themselves are always cardboard, say,—never plastic or steel.

. Each non-empty set has a single kind or ‘grade’ of element; the elements are not
sorted into multiple compartments as in an angler’s tackle-box.

Von Neumann’s definition of the ordinal numbers [] gives us, in particular, the
natural numbers. The von Neumann definition of the natural numbers can be seen as a
construction of N within V by means of the analogy between N and V just suggested.
Indeed, N can be understood as a free algebra whose signature comprises the constant
(or nullary function-symbol) 1 and the singulary function-symbol s. Von Neumann’s
definition gives us the particular free algebra denoted by ω, in which 1 is interpreted as
∅, and s is interpreted as the function x 7→ x∪ {x}. A similar set-theoretic construction
will give us a free algebra in an arbitrary algebraic signature, as long as there is a type of
set for each symbol in the signature, and sets having the type of an n-ary symbol have n
grades of members. There is a corresponding generalization of the notion of an ordinal
number as well. I work out the details of this construction at the end of this article,
in Part . Meanwhile, in Part , I consider what I hold to be misconceptions about
numbers. It was these considerations that led to the whole of this paper. In Part , I
review the logical development of numbers from a historical perspective.

That is, hereditary sets, namely sets whose elements are hereditary sets [, p. ].
Although the term ‘unary’ is commonly used now in this context, I follow Quine, Church [, n. ,

p. ], and Robinson [, pp. , ] in preferring the term singulary. The first five Latin distributive
numbers are singul-, bin-, tern-, quatern-, and quin- [], and these are apparently sources for the terms
binary, ternary, quaternary, and quinary. The Latin cardinals are un-, du-, tri-, quattuor, quinque. (The
hyphens stand for variable case-endings.)
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Part 

. Numbers and geometry

It is worthwhile to pay close attention to the fundamental properties of N. We may
learn these wrongly in school. We may be taught—rightly—that N has the following
properties:

. It admits proofs by induction: every subset that contains 1 and that contains
k + 1 whenever it contains k is the whole set.

. It is well-ordered: every non-empty subset has a least element.
. It admits proofs by ‘complete’ or ‘strong’ induction: every subset that

contains 1 and that contains k +1 whenever it contains 1, . . . , k is the whole set.
. It admits recursive definitions of functions: on it, there is a unique function h

such that h(1) = a and h(k + 1) = f(h(k)), where f is a given operation on a set
that has a given element a.

We may also be taught that these properties are equivalent. But they are not equivalent.
Indeed, it is ‘not even wrong’ to say that they are equivalent, since properties  and 
are possible properties of algebras in the signature {1, s}, while  is a possible property
of ordered sets, and  is a possible property of ordered algebras.

A well-ordered set without a greatest element can be made into an algebra in the
signature {1, s} by letting 1 be the least element and letting s(x) be the least element
that is greater than x; but this algebra need not admit induction in the sense of .
Indeed, an example of such an algebra is the algebra of ordinals that are less than ω+ω.
Conversely, an algebra in the signature {1, s} that admits induction need not admit an
ordering < such that x < s(x): finite cyclic groups provide examples.

The four properties listed above can become equivalent under additional assumptions;
but these assumptions are not usually made explicit. Such assumptions are made explicit
below in Theorems  and . I present these theorems, not as anything new, but as being
insufficiently recognized.

Perhaps the real problem is a failure to distinguish between what I shall call naturalistic
and axiomatic approaches to mathematics. In the former, mathematical objects exist out
in nature; we note some of their properties, while perhaps overlooking other properties
that are too obvious to mention. There is nothing wrong with this. Euclid’s Elements
[, ] is naturalistic, and beginning mathematics students would be better served by a
course of reading Euclid than by a course in analytic geometry or in the abstract concepts
of sets, relations, functions, and symbolic logic.

Not all of Euclid’s propositions follow logically from his postulates and common no-
tions. He never claims that they do. His Proposition I. establishes the ‘side-angle-side’
condition for congruence of triangles, but the proof relies on ‘applying’ one triangle to
another. Perhaps this ‘application’ is alluded to in his Common Notion : ‘Things which
coincide with one another are equal to one another.’ Suppose indeed that in triangles
ABC and DEF , sides AB and DE are equal, and AC and DF are equal, and angles
BAC and EDF are equal. If the one triangle is ‘applied’ to the other, A to D and AB
to DE, then B and E will coincide, and also C and F , by a sort of converse to Common

Heath [, I, pp.  f.] discusses the possibility that the the so-called Common Notions in the
Elements are a later interpolation.
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Notion  that Euclid does not make explicit: things that are equal can be made to co-
incide. Then BC and EF coincide; indeed, as observed in a remark that is bracketed
in [], but omitted in [], if the two straight lines do not coincide, then ‘two straight
lines will enclose a space: which is impossible.’ Again, this is a principle so obvious as
not to be worth treating as a postulate.

Without any explicit postulates, Euclid proves his number-theoretic propositions, from
the Euclidean algorithm (VII.–) to the perfectness of the product of 2n and 1 + 2 +
4 + · · · + 2n if the latter is prime (IX.).

Hilbert’s approach in The Foundations of Geometry [] is axiomatic. Hilbert himself
seems to see his project as the same as Euclid’s:

Geometry, like arithmetic, requires for its logical development only a small num-
ber of simple, fundamental principles. These fundamental principles are called
the axioms of geometry. The choice of the axioms and the investigation of their
relations to one another is a problem which, since the time of Euclid, has been
discussed in numerous excellent memoirs to be found in the mathematical lit-
erature. This problem is tantamount to the logical analysis of our intuition of
space.

The following investigation is a new attempt to choose for geometry a simple

and complete set of independent axioms and to deduce from these the most
important geometrical theorems in such a manner as to bring out as clearly as
possible the significance of the different groups of axioms and the scope of the
conclusions to be derived from the individual axioms.

However, it is not at all clear that Euclid is concerned with relations among axioms.
Proving the independence of one axiom from others usually means showing that the lat-
ter have a model in which the former is false. Hilbert can do this, but Euclid makes
no suggestion of different models of his postulates. Euclid makes observations and de-
ductions about the world—the γÁ of γεωµετρία. By constrast, while Hilbert’s axioms

Such coinciding, in the case of plane figures, may involve cutting and rearranging, as in the series of
propositions that begins with I.: parallelograms with the same base in the same parallels are equal.

Euclid does not discuss his work, and in particular he does not use the word γεωµετρία. Herodotus
does use the word, a century or two earlier:

For this cause Egypt was intersected [by canals]. This king [Sesostris] moreover (so
they said) divided the country among all the Egyptians by giving each an equal square
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are obviously true in the world of Euclid, Hilbert nonetheless feels the need to establish
their consistency by constructing a model. His model is an ‘analytic’ one (in the sense
of analytic geometry): it is based on the field obtained from the number 1 by closing

under +, −, ×, ÷, and x 7→
√

1 + x2. For Hilbert, it seems, such a field is more real than
Euclidean space, even though our intuition for fields, and especially for taking square
roots in them, comes from geometry.

The approach to N in which properties – above are ‘equivalent’ is not quite natural-
istic, not quite axiomatic. Considered as axioms in the sense of Hilbert, the properties
are not meaningfully described as equivalent. But if the properties are to be understood
just as properties of the numbers that we grew up counting, then it is also meaningless
to say that the properties are equivalent: they are just properties of those numbers.

An axiomatic approach to mathematics may lead to a constructive approach, whereby
we create our objects of study. Hilbert could have ignored his axioms and concentrated on
his model of them, although this did not happen to be his purpose. Regarding N, we may
or may not wish ultimately to take a constructive approach, creating a model of the Peano
Axioms by, for example, the method of von Neumann. If we do take this approach, then
we presumably have recognized something more fundamental than the natural numbers:
perhaps sets, which we may have approached naturalistically or axiomatically. But then
the construction of the natural numbers may add to our understanding of, and confidence
in, these sets. This is indeed how I see the von Neumann construction, along with the
generalization in Part  below.

. Numbers, quasi-axiomatically

Through Spivak’s Calculus [], I had my first encounters with serious mathematics.
Because this book is worthy of scrutiny, I examine here its treatment of foundational
matters. In the beginning, Spivak takes the real numbers as being out in nature. He
just calls them ‘numbers,’ and in his first chapter he identifies twelve of their properties.
These properties will, in his chapter , be recognized as the axioms for ordered fields.
Meanwhile, in some proofs in his chapter , Spivak uses assumptions that he goes on
to identify as having been unjustified. For example, to prove that, if a product is zero,
then one of the factors must be zero, Spivak observes that, if a · b = 0, and a 6= 0, then
a−1 · (a · b) = 0. Thus he tacitly assumes that zero times anything is zero; on the next
page, he comes clean and proves this. I find no fault here.

parcel of land, and made this his source of revenue, appointing the payment of a yearly
tax. And any man who was robbed by the river of a part of his land would come to
Sesostris and declare what had befallen him; then the king would send men to look
into it and measure the space by which the land was diminished, so that thereafter
it should pay in proportion to the tax originally imposed. From this, to my way of
thinking, the Greeks learnt the art of measuring land [γεωµετρίη]; the sunclock and
the sundial, and the twelve divisions of the day, came to Hellas not from Egypt but
from Babylonia. [, .]

For γεωµετρίη (the Ionic form of the word) here, other translators, as [], just use ‘geometry’. It is too
simple to say that geometry developed from surveying, since it was not necessary for geometry as we
know it to develop at all. On the other hand, if our experience of the world came entirely from gazing at
the heavens, and if we nonetheless developed a geometry, then this would probably be what we in fact
call spherical geometry.



 DAVID PIERCE

The difficulties for me arise in Spivak’s chapter . Here the various ‘sorts’ of numbers
are introduced, starting with the natural numbers. The four properties of the natural
numbers listed above in § are stated, and it is said that, from each of the first three
properties, the others can be proved. For example, Spivak proves by induction that a set
of natural numbers without a least element must be empty: 1 cannot be in the set, since
otherwise it would be the least element; and for the same reason, if none of the numbers
1, . . . , k is in the set, then k + 1 is not in the set.

The problem is that this argument uses more than induction: it uses that the set
of natural numbers is ordered so that n 6 k or k + 1 6 n for all elements k and n.
The existence of this ordering does not follow by induction alone. It does follow, if one
has the natural numbers as real numbers. Again, for Spivak, the real numbers are just
‘numbers’, so the natural numbers must be among these; but Spivak does not emphasize
this in the text. In exercise  at the end of chapter , an inductive set is defined as a
set of numbers that contains 1 and is closed under addition of 1. The reader is invited
to show that the set of numbers common to all inductive sets is inductive. It could be,
but is not, made clear at this point that the properties called  and  in § above are
equivalent properties of inductive sets.

Spivak’s Calculus was a reference text and a source of exercises for a two-year high-
school course taught by one Donald J. Brown. The main text for the course was notes
that Brown wrote and distributed, either as typed and mimeographed pages, or more
usually as writing on the blackboard that we students copied down. Brown’s notes are in
some ways more formally rigorous than Spivak. From the beginning, they give the real
numbers explicitly as composing the complete ordered field called R. And yet the notes
present the natural numbers as a set {1, 2, 3, . . . } for which the ‘fundamental axiom’ is
the ‘Well Ordering Principle’. From this, the ‘Principle of Mathematical Induction’ is
obtained as a theorem; it is left as an exercise to obtain the Well Ordering Principle
as a theorem from the Principle of Induction. Here again, proofs must rely on hidden
assumptions. At the relevant point in my copy of Brown’s text, I find the following
remark, apparently added by me during the course: ‘If the given “definition” of N means
anything, it must be the equivalent of the Principle of Mathematical Induction. Thus
the P. of M.I. need not be a theorem, and the W.O.P. need not be an axiom.’

Part 

. Numbers, recursively

Let us forget about R and try to start from scratch. We should distinguish clearly
between recursion from induction. Recursion is a method of defining sets and functions;
induction is a method of proving that one set is equal to another. We can try to
understand N as having the following recursive definition:

() N contains 1;
() if N contains x, then N contains xs.

Since this is explicitly a definition, there is really no need for a third condition, though
it is sometimes given:

This was at St. Albans School in Washington, D.C., –.
One text that makes the distinction clear is Enderton [, §., pp. -].
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() N contains nothing but what it is required to contain by () and ().

Again, I hold this third condition to be redundant for the same reason that the words
only if are redundant when, for example, we define a natural number as prime if and
only if it has just two distinct divisors.

The recursive definition of N means no more nor less than that, if A is a subset of N

that contains 1 and that contains the successors of all of its elements, then A = N. In
short, the definition means that N admits proofs by induction. This can also be
expressed by writing

N = {1, 1s, 1ss, . . . }.
The recursive definition of N does not bring N into existence. Rather, it picks out N

from among some things that are assumed to exist already. The definition assumes that
there is some set that contains 1 and is closed under s. Then N is the smallest such set,
namely the intersection of the collection of such sets.

Definitions such as the one just given have been found objectionable for being ‘im-
predicative.’ Zermelo [, p. , n. ] reports that Poincaré had such an objection to
Zermelo’s proof of the Schroeder–Bernstein Theorem. Let us have a look at this proof.

Suppose A, B, and C are sets such that A ⊆ B ⊆ C, and f is a bijection from C
onto A. We aim to find a bijection g from B onto A. If there is any hope of finding
such g, then probably we should have

g(x) =

{

f(x), if x ∈ D,

x, if x ∈ B r D,
(i)

for some subset D of B. In this case, since the range of g is to be (a subset of) A, we
must have in particular B r D ⊆ A and so B r A ⊆ D. Injectivity of g will follow from
having f [D] ⊆ D. Let D now be the smallest X such that

(B r A) ∪ f [X] ⊆ X.

That is, let D be the intersection of the set of all such sets X. We obtain g as desired.
Indeed, when D is such, then (B r A) ∪ f [D] = D. Since also F [D] ⊆ A, we have that
B r A and f [D] are disjoint. Therefore B is the disjoint union of B r A, f [D], and
B rD, as in the figure below. We conclude (B rD)∪f [D] = A, so g is indeed surjective
onto A.

C
B r A

f [D]

B r D
A

Such is the proof in the article [, p. ] of Zermelo giving his axioms of set-theory,
although Zermelo does not give the argument in the heuristic style that I have used.

The historically correct word is analytic, in view of remarks like this of Pappus:

Now analysis [¢νάλυσις] is a method of taking that which is sought as though it were
admitted and passing from it through its consequences in order to something which



 DAVID PIERCE

The argument might be said to assume the existence of what it purports to establish the
existence of, since D belongs to the set of which it is the intersection.

For an alternative heuristic argument, again suppose g is as in (i), so that

g[B] = f [D] ∪ (B r D). (ii)

Say g[B] = A. Then in particular g[B] ⊆ A, so by (ii) we have B r D ⊆ A, hence

B r A ⊆ D. (iii)

Also, A ⊆ g[B], but by (ii) we have g[B] ⊆ f [B] ∪ (B r D), hence

A r f [B] ⊆ B r D. (iv)

Since (B r A) ∪ (A r f [B]) = B r f [B], we now have

g[B r f [B]] = g[(B r A) ∪ (A r f [B])]

= g[B r A] ∪ g[A r f [B]]

= f [B r A] ∪ (A r f [B]) [by (iii) and (iv)]

= (f [B] r f [A]) ∪ (A r f [B]) = A r f [A].

Assuming g is injective, we conclude g[f [B]] = f [A]. Now we can proceed as before, but
with f [B] and f [A] in place of B and A. In particular, we replace (ii) with

g[f [B]] = f [D ∩ f [B]] ∪ (f [B] r D)

and obtain f [B] r f [A] ⊆ D, and so forth. We find ultimately
⋃

{B r A, f [B] r f [A], f [f [B]] r f [f [A]], . . . } ⊆ D.

Conversely, to ensure that g[B] = A, it suffices to let D be this union. Indeed, this is the
same D found in Zermelo’s argument above, only now it is found through a recursive

procedure, as
⋃{Bn r An : n ∈ N}, where

B1 = B, A1 = A, B
s(n) = f [Bn], A

s(n) = f [An].

Is this better than finding D as the intersection of a set that contains D? A problem
with the recursive approach is that the existence of the function n 7→ (An, Bn) is not
justified merely by the possibility of defining N itself recursively as we did above.

I propose to refer to any set that has a distinguished element and a distinguished
singulary operation as an iterative structure. The distinguished element can be
called 1, and the operation, s; or they can be called 1A and s

A, to avoid ambiguity, if
the structure itself is A, but there are other iterative structures around. An iterative
structure meets minimal requirements for repeated activity: it gives us something—s—to
do, and something—1—to do it to.

is admitted as a result of synthesis [συνθέσις]; for in analysis we suppose that which is
sought to be already done, and we inquire what it is from which this comes about. . . and
such a method we call analysis, as being a reverse solution [¢νάπαλιν λύσις].[, p. ]

The style of geometry pioneered by Descartes is not so much analytic as algebraic.
Later the possibility of using a proper class here will be considered.
Stoll [, §., p. ] uses the term ‘unary system’.
This is like calling me David, unless there is another David present, in which case I may become

David Pierce.
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Every iterative structure has a unique smallest substructure, which is the intersection
of the collection of all substructures; this intersection therefore admits induction and
can be recursively defined. In particular, N is such an intersection; but N has properties
beyond admitting induction. In particular, if A is another iterative structure, then there
is a unique homomorphism h from N to A, given by the recursive definition

() h(1) = 1, that is, h(1N) = 1A;
() h(xs) = h(x)s, that is, h(sN(x)) = s

A(h(x)).

In short,
h = {(1, 1), (1s, 1s), (1ss, 1ss), . . . }, (v)

where the left-hand entries in the ordered pairs are from N; the right-hand, from A.
We have now merely asserted the possibility of defining functions recursively on N.

Arithmetic follows from this assertion: the binary operations of addition, multiplication,
and exponentiation can be defined recursively in their right-hand arguments. First we
have

m + 1 = ms, m + xs = (m + x)s, (vi)

that is, the function x 7→ m + x is the unique homomorphism from (N, 1, s) to (N, ms, s).
Then s is x 7→ x + 1, and we continue with the definitions

m · 1 = m, m · (x + 1) = m · x + m; (vii)

m1 = m, mx+1 = mx · m; (viii)

that is, the functions x 7→ m·x and x 7→ mx are the unique homomorphisms from (N, 1, s)
to (N, m, x 7→ x + m) and (N, m, x 7→ x · m) respectively.

Skolem [] develops arithmetic by recursion and induction alone, though without
discussing the logical relations between these two methods and without mentioning ho-
momorphisms as such. Skolem’s purpose is to avoid logical quantifiers. Instead of defining
m < n to mean m + x = n for some x, he defines it by saying that m < 1 never, and
m < k + 1 if m < k or m = k. To see this definition in terms of homomorphisms, let us
denote the set {0, 1} by B for Boole. Every binary relation R on N corresponds to a
binary characteristic function χR from N into B given by

χR(x, y) = 1 ⇐⇒ x R y.

We are defining the function x 7→ χ<(m, x) from N to B, which is described by the
table below. Unless m = 1, the function is not a homomorphism from (N, 1, s) into

x 1 2 . . . m − 1 m m + 1 m + 2 . . .
χ<(m, x) 0 0 . . . 0 0 1 1 . . .

(B, 0, t) for any choice of t, simply because there is no operation t on B that takes each

This assumes that the iterative structure is based on a set, rather than a proper class.
From Boole himself [, p. ]: ‘We have seen that the symbols of Logic are subject to the special

law,
x

2 = x.

Now of the symbols of Number there are but two, viz.  and , which are subject to the same formal
law.’
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entry in the bottom row of the table to the next entry. However, there is an operation
on N × B that takes each column of the table to the next column, namely (x, y) 7→
(

x + 1, max
(

y, χ=(m, x)
)

)

. Call this operation t; then (assuming m 6= 1) the function

x 7→
(

x, χ<(m, x)
)

is the unique homomorphism from (N, 1, s) to
(

N × B, (1, 0), t
)

.
If f is an arbitrary function from N to an arbitrary set A, then the function x 7→

(

x, f(x)
)

is a homomorphism from (N, 1, s) to
(

N×A,
(

1, f(1)
)

, (x, y) 7→
(

x+1, f(x+1)
)

)

.

But this would be a truly circular way to define f . The operations on N that Gödel []
calls recursive are not defined as homomorphisms. Rather, the collection of recursive
operations can itself be defined recursively as follows (here I follow Gödel in letting the
initial element of N be 0):

() constant operations and s are recursive;
() compositions of recursive operations are recursive;
() if ψ is an (n− 1)-ary, and µ an (n + 1)-ary, recursive operation for some positive

n, then the n-ary operation ϕ is recursive, where, for each n-tuple a of natu-
ral numbers, the function x 7→

(

x, ϕ(x,a)
)

is the unique homomorphism from

(N, 0, s) to
(

N × N,
(

0, ψ(a)
)

, (y, z) 7→
(

y + 1, µ(y, z, a)
)

)

.

Thus the recursive operations compose a sort of algebra which is closed both under
composition and under the operation that produces ϕ from ψ and µ.

. Numbers, axiomatically

Why does N admit recursive definitions of functions? The function h in (v) can be
understood as the smallest subset of N × A that contains (1, 1) and is closed under the
operation (x, y) 7→ (xs, ys). This set is a relation R from N to A, and it follows by
induction that, for each x in N, there is at least one y in A such that x R y. If this
y is always unique, then R is the desired homomorphism h. However, uniqueness of y
does not follow by induction alone: it is necessary, as well as sufficient, that 1 be not a
successor in N and that immediate predecessors, when they do exist, be unique. This is
Theorem  below.

Dedekind [, II (), pp. –] observes the sufficiency of the additional conditions,
along with the necessity of some additional condition. Indeed, let us say that an arbitrary
iterative structure A admits recursion if, for every iterative structure B, there is a
unique homomorphism from A to B. In particular, N admits recursion. If also A admits
recursion, then the homomorphism from A to N must be the inverse of the homomorphism
from N to A. Indeed, the composition (in either sense) of the two homomorphisms is a
homomorphism, but so is the identity, hence these must be equal. Therefore A and N

are isomorphic, and A admits induction, simply because N does. However, as Dedekind
notes, the converse does not follow; A may admit induction, but not recursion. Indeed,
for any natural number n, the quotient Z/(n) can be considered as an iterative structure
whose initial element is 0 and in which the successor of x is x + 1. Then Z/(n) admits
induction; but there is no homomorphism from Z/(n) to Z/(m) unless m | n.

As Landau [, Thms  & ; see also pp. ix. f.] shows implicitly, the recursive
definitions of addition and multiplication in (vi) and (vii) are in fact valid on arbitrary
iterative structures that admit induction. Such structures may be finite, as in the figure
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below (where n may be 1, and m may be 0). Henkin [] makes the point explicit, while

b b b b b

b

1 2 3 n n + 1

n + m − 1

observing that the recursive definition of exponentiation fails in some such structures.
Indeed, since for Henkin the initial element of N is 0, his definition of exponentiation is

x0 = s(0), xs(u) = xu · x,

which always fails in Z/(n) in case n > 1, simply because the definition requires 00 = 1,
but 0n = 0. However, if we keep 1 as the initial element of N, then the following curiosity
arises.

Theorem . On Z/(n), the recursive definition (viii) of exponentiation is valid if and
only if n ∈ {1, 2, 6, 42, 1806}.
Proof. The desired n are just such that

xn+1 ≡ x (mod n).

Such n are found by Zagier [], and earlier by Dyer-Bennet [], as I learned by entering
the sequence 1, 2, 6, 42, 1806 at []. Alternatively, such n must be squarefree, since if p
is prime and p2 | n, then (n/p)2 ≡ 0 (mod n), although n/p 6≡ 0 (mod n). So we want
to find the squarefree n whose prime factors p are such that xn+1 ≡ x (mod p), that is,
either p | x or xn ≡ 1 (mod p). Since x here might be a primitive root of p, we just want
n such that p−1 | n whenever p is a prime factor of n. Let us refer to a prime p as good

if p − 1 is squarefree and all prime factors of p − 1 are good. Then all prime factors of
n must be good. This definition of good primes can be understood as being recursive.

Indeed, the empty set consists of good primes. If A is a finite set of good primes, then
every prime of the form

1 +
∏

p∈B

p,

where B ⊆ A, is good. Then let A′ comprise these primes, along with the primes in A.
We have a recursively defined function x 7→ Ax on N, where A1 = ∅ and Ax+1 = Ax

′.
The set of good primes is the union of the sets Ax. We compute

A2 = {2}, A3 = {2, 3}, A4 = {2, 3, 7}, A5 = {2, 3, 7, 43},
but then the sequence stops growing, since

2 · 43 + 1 = 87 = 3 · 29; 2 · 7 · 43 + 1 = 603 = 32 · 67;

2 · 3 · 43 + 1 = 259 = 7 · 37; 2 · 3 · 7 · 43 + 1 = 1807 = 13 · 139.

So the set of good primes is {2, 3, 7, 43}. In this set, we have

p < q ⇐⇒ p | q − 1.
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Hence the set of desired n is {1, 2, 2 · 3, 2 · 3 · 7, 2 · 3 · 7 · 43}, which is as claimed. ¤

The sequence (2, 3, 7, 43) of good primes is the beginning of the sequence (a1, a2, . . . ),
where an+1 = a1 · a2 · · · an + 1. This sequence arises from what Mazur [] calls the
self-proving formulation of Proposition IX. of Euclid’s Elements. Euclid’s formulation,
in Heath’s translation, is, ‘Prime numbers are more than any assigned multitude of
prime numbers.’ In these terms, the self-proving formulation is that, if a multitude of
primes be assigned, then the product of its members, plus one, is a number whose prime
factors—of which there is at least one—are not in the assigned multitude.

Again, as an iterative structure, N admits recursive definition of functions because
of the theorem below. The theorem should be standard. Dedekind [, II (), p. ]
proves the reverse implication, as does, more recently, Stoll [, ch. , Thm ., p. ].
Mac Lane and Birkhoff [] mention the theorem, apparently attributing the forward
direction to Lawvere: they refer to admission of recursion by an iterative structure as
the Peano–Lawvere Axiom. (Lawvere and Rosebrugh [] call it the Dedekind–Peano
Axiom.)

Theorem  (Recursion). For an iterative structure to admit recursion, it is sufficient
and necessary that

() it admit induction,
() 1 be not a successor, and
() every successor have a unique immediate predecessor.

An iterative structure meeting the three conditions listed in the theorem is what
Dedekind [, II (), p. ] calls a simply infinite system; it is what is axiomatized by
the so-called Peano Axioms []. Peano seems to assume that the Recursion Theorem is
obvious, or at least that recursive definitions are obviously justified by induction alone.
They are not, as Landau points out [, pp. ix–x]; but the confusion continues to be
made.

To establish the sufficiency of the conditions given in the theorem, we can use them
as suggested at the head of this section. Namely, we can show that the unique homo-
morphism from N to an arbitrary iterative structure A is the intersection h of the set of
all relations from N to A that contain (1, 1) and are closed under (x, y) 7→ (xs, ys). This
requires assuming that N itself is indeed a set, as opposed to a proper class. As discussed
in the next section, one might wish to avoid doing this. In that case, one can obtain h
as the union of the set comprising every relation R from N to A such that, if x R y, then
either (x, y) = (1, 1) or else (x, y) = (us, vs) for some (u, v) such that u R v.

. Numbers, constructively

The next two sections have aspects of an historical review of set-theory. However, I re-
fer only to articles and books that I have direct access to (mainly, though not exclusively,

Ο� πρîτοι ¢ριθµοι πλείους ε�σ� παντÕς τοà προτεθέντος πλήθους πρώτων ¢ριθµîν []. Euclid says not that
there are infinitely many prime numbers, but that there are more than can be told.

Indeed, Mac Lane and Birkhoff [] seem to invite the student to make the confusion. They give
the Peano Axioms and then immediately use recursion to define the iterates of a permutation of a set.
Only later is the equivalence of recursion to the axioms mentioned. Another writer who invites confusion
is Burris [, Appendix B, p. ]: he states the Peano Axioms and then immediately defines addition
recursively without justification, although he claims to be following the presentation of Dedekind.
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in van Heijenoort’s anthology []); therefore my review is incomplete, as the references
in Fraenkel et al. [] and in Levy [] make me aware.

In a letter to a skeptic called Keferstein, Dedekind [] explains his work as an answer
to the question:

What are the mutually independent fundamental properties of the sequence N,
that is, those properties that are not derivable from one another, but from which
all others follow?

Having discovered these properties and made them the defining properties of a simply
infinite system, Dedekind feels the need to ask,

does such a system exist at all in the realm of our ideas? Without a logical
proof of existence it would always remain doubtful whether the notion of such
a system might not perhaps contain internal contradictions.

Dedekind finds his proof in ‘the totality S of all things, which can be objects of my
thought’ [, II (), p. ]: this is closed under the injective but non-surjective operation
that converts a thought into the thought that it is a thought. But I will say with
Bob Dylan, ‘You don’t need a weatherman to know which way the wind blows.’ The
consistency of Dedekind’s definition of a simply infinite system is self-evident. If we do
construct an example, this will tend to confirm, if anything, the validity of our method
of construction, rather than the consistency of the definition itself.

The existence of a simply infinite system with an underlying set is the Axiom of
Infinity of set-theory. I take set-theory to begin with the Extension Axiom mentioned in
§, along with the ‘Comprehension Axiom’: every property determines a set, namely
the set of objects with the property. Russell shows this ‘axiom’ to be false in his letter
to Frege:

Let w be the predicate: to be a predicate that cannot be predicated of itself. Can
w be predicated of itself? From each answer its opposite follows. Therefore we
must conclude that w is not a predicate. Likewise there is no class (as a totality)
of those classes which, each taken as a totality, do not belong to themselves.
From this I conclude that under certain conditions a definable collection does
not form a totality. []

It is common now to refer to Russell’s totalities as sets, and to his definable collections
as classes. Then all sets are classes. The ‘Comprehension Axiom’ is the converse; but it
is false. If alternative axioms for set-theory can be proposed, and these allow construction
of a satisfactory example of a simply infinite system, then the construction will not really
justify the Peano Axioms; rather, it will tend to justify the set-theory axioms.

Zermelo [] offers seven axioms for sets; they can be expressed as follows:

. Extension (as in §).
. Elementary Sets: classes ∅, {x}, and {x, y}, with no, one, and two elements,

are sets.
. Separation: subclasses of sets are sets.
. Power Set: the class P(x) of subsets of a set x is a set.
. Union: the union

⋃

x of a set x is a set.

I take the liberty of writing N where van Heijenoort’s text has simply N .
Actually the term ‘totality’ in the quotation is a translation from Russell’s German.
Like Zermelo, I shall not bother to distinguish axioms from axiom schemes.
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. Choice: the union of a set of nonempty disjoint sets has a subset that has exactly
one element in common with each of those disjoint sets.

. Infinity: there is a set that contains ∅ and closed under the operation x 7→ {x}
of singleton formation.

By the Axioms of Union and Elementary Sets, two sets x and y have a union, x ∪ y,
namely

⋃{x, y}. By the Power Set Axiom, for every set x, there is a set, namely P(x),
which has greater cardinality by Cantor’s Theorem. In particular, the sequence

x, P(x), P(P(x)), P(P(P(x))), . . . (ix)

is of strictly increasing cardinality, although we have not formulated a precise notion of
sequence.

By the Separation Axiom, the intersection
⋂

C of a nonempty class C is a set. Hence,
by the Axiom of Infinity, the intersection of the class of sets that contain ∅ and are
closed under x 7→ {x} is a set Ω. Therefore

(

Ω, ∅, x 7→ {x}
)

is a simply infinite system.
In particular, it admits induction, and we may express this by writing

Ω =
{

∅, {∅},
{

{∅}
}

, . . .
}

. (x)

It would however be more satisfactory to obtain Ω, as a class, without assuming the
Axiom of Infinity. To this end, let us denote by

Zm

the class comprising every set whose every element is either ∅ or {x} for some x in the

set. Then Zm contains the sets ∅, {∅},
{

∅, {∅}
}

,
{

∅, {∅},
{

{∅}
}

}

, and so forth. The

hope is that
⋃

Zm is the desired class Ω.
To tell whether the hope is realized, we can note first that induction makes sense

for proper classes. In particular, suppose
⋃

Zm has a subclass D that contains ∅ and
is closed under x 7→ {x}. Then on the class

⋃

Zm r D, the function {x} 7→ x of
unique-element extraction is well-defined, and the class is closed under this function.
If we could conclude that

⋃

Zm r D must be empty—which we cannot yet do—then
(
⋃

Zm, ∅, x 7→ {x}
)

would admit induction.
Skolem [, §, pp. –] observes that Zermelo’s axioms do not guarantee the exis-

tence of a set comprising the terms of the sequence in (ix). He remedies this with the
following axiom (also discovered by Fraenkel):

. Replacement: the image of a set under a function is a set.

Skolem makes the notion of a class precise: it is defined by a formula in (what we call)
the first-order logic of the signature {∈}. These formulas can be defined recursively:

. Equations x = y and ‘memberships’ x ∈ y are formulas.
. if x is a variable, and ϕ and ψ are formulas, then ¬ϕ, (ϕ ⇒ ψ), and ∃x ϕ are

formulas.

More precisely, a formula in one free variable defines a class, while a formula in two free
variables defines a binary relation, which may be a function. A binary relation becomes

The theorem is so called by Zermelo [, p. ].
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identified with a class when, with Kuratowski [, p.], we define ordered pairs by
the identity

(x, y) =
{

{x}, {x, y}
}

. (xi)

If we are willing to accept a recursive definition like the definition of formulas in the
signature {∈}, then we should accept a definition of natural numbers as strings of the
form s · · · s1 (or perhaps instead of the form 1 · · · 1). However, such definitions do not
give us natural numbers or formulas as composing sets. Nor is this required for the sake
of formulating set-theory in the first place.

A class on which the function {x} 7→ x is a well-defined operation is one example of
a class whose every element has nonempty intersection with the class. Skolem [, §,
p. ] perceives the possibility, along with the non-necessity, of such classes: this suggests
non-categoricity of the axioms so far. Von Neumann [, §, pp.–] more explicitly
proposes excluding such classes with a new axiom. His axiom can be understood as that
there is no sequence (a, a′, a′′, . . . ) such that a′ ∈ a, and a′′ ∈ a′, and so forth. Since
we are now engaged in determining how such a sequence can be formulated in the first
place, let us introduce the new axiom in the following form.

. Foundation: membership is well-founded on every nonempty class, that is, some
element is disjoint from the class.

With the new axiom then, the definition of Ω in (x) as the union
⋃

Zm works, in that
⋃

Zm admits induction by the argument above. However, it is not very satisfying to
have to rely on the new axiom. We can avoid using the axiom as such by incorporating
it into the definition of Zm.

Theorem . Let Zm
′ comprise those elements of Zm whose every subset x is disjoint

from some element of x. Then (
⋃

Zm
′, ∅, x 7→ {x}) is a simply infinite system, even

without recourse to the Axioms of Infinity and Foundation.

Proof. If A ∈ Zm
′, and D is a subclass of

⋃

Zm
′ that contains ∅ and is closed under x 7→

{x}, then on A∩(
⋃

Zm
′
rD), the operation {x} 7→ x is well-defined, so A∩(

⋃

Zm
′
rD)

must be empty. Since A was arbitrary,
⋃

Zm
′
r D is empty. ¤

It may appear that the definition of Ω as
⋃

Zm
′ still does not yield what is desired.

Foundation excludes sets on which the operation {x} 7→ x is well-defined; but suppose A

An earlier definition of ordered pairs is Wiener’s []: (x, y) =
n

˘

{x}, ∅
¯

,
˘

{y}
¯

o

, though Wiener

calls it ι‘(ι‘ι‘x ∪ ι‘Λ) ∪ ι‘ι‘ι‘y, using the notation of Whitehead and Russell [, pp. –].
The Foundation Axiom has a set form, namely that that membership is well-founded on every

nonempty set. See Levy [, II., p. ] on the equivalence of the two forms in the presence of the other
axioms. However, in the absence of the Axiom of Infinity, the set form of Foundation does not imply
the class form given above. A proof that this is so can be adapted from a proof given by Cohen [, II.,
p. ] to show the independence of the set form of Foundation from the other axioms. Suppose we do
have ω in the usual sense, as at (xiv) below. Let C be a set {ax : x ∈ ω} indexed by ω such that no
member is an element of another member. For example, each an could be {n + 1}. If a is an arbitrary
set, let Pf(x) denote the set of finite subsets of a. Now let C∗ =

S

{C, Pf(C), Pf(Pf(C)), . . . }. Define
< on C∗ so that a < b if and only if either a ∈ b, or else a = ak+1 and b = ak for some k in ω. Then
(C∗, <) is a model of the first eight numbered axioms above, except Infinity; and it is a model of the set
form of Foundation. But it is not a model of the class form of Foundation. Indeed, in (C∗, <), we can
define the class D of all sets A such that, if b ∈ A, then b ⊆ A. Then D =

S

{∅, P(∅), P(P(∅)), . . . },
and C∗

r D is a counterexample to Foundation.
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is a nonempty ‘collection’ on which {x} 7→ x is well-defined. Then the union A ∪Ω may
belong to Zm

′, unless A can be obtained as a subclass of this union. If we can obtain Ω
by other means, then we can obtain A as (A∪Ω) r Ω; but this just begs the question of
whether we have Ω as a class in the first place.

If we think we need to fix this problem, we might try letting Zm
′′ comprise the finite

elements of Zm
′. Here we can use for example the definition mentioned by Whitehead

and Russell [, ∗.], whereby B is finite if every subset of P(B) contains B,
provided the subset contains ∅ and is closed under the operation x 7→ {c} ∪ x for each c
in B. If Zm

′′ had a finite element A ∪ Ω0, where A violated Foundation, then we could
remove the elements of Ω0 one by one, thus obtaining A, in violation of Foundation.
However, we still have no guarantee that we can do this, unless we already have Ω0 as a
class.

The problem here is the one that Skolem hit upon: set-theory is not categorical.
Indeed, suppose the formula ϕ(x) defines the class Ω as in (x), and introduce constants
c, c′, c′′, . . . Then the sentences

ϕ(c), c′ ∈ c, ϕ(c′), c′′ ∈ c′, ϕ(c′′), . . .

are consistent with set-theory, in that no contradiction is derivable from them that is not
already derivable from the axioms. We must settle for observing that, in any model of
set theory, ϕ defines a class that acts as if it were as in (x). From outside the model,
we may see an infinite descending chain of elements of the model; but the chain is not a
class of the model.

. Ordinals

As sets may be gathered into classes, so classes may be gathered into—let us say
families. For example, given an equivalence-relation on a class, we have the family of
equivalence-classes of members of that class.

Given well-ordered sets A and B, let us say A < B if A is isomorphic to a proper
initial segment of B. Then exactly one of x < y, x ∼= y, and y < x holds for all well-
ordered sets x and y. Hence the relation < induces a well-ordering of the family of
isomorphism-classes of well-ordered sets.

It may be desirable to find a well-ordered class that is isomorphic to the family of
isomorphism-classes of well-ordered sets. This will be

ON,

the class of ordinal numbers. Then every well-ordered set will be isomorphic both
to a unique ordinal and to the well-ordered set of its predecessors in ON. With this
motivation and observation, von Neumann [] obtains ON so that each element is the
set of its predecessors.

I learn the reference from Suppes [, p. ]; various definitions of finite sets are discussed by
Tarski [].

Edward Nelson recommends conceiving some natural numbers as nonstandard and as composing
an infinite descending chain. See Chapter , ‘Internal set theory,’ of a once-proposed book (http:
//www.math.princeton.edu/~nelson/books.html, accessed March , ).



NUMBERS 

Suppose A is an order, or ordered set, (A, <): by this I mean simply that < is
irreflexive and transitive on the set A. A section of A is the set of predecessors in A
of a particular element of A. Let the set of predecessors of x be denoted by pred(x), so
that

pred(x) = {y ∈ A : y < x}.
since it is the set of predecessors of x in A. Then A admits induction if the only subset
B of A for which

pred(x) ⊆ B =⇒ x ∈ B

for all x in A is A itself. There are various ways to define recursion in ordered sets; it is
simplest for present purposes to say that A admits recursion if, for every class C, for
every function F from P(C) to C, there is a unique function g from A to C given by

g(x) = F ({g(y) : y < x}) = F (g[pred(x)]). (xii)

As with Theorem , the following should be standard. Indeed, possibly awareness of
the following has led to the misconception that recursion and induction are equivalent
properties of iterative structures.

Theorem  (Recursion). For total orders, admission of recursion and induction are
equivalent to each other and to being well-ordered. ¤

If A is well-ordered, and in (xii) we let F be the identity on the universe V, then

g(x) = {g(y) : y < x} = g[pred(x)]. (xiii)

In this case, (g[A],∈) is the ordinal number isomorphic to A; indeed, this is so by von
Neumann’s original definition of the ordinal numbers [, p. ]. Alternative, equivalent
definitions include R. Robinson’s [], namely that an ordinal is a set that both is to-
tally ordered by membership and includes all of its elements. This definition of ordinals
assumes the Foundation Axiom, which ensures that each ordinal is well -ordered by mem-
bership. A set that includes all of its elements is a transitive set; then another definition
of ordinals, again assuming Foundation, is that they are transitive sets of transitive sets.

The class ON has the injective operation x 7→ x ∪ {x} of succession as well as the
element ∅, which is not a successor. Thus ON meets two of the three conditions for being
a simply infinite system. It fails to meet the third condition, of admitting induction, if
there are ordinals other than ∅ that are not successors. Such ordinals are limits. The
class of ordinals that neither are limits nor contain limits is called

ω. (xiv)

This is an initial segment of ON, so it is either ON itself or a member of it. In any case,
(ω, ∅, x 7→ x ∪ {x}) is a simply infinite system. We could let the Axiom of Infinity be
that ω is a set.

Fraenkel et al. [, ch. II, §, , p. ] are vague on whether this Axiom can be expressed
in the form ‘Such-and-such a class is a set.’ They list three forms of the Axiom, called VIa,
b, and c, namely: there are sets containing ∅ and closed under x 7→ {x}, x 7→ x ∪ {x},
and (x, y) 7→ x ∪ {y} respectively. They write:

So < is what is sometimes called a strict partial ordering, although it might be total.
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In our heuristic classification of the axioms, as to whether they are instances of
the axiom schema of comprehension or not, the axiom of infinity can, to some
extent, be viewed as such an instance. Each of VIa and VIb can be stated
as ‘there exists a set which consists of all natural numbers’, for the respective
notion of natural number, and VIc can be stated similarly.

The authors seem to be treating ‘being a natural number’ as a condition defining a class
in the original imprecise sense. However, the authors do have the precise notion of a
condition as being given by a formula in the first-order logic of ∈. I do not know why
they do not directly address the question of whether, without the Axiom of Infinity, there
is still a formula defining the natural numbers.

The Recursion Theorem for iterative structures (Theorem  above) can be extended to
include the following, which gives conditions under which the equivalence of properties 
and  in § can be established.

Theorem . The following are equivalent conditions on an iterative structure.

. It is a simply infinite system.
. It can be well-ordered so that x < xs, and every element besides 1 is xs for some

element x.
. It admits induction and can be ordered so that x < xs.

Proof. Every iterative structure satisfying  is isomorphic to ω, which satisfies .
Suppose B satisfies , and A is a substructure. If B rA were non-empty, then its least

element would be cs for some c; but c < cs, so c ∈ A, hence cs ∈ A. Therefore B r A is
empty. Thus B satisfies .

Suppose finally A satisfies . As noted in §, addition can be defined in A to satisfy (vi).
Again by induction, the ordering of A satisfies x < x + y. Let h be the homomorphism
from (N, 1, s) to A. Then h is surjective by induction in A, and h(x + y) = h(x) + h(y)
by induction on y in N. Moreover, in N, if x < y, then x + z = y for some z, so
h(x)+h(z) = h(y) and therefore h(x) < h(y). Thus h is injective, so h is an isomorphism,
and therefore A, like N, satisfies . ¤

Ordinals suggest the following alternative form of Theorem , that is, another way to
obtain the class Ω in (x).

Theorem . Let C comprise every set

() whose every element is ∅ or {x} for some element x and
() which has a well-ordering < such that x < {x} for each element x such that {x}

is also an element.

Then (
⋃

C, ∅, x 7→ {x}) is a simply infinite system, even without recourse to the Axioms
of Infinity and Foundation.

Proof. Suppose A ∈ C. Then {x} is the successor of x in the well-ordering of A; that is,
there is no y such that x < y < {x}. Indeed, if there is, let x be least such that there
is; and then let y be least. But y 6= ∅, since ∅ must be the least element of A. Hence
y = {z} for some z, and then z < x by minimality of y, so z < x < {z}, contrary to the
minimality of x.

Now suppose also B ∈ C. Then one of A and B is an initial segment of the other,
when both are considered as well-ordered sets. Indeed, one of them, say A, is isomorphic
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to an initial segment of the other, B. If the isomorphism is h, then there can be no
least element x of A such that h(x) 6= x, since if there is, then x = {y} for some y, so
h(x) = h({y}) = {h(y)} = {y} = x (since {y} succeeds y, and {h(y)} succeeds h(y), in
the respective orderings).

It now follows that
⋃

C satisfies condition  in Theorem . ¤

Having ON, we can define the function R on ON recursively by

R(α) =
⋃

{P(R(β)) : β < α}.

Then
⋃

R[ON] is called WF, the class of well-founded sets; it is a model of the set-
theoretic axioms, including Foundation, regardless of whether the latter ‘really’ holds; so
we might as well assume that it does hold. Then WF is the class of all sets.

Similarly, there is a function L on ON such that
⋃

L[ON]—the class of constructible

sets—is a model of all of the set-theoretic axioms, including Choice, regardless of whether
the latter ‘really’ holds; so we may assume that it does hold.

Now all of the set-theoretic axioms are consistent with those that can be expressed in
the form ‘Such-and-such a class is a set’, along with Extension.

Part 

. Algebras and orderings

Having ω, we can define arbitrary structures. This is done at the beginning of any
model-theory book (such as Hodges []), except that these books generally assume that
structures and their signatures are based on sets. That assumption is not made here.

If C is a class, and n ∈ ω, then C
n can be understood as the class of functions from

n into C. (Such functions are indeed sets, by the Replacement Axiom, so there can be
a class of them.) An n-ary relation on C is a subclass of C

n. In particular, a nullary

(0-ary) relation is either ∅ or {∅}, that is, 0 or 1 (the sets composing B as used in §).
An n-ary operation on C is a function from C

n into C. In the most precise sense, a
signature can be defined as two disjoint classes—of predicates and function-symbols

respectively—together with a function from their union into ω. A signature (Sp, Sf , ar)
may be written more simply as S , and S may be treated as Sp∪Sf ; then a structure

with this signature is a class C together with a function s 7→ sC on S such that if
ar(s) = n, then sC is an n-ary relation (when s ∈ Sp) or operation (when s ∈ Sf) on

C. The class C is then the universe of the structure, and sC is the interpretation of
s in the structure; but as noted in §, we may refer to the interpretation as s also. I
follow the tradition of denoting a structure by the Fraktur form of the letter used for its
universe.

An algebra is a structure whose signature has only function-symbols. If A and B are
algebras with the same signature, then a homomorphism from the former to the latter

I use the notation of Kunen [, p. ]. It seems the original definition is by von Neumann.
For the same reason, we may assume that the Generalized Continuum Hypothesis holds; but we

don’t.
Ziegler [] treats the ‘monster model’ of a complete theory as based on a proper class; but the

signature is still a set.
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is a function h from A to B, inducing a function h from An to Bn for each n in ω, such
that

h(FA(x)) = FB(h(x)) (xv)

for all x in An, for all n-ary F from the signature, for all n in ω. In case n = 0, (xv)
becomes h(FA) = FB. An algebra admits recursion if from it to every algebra in the
same signature there is a unique homomorphism; an algebra admits induction if it has
no proper sub-algebra. I do not know who first formulated the following generalization
of Theorem , though Enderton [, p. ] alludes to such a theorem:

Theorem  (Recursion). An algebra admits recursion if and only if it admits induction
and its distinguished operations are injective and have disjoint ranges. ¤

In a signature with no nullary function-symbols, the only algebras that admit induction
are empty. An arbitrary algebra that admits recursion can be called free. All free
algebras in the same signature are isomorphic.

If the universe of an algebra B is a set, then B has a subalgebra A that admits induc-
tion. Indeed, the universe of A is the intersection of the set of universes of subalgebras
of B. In short, A is the smallest subalgebra of B. If the universe of B is a proper class,
then we cannot obtain A in this way. We might use a trick to obtain A, as in Theorem 
or . It would be more efficient to obtain a free algebra F in the same signature, since
then A will be the image of F in B.

In an arbitrary algebraic signature S , we shall obtain a free algebra as a subalgebra of
the algebra S(S ) of strings of S . The universe of S is S <ω, namely

⋃{S n : n ∈ ω};
but in this context an element x 7→ sk of S n is written as s0 · · · sn−1. The length of
every element of S n is n. If F is an n-ary symbol of S , then FS is the operation

(t0, . . . , tn−1) 7−→ Ft0 · · · tn−1 (xvi)

of concatenation on S. Here the length of Ft0 · · · tn−1 is one plus the sum of the lengths
of the tk. Because the class ω of possible lengths is well-ordered, we have the following.
The theorem is a requirement for doing symbolic logic, but perhaps not every logician
bothers to work out the proof.

Theorem . S(S ) has a subalgebra that is a free algebra.

Proof. Let C be the class of subsets b of S <ω such that every element of b is Ft0 · · · tn−1

for some elements tk of b, for some n-ary F in S , for some n in ω. Let A =
⋃

C. Then
A is the universe of a subalgebra A of S(S ), since if F is an n-ary element of S , and
(tk : k < n) ∈ An, then each tk is in some bk in C, and then

⋃

{bk : k < n} ∪ {Ft0 · · · tn−1} ∈ C,

so Ft0 · · · tn−1 is in A.
The algebra A admits induction. Indeed, if not, then it has a proper subalgebra with

universe B. An element of A r B of minimal length has the form Ft0 · · · tn−1, where
each tk must therefore belongs to B; but then Ft0 · · · tn−1 must also be in B.

Immediately the operations FS have disjoint ranges.
Proper initial substrings of elements of A are not elements of A. Indeed, suppose this

is so for every element of A that is shorter than the element Ft0 · · · tn−1. If Ft0 · · · tn−1

has an initial segment that is in A, then this segment must have the form Fu0 · · ·un−1,
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where one of t0 and u0 is an initial segment of the other, so by inductive hypothesis they
are both equal. Likewise, if, for some k in n, we have that ti and ui are equal when i < k,
then tk = uk. By induction in n, we have Ft0 · · · tn−1 = Fu0 · · ·un−1. By induction on
lengths, proper initial segments of elements of A are not elements of A.

Consequently each operation FS on A is injective. By Theorem  then, A does indeed
admit recursion. ¤

The free algebra guaranteed by the theorem can be denoted by

Tm0(S );

it comprises the closed terms of S in Łukasiewicz or ‘Polish’ notation [, n. ,
p. ]. Again, it was because we already had ω as a class that we could obtain Tm0(S )
without working out a full analogue of Theorem  or . However, I wish now, in the
remaining sections, to work out an analogue of ω itself in the signature S .

. Numbers, generalized

If S is an arbitrary algebraic signature, we want to obtain a class ωS that is to ω as
S is to {1, s}. We can consider ω to arise as follows.

One starts with the assumption that there is some simply infinite system (N, 1, s).
With some difficulty, one shows that there is a total ordering of N such that x < xs for
all x in N; then one shows that N is well-ordered by <. Now one has a function g on N

as in (xiii), so that g(x) = g[pred(x)]. One then computes

g(1) = g[∅]

= ∅,

g(x + 1) = g[pred(x + 1)]

= g[pred(x) ∪ {x}]
= g[pred(x)] ∪ g[{x}]
= g(x) ∪ {g(x)}.

(xvii)

Let x ∪ {x} be denoted by

x′.

Thus g is a homomorphism from (N, 1, s) to (V, ∅, ′), and the latter has a substructure
with universe g[N] that admits induction. By the Foundation Axiom, the operation
x 7→ x′ on V is injective. Therefore g is an embedding, and (g[N], ∅, ′) is a simply
infinite system. The ordering of g[N] induced from N by g is membership. By induction,
each element of g[N] is transitive. One then defines ON to consist of the transitive
sets that are well-ordered by membership. Then (ON, ∅, ′) is an iterative structure;
moreover, ON is transitive and well-ordered by membership. An element of ON that
neither is ∅ nor belongs to the image of x 7→ x′ is a limit. One defines ω as the class
of all elements of ON that neither are limits nor contain limits. Then ω contains ∅ and
is closed under x 7→ x′, but no proper subclass C of ω is the universe of a substructure
of (ω, ∅, ′), since the least element of ω r C is either ∅ or else α′ for some α in C.
Therefore one has recovered g[N] as ω. In particular, there is no need to use the Peano
Axioms to define an ordering that well-orders N; such an ordering is induced from ω.

The ordering of N can also be defined recursively, without reference to ω, by

pred(1) = ∅, pred(n + 1) = pred(n) ∪ {n}. (xviii)
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We want similarly to define an ordering on the free algebra Tm0(S ). Meanwhile, as
a first generalization of (xvii), on Tm0(S ) we have the height function, hgt, given
recursively by

hgt(Ft0 · · · tn−1) =
⋃

{

hgt(tk) ∪ {hgt(tk)} : k < n
}

. (xix)

By induction, hgt(x) is in ω, and hgt(Ft0 · · · tn−1) is the greatest of the numbers
hgt(tk) + 1 (so it is 0 if n = 0). In a generalization of (xviii), we can make the re-
cursive definitions

pred(Ft0 · · · tn−1) =
⋃

{pred(tk) ∪ {tk} : k < n},

predk(Ft0 · · · tn−1) =

{

pred(tk) ∪ {tk}, if k < n,

∅, if k > n.

Immediately,

pred(Ft0 · · · tn−1) =
⋃

{predk(Ft0 · · · tn−1) : k ∈ ω}. (xx)

Let us also write

t < u ⇐⇒ t ∈ pred(u), t <k u ⇐⇒ t ∈ predk(u). (xxi)

An ordering directs a class if every finite subset has an upper bound in the class with
respect to the ordering. An ordering is well-founded on a class if every section of the
class is a set and every subset of the class has a minimal element.

Lemma . On Tm0(S ):

() x < y if and only if x <k y for some k in ω;
() if x < y and y <k z, then x <k z;
() < and <k are well-founded orderings;
() < directs predk(x);
() tk is maximal with respect to < in predk(Ft0 · · · tn−1), assuming k < n.

Proof. Condition () is a restatement of (xx), and () is

y <k z =⇒ pred(y) ⊆ predk(z),

which is established by induction on z. Indeed, suppose the claim holds when z ∈
{t0, . . . , tn−1}, but now y < Ft0 · · · tn−1. Then either y <k tk or y = tk for some k in n.
In the former case, by inductive hypothesis and (), pred(y) ⊆ predk(tk) ⊆ pred(tk).
Hence, in either case,

pred(y) ⊆ pred(tk) ⊆ predk(Ft0 · · · tn−1),

so the claim holds when z = Ft0 · · · tn−1.
By () and (), the relations < and <k are transitive. To complete (), we observe by

induction on u that

v < u =⇒ hgt(v) ∈ hgt(u).

As ∈ is irreflexive, so is <, and hence so is <k, by (). As ∈ is well-founded, and the
classes pred(y) are all sets, < and <k are well-founded.

Finally, both () and () follow from the observation that, by definition, tk is the
maximum element of predk(Ft0 · · · tn−1) with respect to <, if k < n. ¤
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Proving the lemma would take more work if the corresponding ordering ∈ of ω were
not available. One could use the ordering on N as defined by (xviii); but proving directly
that it is a well-ordering takes more work than proving the same for ∈ on ω. In any
case, we can now prove a generalization of Theorem .

Theorem . An algebra in a signature S is free if and only if

() it has orderings < and <k for each k in ω, with corresponding sets of predecessors
as in (xxi), such that
(a) x < y if and only if x <k y for some k in ω,
(b) if x < y and y <k z, then x <k z,
(c) < directs predk(x),
(d) xk is a maximal element with respect to < of predk(F (x0, . . . , xn−1)), as-

suming k < n,
() the distinguished operations have disjoint ranges, and
() one of the following:

(a) the union of these ranges is the whole underlying class of the algebra, and <
is well-founded, or

(b) the algebra admits induction.

Proof. If an algebra in S is free, then it is isomorphic to Tm0(S ), so () follows from
the lemma. Also () and (a) follow from this and Theorem .

Suppose B satisfies (), (), and (a), and A is a subalgebra. If B r A is nonempty,
then it has a minimal element of the form F (x0, . . . , xn−1); but then the xk must be in
A, and then so must F (x0, . . . , xn−1) be. Thus B = A, so it satisfies (b).

Finally, suppose A satisfies (), (), and (b). By Theorem , to conclude that A is free,
it is enough to show that each FA is injective. By induction in A, the homomorphism h
from Tm0(S ) to A is surjective. If some FA is not injective, then there is some minimal
Ft0 · · · tn−1 in Tm0(S ) for which

FA(h(t0), . . . , h(tn−1)) = h(Ft0 · · · tn−1) = h(Fu0 · · ·un−1) = FA(h(u0), . . . , h(un−1))

for some Fu0 · · ·un−1, although h(tk) 6= h(uk) for some k. But h(tk) and h(uk) are
maximal, and the set of them has an upper bound, in predk(h(Ft0 · · · tn−1)); hence they
are equal. This contradiction shows A is free. ¤

Suppose x is an (n + 1)-tuple (x0, . . . , xn) for some n in ω. Let us say that the type

of x is xn; if k < n, let us say that the elements of x of grade k are the elements of xk.
We may use the following notation:

y ∈k (x0, . . . , xn) ⇐⇒ k < n N y ∈ xk,

G (x) =

{

⋃{xk : k < n}, if x = (x0, . . . , xn) for some n in ω and some xk,

∅, otherwise,

y ∈′ x ⇐⇒ y ∈ G (x).

Here G (x) is the set of ‘graded’ elements of x. Any elements of xn, as such, are left out.
The notion of well-foundedness makes sense for arbitrary binary relations, such as

∈′. Indeed, a binary relation R is well-founded on a class C if

This observation, with the ensuing definition, is apparently due to Zermelo [, II.., p. ].



 DAVID PIERCE

() the class {x : x ∈ C N x R a} is a set whenever a ∈ C, and
() if b is a nonempty subset of C, then b has a minimal element with respect to R,

that is, an element d such that

b ∩ {x : x R d} = ∅.

By the axioms of Infinity and Choice, condition () is equivalent to

(*) there is no sequence (an : n ∈ ω) of elements of C such that an+1 R an for each
n in ω.

In particular, well-founded relations are irreflexive. The Foundation Axiom is just that
membership is well-founded on V. If R is well-founded on C, then (C, R) admits

induction in the sense that the only subclass D of C for which

C ∩ {x : x R a} ⊆ D =⇒ a ∈ D

for all a in C is C itself.

Theorem . The relation ∈′ is well-founded on V.

Proof. Using the definition (xi) for ordered pairs, we have

(x0, . . . , xn) =
{

{

{0}, {0, x0}
}

, . . . ,
{

{n}, {n, xn}
}

}

,
⋃ ⋃

(x0, . . . , xn) = {0, . . . , n, x0, . . . , xn},

so {y : ∈′ x} ⊆
⋃ ⋃ ⋃

x, a set. Suppose there were a sequence (xn : n ∈ ω) such that
always xn+1 ∈′ xn. Then always xn+1 ∈ ⋃ ⋃ ⋃

xn. But then, assuming xn ∈ R(αn), we
should have also

⋃ ⋃ ⋃

xn ∈ R(αn), and then xn+1 ∈ R(αn+1) for some αn+1 that was
strictly less than αn. There is no such sequence (αn : n ∈ ω) of ordinals. ¤

For a better generalization of (xvii) than (xix), we make V into an S -algebra by
defining

FV(x0, . . . , xn−1) = (G (x0) ∪ {x0}, . . . ,G (xn−1) ∪ {xn−1}, F ) (xxii)

for all F in S .

Theorem . The operations FV are injective and have disjoint ranges.

Proof. That the ranges are disjoint is immediate from the definitions. If

FV(x0, . . . , xn−1) = FV(y0, . . . , yn−1),

but xk 6= yk for some k, then, since

G (xk) ∪ {xk} = G (yk) ∪ {yk},
we have xk ∈ G (yk) and yk ∈ G (xk), that is, xk ∈′ yk and yk ∈′ xk. But this contradicts
Theorem . ¤

Considering V as an S -algebra, we can now define

ωS

as the homomorphic image of Tm0(S ) in V. Then ωS is free by Theorems  and .
But I propose to obtain ωS alternatively as a certain subclass of a class ONS , just as
ω is obtained from ON.
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. Ordinals, generalized

Let us define
predk(x) = {y : y ∈k x},

so that

predk((x0, . . . , xn)) =

{

xk, if k < n,

∅, otherwise,

and
G (x) =

⋃

{predk(x) : k ∈ ω}.
Let us say that x is k-transitive if

y ∈ predk(x) =⇒ G (y) ⊆ predk(x).

In order to define ONS , we first define a class DS , which comprises all x such that

() x is an (n + 1)-tuple having the type of an n-ary element of S for some n in ω,
and then predk(x) 6= ∅ whenever k < n;

() each element y of G (x) is an (m + 1)-tuple having the type of an m-ary element
of S for some m in ω, and then predℓ(y) 6= ∅ whenever ℓ < m;

() x is k-transitive for each k in ω;
() each element of G (x) is k-transitive for each k in ω.

We shall presently define ONS as a subclass of DS . Meanwhile, we already have some
analogues to properties of ON.

Lemma . The relation ∈′ is transitive on DS .

Proof. If DS contains x, y, and z, where y ∈′ x and z ∈′ y, then y ∈ G (x), so y ∈
predk(x) for some k, and therefore G (y) ⊆ predk(x) ⊆ G (x) by (); but also z ∈ G (y),
so z ∈ G (x), that is, z ∈′ x. ¤

Also, like ON itself, DS has a kind of transitivity:

Lemma . If x ∈ DS , then G (x) ⊆ DS .

Proof. Suppose x ∈ DS and y ∈ G (x). Then y satisfies (), by () for x. Also y
satisfies (), by () for x. Finally, y ∈ predk(x) for some k in ω, so by () for x we have
G (y) ⊆ predk(x), hence G (y) ⊆ G (x). So y satisfies () and (). Therefore y ∈ DS . ¤

When S = {1, s}, then DS is not really anything new. Indeed, informally,

D{1,s} =
{

(1),
({

(1)
}

, s
)

,
({

(1),
({

(1)
}

, s
)

}

, s
)

, . . .
}

.

Using the definition in (xxii), we have:

Theorem . (D{1,s}, 1
V, sV) ∼= (ON, ∅, α 7→ α + 1).

Proof. Note that 1V is the 1-tuple (1). From ON to V, there is a function H defined
recursively by

H(α) =

{

(1), if α = ∅;

(H[α], s), if α 6= ∅.

Then
G (H(α)) = pred0(H(α)) = H[α]. (xxiii)
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Therefore

H(α + 1) = (H[α] ∪ {H(α)}, s) = (G (H(α)) ∪ {H(α)}, s) = s
V(H(α)),

which means H is a homomorphism of {1, s}-algebras. If α < β, then H(α) ∈ H[β], so
H(α) ∈′

H(β) by (xxiii). Therefore H is order-preserving and, in particular, injective.
It remains to show that the range of H is D{1,s}.

In the definition of D{1,s}, conditions () and () hold for elements of H[ON] by
definition of H . Then () follows; that is, H(β) is always k-transitive. Indeed, it is
trivially so, if β = 0 or k > 0; and by (xxiii), we have that, if x ∈ pred0(H(β)), then
x = H(α) for some α, so

G (x) = H[α] ⊆ H[β] = pred0(H(β)).

Since each element of G (H(β)) is some H(α), it is k-transitive too: thus (). So H

maps ON into D{1,s}.
By induction in D{1,s} with respect to the well-founded relation ∈′, we establish

D{1,s} ⊆ H[ON]. Suppose x ∈ D{1,s}. Then G (x) ⊆ D{1,s} by the lemma. As an
inductive hypothesis, suppose G (x) ⊆ H[ON]. If H(β) ∈ G (x), and α < β, then, since
H(α) ∈ G (H(β)) by (xxiii), we have H(α) ∈ G (x) by the 0-transitivity of x. Thus
{α : H(α) ∈ G (x)} is transitive, so it is an ordinal β, and H[β] = G (x). If β = ∅, then
x = (1) = H(β) by the second part of condition () in the definition of D{1,s}; if β 6= ∅,
then G (x) 6= ∅, so x can only be (G (x), s), which is also H(β). So H is an isomorphism
between ON and D{1,s}. ¤

An element x of DS can be called a limit if some set predk(x) has no maximal element
with respect to ∈′. In general, there may be x in DS such that neither x nor any element
of G (x) is a limit, but still x is not in ωS . Indeed, if S = {a, b, s}, where a and b are
nullary, and s is singulary as usual, then D{1,s} contains

({

(a), (b)
}

, s
)

, which is not in
ωS . So we let

ONS

denote the class of x in DS that meet the additional conditions

() ∈′ directs each set predk(x);
() ∈′ directs each set predℓ(y) for each y in G (x).

We already know from Theorem  that ∈′ is well-founded on ONS and its elements;
but this relies on the axioms of Foundation, Infinity, and Choice. To avoid this reliance,
we can impose one additional condition on the elements x of ONS :

() ∈′ is well-founded on G (x).

Theorem . The relation ∈′ is a well-founded ordering of ONS .

Proof. By Lemma , ∈′ is transitive on ONS . If x ∈ ONS , then, because ∈′ is well-
founded on G (x) by (), in particular x /∈′ x. Therefore ∈′ orders ONS . Also {y : y ∈
ONS N y ∈′ x} is a set, being a subclass of G (x). Suppose b ⊆ ONS and x ∈ b. If
x is not a minimal element of b with respect to ∈′, then b ∩ {y : y ∈′ x}, being a subset
of G (x), has a minimal element; but this minimal element is minimal in b as well, by
transitivity of ∈′. Therefore ∈′ is well-founded on ONS . ¤

Theorem . If x ∈ ONS , then G (x) ⊆ ONS .
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Proof. Suppose x ∈ ONS and y ∈ G (x). By Lemma , we know y ∈ DS . By () for x,
we know y satisfies (); by () also, y satisfies (). Finally, since G (y) ⊆ G (x) by (), we
have () for y. ¤

Theorem . ONS is an S -subalgebra of V.

Proof. Suppose xk ∈ ONS when k < n, and let y = FV(x0, . . . , xn−1). We show that y
satisfies the defining conditions of ONS .

. First, y satisfies () by definition, that is, (xxii).
. Suppose z ∈ G (y); equivalently, z ∈ predk(y) for some k in n. But

predk(y) = G (xk) ∪ {xk}, (xxiv)

so in particular either z = xk or z ∈ G (xk). By () and () respectively for xk, we have
that y satisfies ().

. Also, if z = xk, then
G (z) = G (xk) ⊆ predk(y),

while if z ∈ G (xk), then z ∈ predℓ(xk) for some ℓ, so that

G (z) ⊆ predℓ(xk) ⊆ G (xk) ⊆ predk(y)

by () for xk and (xxiv). Thus y satisfies ().
. If z = xk, then z is ℓ-transitive for each ℓ in ω by () for xk, while if z ∈ G (xk),

then z is ℓ-transitive for each ℓ in ω by () for xk. Therefore y satisfies (), and so
y ∈ DS .

. By (xxiv), we have that xk is the greatest element of predk(y) with respect to ∈′,
so this ordering directs predk(y). Thus y satisfies ().

. If z = xk, then ∈′ directs predℓ(z) by () for xk, while if z ∈ G (xk), then ∈′ directs
predℓ(z) by () for xk. Therefore y satisfies ().

. We have G (y) =
⋃{G (xk) ∪ {xk} : k < n}. By Theorems  and , since ∈′ is

well-founded on each G (xk), it is also well-founded on each set G (xk) ∪ {xk} and hence
on their union. So y is in ONS . ¤

Now ωS can be understood as the image of Tm0(S ) in ONS . But again, we want
to obtain ωS independently from Tm0(S ).

Theorem . ωS consists of those x in ONS such that neither x nor any element of
G (x) is a limit.

Proof. By Theorem , we can argue by induction. Suppose xk meets the conditions
when k < n. Let z = FV(x0, . . . , xn−1). Each xk is a maximal element of predk(z), so z
is not a limit. Each element of G (z) is either xk or an element of G (xk) for some k in n,
so it is not a limit either. Thus z meets the conditions.

To prove the converse, suppose if possible that (x0, . . . , xn−1, F ) is a counterexample
that is minimal with respect to ∈′. Then each of the xk has a maximal element, uk, with
respect to ∈′. But ∈′ directs xk, so uk is the greatest element, hence xk ⊆ G (uk)∪ {uk}.
Also G (uk) ⊆ xk by the k-transitivity of (x0, . . . , xn−1, F ). Thus

(x0, . . . , xn−1, F ) = (G (u0) ∪ {u0}, . . . ,G (un−1) ∪ {un−1}, F ) = FV(u0, . . . , un−1).

But also, neither uk nor any element of G (uk) is a limit, so uk ∈ ωS by minimality of
(x0, . . . , xn−1, F ), and therefore FV(u0, . . . , un−1) ∈ ωS . ¤
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