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Introduction

The writing of this report was originally provoked, both by
frustration with the lack of rigor in analytic geometry texts,
and by a belief that this problem can be remedied by atten-
tion to mathematicians like Euclid and Descartes, who are the
original sources of our collective understanding of geometry.
Analytic geometry arose with the importing of algebraic no-
tions and notations into geometry. Descartes, at least, justified
the algebra geometrically. Now it is possible to go the other
way, using algebra to justify geometry. Textbook writers of
recent times do not make it clear which way they are going.
This makes it impossible for a student of analytic geometry to
get a correct sense of what a proof is.

If it be said that analytic geometry is not concerned with
proof, I would respond that in this case the subject pushes the
student back to a time before Euclid, but armed with many
more unexamined presuppositions. Students today suppose
that every line segment has a length, which is a positive real
number of units, and conversely every positive real number
is the length of some line segment. The latter supposition is
quite astounding, since the positive real numbers compose an
uncountable set. Euclidean geometry can in fact be done in a

I call this document a report simply because I have used for it the
LTEX document class called “report” (strictly the koma-script class
corresponding to this).

And if it is true for the students, must it not also be so for their
teachers?





countable space, as David Hilbert pointed out.
I made notes on some of these matters. The notes grew

into this report as I found more and more things that were
worth saying. There are many avenues to explore. Some notes
here are just indications of what can be investigated further,
either in mathematics itself or in the existing literature about
it. Meanwhile, the contents of the numbered chapters of this
report might be summarized as follows.

. The logical foundations of analytic geometry as it is of-
ten taught are unclear. Analytic geometry can be built
up either from “synthetic” geometry or from an ordered
field. When the chosen foundations are unclear, proof
becomes meaningless. This is illustrated by the exam-
ple of “proving analytically” that the base angles of an
isosceles triangle are equal.

. Rigor is not an absolute notion, but must be defined
in terms of the audience being addressed. As modern
examples of failures in rigor, I consider the failure to
distinguish between
• the two kinds of completeness possessed by the or-

dered field of real numbers;
• induction and well ordering as properties of the nat-

ural numbers.
. Ancient mathematicians like Euclid and Archimedes still

set the standard for rigor
• in the theory of proportion, which ultimately made

possible Dedekind’s rigorous definition of the real
numbers;
• in the justification of infinitesimal methods, as for

example in the proof that circles are to one another
as the squares on their diameters.

. Why are the Ancients rigorous? I don’t know. But we
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ourselves still expect rigor from our students, if only be-
cause we expect them to be able to justify their answers
to the problems that we assign to them. If we don’t
expect this, we ought to.

. There is an old analytic geometry textbook that I learned
something from as a child, but that I now find mathemat-
ically sloppy or extravagant, for not laying out clearly
• its geometrical assumptions and
• and its “analytic” assumption of a one-to-one corre-

spondence between the positive real numbers and
the abstractions called lengths.

It would be better not to encourage the fantasy of a uni-
versal ruler that can measure every line segment. This
should be, not an assumption, but a theorem, which can
be established by means of the concept of congruence
and the comparability of any two line segments.

. Because the text considered in the previous chapter uses
the technical terms “abscissa” and “ordinate” without ex-
plaining their origin, I provide an explanation of their
origins in the conic sections as studied by Apollonius.

. a) How Apollonius himself works out his theorems re-
mains mysterious. For example, Descartes’s meth-
ods do not seem to illuminate the theorem of Apol-
lonius that every straight line that is parallel to the
axis of a parabola is a diameter of the parabola
(in the sense of bisecting each chord that is parallel
to the tangent of the parabola at the vertex of the
diameter).

b) The conic sections may have been discovered by
Menaechmus for the sake of his solution to the prob-
lem of duplicating the cube. The solution can be
found, if curves exist with certain properties. Such

 Introduction



curves turn out to exist, in a geometric sense: they
are sections of cones.

c) Both the ancient geometer Pappus and the mod-
ern geometer Descartes are leery of curves like the
quadratrix, for not having a geometric definition.

d) Descartes is able to give a geometric description of
a curve given analytically by a cubic equation. Pap-
pus was mathematically equipped to understand
cubic equations and indeed equations of any de-
gree. So Descartes did make progress with a kind
of problem that made sense to the Ancients.

. I look at an analytic geometry textbook that I once
taught from. It is more sophisticated than the textbook
from my childhood considered in Chapter . This makes
its failures of rigor more dangerous for the student. The
book is nominally founded on the “Fundamental Princi-
ple of Analytic Geometry,” elsewhere called the “Cantor–
Dedekind Axiom”: an infinite straight line is, after choice
of a neutral point and a direction, an ordered group iso-
morphic to the ordered group of real numbers. This
principle or axiom is neither sufficient nor necessary for
doing analytic geometry:
• it is true in an arbitrary Riemannian manifold with

no closed geodesics,
• analytic geometry can be done over a countable or-

dered field.
. I give Hilbert’s axioms for geometry and note the es-

sential point for analytic geometry: when an infinite
straight line is conceived as an ordered additive group,
then this group can be made into an ordered field
by a geometrically meaningful definition of multiplica-
tion. Descartes, Hilbert, and Hartshorne work this out,
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though Descartes omits details and assumes that the or-
dered field will be Archimedean. I work out a definition
of multiplication solely on the basis of Book I of Eu-
clid’s Elements. Thus does algebra receive a geometrical
justification.

. In the other direction, I review how the algebra of certain
ordered fields can be used to obtain a Euclidean plane.

A. The example of completeness from Chapter  is worked
out at a more elementary level in the appendix.

My scope here is the whole history of mathematics. Obviously
I cannot give this a thorough treatment. I am not prepared
to try to do this. To come to some understanding of a mathe-
matician, one must read him or her; but I think one must read,
both with a sense of what it means to do mathematics, and
with an awareness that this sense may well differ from that
of the mathematician whom one is reading. This awareness
requires experience, in addition to the mere will to have it.

I have been fortunate to read old mathematics, both as a
student and as a teacher, in classrooms where everybody is
working through this mathematics and presenting it to the
class. For the last three years, I have been seeing how new
undergraduate mathematics students respond to Book I of
Euclid’s Elements. I continue to be surprised by what the
students have to say. Mostly what I learn from the students
themselves is how strange the notion of proof can be to some
of them. This impresses on me how amazing it is that the
Elements was produced in the first place. I am reminded that
what Euclid even means by a proof may be quite different
from what we mean today.

But the students alone may not be able to impress on me
some things. Some students are given to writing down asser-
tions whose correctness has not been established. Then they

 Introduction



write down more assertions, and they end up with something
that is supposed to be a proof, although it has the appearance
of a sequence or array or jumble of statements whose logical
interconnections are unclear. Euclid does not write this way,
except in one small respect. He begins each of his propositions
with a bare assertion. He does not preface this enunciation or
protasis (πρότασις) with the word “theorem” or “problem,” as
we might today (and as I shall do in this report). Euclid does
not have the typographical means that Heiberg uses, in his own
edition [] of Euclid, to distinguish the protasis from the rest
of the proposition. No, the protasis just sits there, not even
preceded by the “I say that” (λέγω ὅτι) that may be seen fur-
ther down in the proof. For me to notice this, naïve students
were apparently not enough, but I had also to read Fowler’s
Mathematics of Plato’s Academy [, .(e), pp. –].

Unfortunately some established mathematicians use the same style in
their own lectures.

Bracketed numbers refer to the bibliography. Some books there, like
Heiberg’s, I possess only as electronic files, obtained from somewhere
on the web. Heiberg uses increases the letter-spacing for Euclid’s
protases.
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. The problem

Textbooks of analytic geometry do not make their logical foun-
dations clear. Of course I can speak only of the books that I
have been able to consult: these are from the last century or
so. Descartes’s original presentation [] in the th century is
clear enough. In an abstract sense, Descartes may be no more
rigorous than his successors. He does get credit for actually
inventing his subject and for introducing the notation we use
today: minuscule letters for lengths, with letters from the be-
ginning of the alphabet used for known lengths, and letters
from the end for unknown lengths. As for his mathematics it-
self, Descartes explicitly bases it on an ancient tradition that
culminates, in the th century of the Common Era, with Pap-
pus of Alexandria.

More recent analytic geometry books start in the middle of
things, but they do not make it clear what those things are.
I think this is a problem. The chief aim of these notes is to
identify this problem and its solution.

How can analytic geometry be presented rigorously? Rigor
is not a fixed standard, but depends on the audience. Still,
it puts some requirements on any work of mathematics, as I
shall discuss in Chapter . In my own university mathematics
department in Istanbul, students of analytic geometry have
had a semester of calculus, and a semester of synthetic geom-
etry from its own original source, namely Book I of Euclid’s
Elements [, ]. Such students are the audience that I espe-
cially have in mind in my considerations of rigor. But I would
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suggest that any students of analytic geometry ought to come
to the subject similarly prepared, at least on the geometric
side.

Plane analytic geometry can be seen as the study of the Eu-
clidean plane with the aid of a sort of rectangular grid that
can be laid over the plane as desired. Alternatively, the sub-
ject can be seen as a discovery of geometric properties in the
set of ordered pairs of real numbers. I propose to call these
two approaches the geometric and the algebraic, respectively.
Either approach can be made rigorous. But a course ought to
be clear which approach is being taken.

Probably most courses of analytic geometry take the geo-
metric approach, relying on students to know something of
synthetic geometry already. Then the so-called Distance For-
mula can be justified by appeal to the Pythagorean Theorem.
However, even in such a course, students might be asked to use
algebraic methods to prove, for example, the following, which
is actually Proposition I. of the Elements.

Theorem . The base angles of an isosceles triangle are equal.

To prove this, perhaps students would be expected to come
up with something like the following.

Proof . Suppose the vertices of a triangle are a, b, and c, and
the angles at b and c are β and γ respectively, as in Figure ..

I had a memory that this problem was assigned in an analytic geometry
course that I once taught with two senior colleagues. However, I
cannot find the problem in my files. I do find similar problems, such
as () to prove that the line segment bisecting two sides of triangle is
parallel to the third side and is half its length, or () to prove that,
in an isosceles triangle, the median drawn to the third side is just its
perpendicular bisector. In each case, the student is explicitly required
to use analytic methods.
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Then β and γ are given by the equations

b

β
c

γ

a

Figure .. An isosceles triangle in a vector space

(a− b) · (c− b) = |a− b| · |c− b| · cos β,
(a− c) · (b− c) = |a− c| · |b− c| · cos γ.

We assume the triangle is isosceles, and in particular

|a− b| = |a− c|.

Then we compute

(a− c) · (b− c) = (a− c) · (b− a+ a− c)

= (a− c) · (b− a) + (a− c) · (a− c)

= (a− c) · (b− a) + (a− b) · (a− b)

= (c− a) · (a− b) + (a− b) · (a− b)

= (c− b) · (a− b),

and so cos β = cos γ.

If one has the Law of Cosines, then the argument is simpler:

Proof . Suppose the vertices of a triangle are a, b, and c,
and the angles at b and c are β and γ respectively, again as

 . The problem



in Figure .. By the Law of Cosines,

|a− c|2 = |a− b|2 + |c− b|2 − 2 · |a− b| · |c− b| · cos β,

cos β =
|c− b|
2 · |a− b| ,

and similarly

cos γ =
|b− c|
2 · |a− c| .

If |a− b| = |a− c|, then cos β = cos γ, so β = γ.

In this last argument though, the vector notation is a need-
less complication. We can streamline things as follows.

Proof . In a triangle ABC, let the sides opposite A, B, and
C have lengths a, b, and c respectively, and let the angles at
B and C be β and γ respectively, as in Figure .. If b = c,

B

β

C

γ

A

c b

a
Figure .. An isosceles triangle

then

b2 = c2 + a2 − 2ca cos β,
cos β =

a

2c
=

a

2b
= cos γ.

Possibly this is not considered analytic geometry though,
since coordinates are not used, even implicitly. We can use
coordinates explicitly, laying down our grid conveniently:
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Proof . Suppose a triangle has vertices (0, a), (b,0), and
(c,0), as in Figure .. We assume a2 + b2 = a2 + c2, and

b c

a

Figure .. An isosceles triangle in a coordinate plane

so b = −c. In this case the cosines of the angles at (b,0)
and (c,0) must be the same, namely |b|/

√
a2 + b2; and so the

angles themselves are equal.

In any case, as a proof of what is actually Euclid’s Proposi-
tion I., this whole exercise is logically worthless, assuming we
have taken the geometric approach to analytic geometry. By
this approach, we shall have had to show how to erect perpen-
diculars to given straight lines, as in Euclid’s Proposition I.,
whose proof relies ultimately on I.. One could perhaps de-
velop analytic geometry on Euclidean principles without prov-
ing Euclid’s I. explicitly as an independent proposition. For,
the equality of angles that it establishes can be proved and
reproved as needed by the method attributed to Pappus by
Proclus [, pp. –]:

Proof . In triangle ABC, if AB = AC, then the triangle
is congruent to its mirror image ACB by means of Euclid’s
Proposition I., the Side-Angle-Side theorem; in particular,
∠ABC = ∠ACB.

 . The problem



Thus one can see clearly that Theorem  is true, without
needing to resort to any of the analytic methods of the first
four proofs.
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. Failures of rigor

The root meaning of the word “rigor” is stiffness. Rigor in
a piece of mathematics is what makes it able to stand up to
questioning. Rigor in mathematics education requires helping
students to see what kind of questioning might be done.

An education in mathematics will take the student through
several passes over the same subjects. With each pass, the
student’s understanding should deepen. At an early stage,
the student need not and cannot be told all of the questions
that might be raised at a later stage. But if the mathematics
of an early course resembles different mathematics of a later
course, then the two instances of mathematics ought to be
equally rigorous. Otherwise the older student might assume,
wrongly, that the mathematics of the earlier course could in
fact stand up to the same scrutiny that the mathematics of the
later course stands up to. Concepts in an earlier course must
not be presented in such a way that they will be misunderstood
in a later course.

I have extracted the foregoing rule from the examples that
I am going to work out in this chapter. By the standard of
rigor that I propose, students of calculus need not master the

It might be counted as a defect in my own education that I did not
have undergraduate courses in algebra and topology before taking
graduate versions of these courses. Graduate analysis was for me a
continuation of my high school course, an “honors” course that had
been quite rigorous, being based on Spivak’s Calculus [] and (in
small part) Apostol’s Mathematical Analysis [].
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epsilon-delta definition of limit. If the students later take an
analysis course, then they will fill in the logical gaps from the
calculus course. The students are not going to think that ev-
erything was already proved in calculus class, so that epsilons
and deltas are a needless complication. They may think there
is no reason to prove everything, but that is another matter.
If students of calculus never study analysis, but become en-
gineers perhaps, or teachers of school mathematics, I suppose
they are not likely to have false beliefs about what theorems
can be proved in mathematics; they just will not have a highly
developed notion of proof.

By introducing and using the epsilon-delta definition of limit
at the very beginning of calculus, the teacher might actually
violate the requirements of rigor, if he or she instills the false
notion that there is no rigorous alternative definition of limits.
How many calculus teachers, ignorant of Abraham Robinson’s
so-called “nonstandard” analysis [], will try to give their stu-
dents some notion of epsilons and deltas, out of a misguided
conception of rigor, when the intuitive approach by means of
infinitesimals can be given full logical justification?

On the other hand, in mathematical circles, I have encoun-
tered disbelief that the real numbers constitute the unique
complete ordered field. Since every valued field has a comple-
tion, and every ordering of a field gives rise to a valuation, it
is possible to suppose wrongly that every ordered field as such
has a completion. This confusion might be due to a lack of
rigor in education, somewhere along the way. I spell out the
relevant distinctions, both in the next section and, in more
detail, in Appendix A (page ).

Here arises the usefulness of Spivak’s final chapter, “Uniqueness of the
real numbers” [, ch. ].
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.. Analysis

The real numbers can be defined from the rational numbers
either as Dedekind cuts or as equivalence-classes of Cauchy
sequences. The former definition yields R as the completion
of Q as an ordered set. It so happens that the field structure
of Q extends to R. This is because Q is Archimedean as an
ordered field. Applied to a non-Archimedean ordered field,
the Dedekind construction still yields a complete ordered set,
but not an ordered field. Applied to an arbitrary subfield of
R, the construction yields (a field isomorphic to) R. Thus
R is unique (up to isomorphism) as a complete ordered field.
(Again, formal definitions of terms can be found in, or at least
inferred from, Appendix A.)

By the alternative construction, R is S/I, where S is the
ring of Cauchy sequences of Q, and I is the maximal ideal
comprising the sequences that converge to 0. If we replace Q

with a possibly-non-Archimedean ordered field K, we can still
define the absolute-value function | · | on K by

|x| = max(x,−x).

The Cauchy-sequence construction of R from Q can be applied
to K, yielding an ordered field K̂ in which every Cauchy se-
quence converges. But if K is non-Archimedean, then K̂ is
not isomorphic to R.

Alternatively, if K is non-Archimedean, we may observe
that the ring of finite elements of K is a valuation ring O of
K, and the maximal ideal MO of O consists of the infinitesi-
mal elements of K. Then the quotient K×/O× is ordered by
the rule

aO× < bO× ⇐⇒ a

b
∈ MO .

 . Failures of rigor



Writing ΓO for K×/O×, and letting 0 be less than every ele-
ment of ΓO , we define the map | · |O from K to {0} ∪ ΓO as
being the quotient map on K×, and being 0 at 0. This map
is a valuation of K. In the construction of K̂, we may let
the role of | · | be played by | · |O ; but the result is the same,
because, in a word, the maps | · | and | · |O induce the same
uniformity on K.

It may be that a field K has a valuation ring O without
having an ordering. We still obtain a completion K̂ as before.

In the common examples, the value group ΓO embeds in the
group R+ of positive real numbers; thus ΓO is Archimedean.

However, the valuation | · |O may be called more precisely a
non-Archimedean valuation, to distinguish it from the absolute
value function on R, which is an Archimedean valuation. Then
the field C is also complete with respect to an Archimedean
valuation; by Ostrowski’s Theorem, R and C are the only fields
complete in this sense.

If we assume that | · | and | · |O take values in R, then the
functions (x, y) 7→ |x − y| and (x, y) 7→ |x − y|O are metrics
on the field K of definition: that is, they are functions d from
K ×K to [0,∞) such that

d(x, y) = 0 ⇐⇒ x = y,

d(x, y) = d(y, x),

d(x, z) 6 d(x, y) + d(y, z).

Then (K, d) is a metric space. In case d is (x, y) 7→ |x − y|O,
then (K, d) is an ultrametric space because also

d(x, z) 6 max(d(x, y), d(y, z)).

It is then common as well to map {0} ∪ R+ injectively onto R ∪ {∞}
by taking logarithms with respect to a number between 0 and 1, so
that the sense of the ordering is reversed.

January ,  



In any case, a topology on K is induced, and more than that,
a uniformity. Formally, this uniformity can be understood
as having a base consisting of the reflexive symmetric binary
relations Dε on K given by

x Dε y ⇐⇒ d(x, y) < ε,

where ε ∈ R+. The uniformity itself then comprises each
binary relation on K that includes one of the Dε. For each
a in K, the sets Dε(a) (that is, the sets {x ∈ K : a Dε x})
compose a base of neighborhoods of a in a topology on K;
this is because

Dε ∩Dε′ = Dmin(ε,ε′),

and also, for each ε in R+, there is δ in R+ (namely ε/2) such
that

∃z (x Dδ z & z Dδ y) =⇒ x Dε y.

A set with a uniformity is a uniform space; and the notion of
a Cauchy sequence makes sense for any uniform space.

If K is a non-Archimedean ordered field, then the absolute-
value function on K fails to induce a metric on K, simply
because its range does not embed in [0,∞). However, a uni-
formity is induced, as before; a uniformity is induced by | · |O
as well; but the uniformities are the same.

The cofinality of a linearly ordered set is the least cardi-
nality of an unbounded subset. For an arbitrary valued field
(K,O), the cofinality of ΓO may be uncountable. We can de-
fine Cauchy sequences of K of arbitrary cardinal length κ; but
they are all eventually constant unless the cofinality of κ is the
cofinality of ΓO . We can still obtain K̂ from K as a valued
field of equivalence-classes of Cauchy sequences whose length
is the cofinality of ΓO , whatever this may be.

 . Failures of rigor



Why are value groups of uncountable cofinality not com-
monly considered, while most value groups not only have
countable cofinality, but are Archimedean? I suppose it is
ultimately one wants to be able to use the completeness, not
only of a valued field, but of an ordered field; and then there
is only one option, R.

.. Number theory

In an elementary course, the student may learn a theorem ac-
cording to which certain conditions on certain structures are
logically equivalent. But the theorem may use assumptions
that are not spelled out. This is a failure of rigor. In later
courses, the student learns logical equivalences whose assump-
tions are spelled out. The student may then assume that the
earlier theorem is like the later ones. It may not be, and fail-
ure to appreciate this may cause the student to overlook some
lovely pieces of mathematics.

The word student here may encompass all of us.

The supposed theorem that I have in mind is that, in num-
ber theory, the principles of induction and well ordering are
equivalent. Proofs of two implications may be offered to back
up this claim, though one of the proofs may be left as an exer-
cise. The proofs will be of the standard form. They will look
like other proofs. And yet, strictly speaking, they will make
no logical sense, because:

• Induction is a property of algebraic structures in a signa-
ture with a constant, such as 1, and a singulary function

“Either principle may be considered as a basic assumption about the
natural numbers.” This is Spivak [, ch. , p. ], whose book I use
as an example because it is otherwise so admirable.
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symbol such as ′ (“prime”) for the operation of adding 1.
• Well ordering is a property of ordered structures.

When well ordering is used to prove induction, a set A is taken
that contains 1 and is closed under adding 1, and it is shown
that the complement of A cannot have a least element. For,
the least element cannot be 1, and if the least element of the
complement is n+1, then n ∈ A, so n+1 ∈ A, contradicting
n + 1 /∈ A. It is assumed here that n < n + 1. The correct
conclusion is not that the complement of A is empty, but that
if it is not, then its least element is not 1 and is not obtained
by adding 1 to anything. Thus what is proved is the following.

Theorem . Suppose (S,1, <) is a well-ordered set with least
element 1 and with no greatest element, so that S is also
equipped with the operation ′ given by

n′ = min{x : n < x}.

If

(∗) ∀x ∃y (x = 1 ∨ y′ = x),

then (S,1, ′) admits induction.

The condition (∗) is not redundant. Every ordinal number
in von Neumann’s definition is a well-ordered set, and every
limit ordinal is closed under the operation ′, but only the least
limit ordinal, which is {0,1,2, . . . } or ω, admits induction in

An ordinal in von Neumann’s definition is a set, rather than the
isomorphism-class of well-ordered sets that it was understood to be
earlier. Von Neumann’s original paper from  is []. One can read
it, but one must allow for some differences in notation from what is
customary now. This is one difficulty of relying on special notation to
express mathematics: it may not last as long as ordinary language.

 . Failures of rigor



the sense we are discussing. The next limit ordinal, which is
ω∪{ω,ω+1,ω+2, . . . } or ω+ω, does not admit induction;
neither do any of the rest, for the same reason: they are not ω,
but they properly include it. Being well-ordered is equivalent
to admitting transfinite induction, but that is something else.

Under the assumption n < n + 1, ordinary induction does
imply well ordering. That is, we have the following.

Theorem . Suppose (S,1, ′, <) admits induction, is linearly
ordered, and satisfies

(†) ∀x x < x′.

Then (S,<) is well ordered.

The theorem is correct, but the following argument is inad-
equate.

Standard proof. If a subset A of S has no least element, we can
let B be the set of all n in S such that no element of {x : x < n}
belongs to A. We have 1 ∈ B, since no element of the empty
set belongs to A. If n ∈ B, then n /∈ A, since otherwise it
would be the least element of A; so n′ ∈ B. By induction, B
contains everything in S, and so A contains nothing.

We have tacitly used:

Lemma . Under the conditions of the theorem,

∀x 1 6 x.

This is easily proved by induction:

The least element of ω is usually denoted not by 1 but by 0, because
it is the empty set.
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Proof. Trivially 1 6 1. Moreover, if 1 6 x, then 1 < x′, since
x < x′ (and orderings are by definition transitive).

But the standard proof of Theorem  also uses

{x : x < n′} = {x : x < n} ∪ {n},
that is,

x < n′ ⇔ x 6 n.

The reverse implication is immediate from (†); the forward is
the following.

Lemma . Under the conditions of the theorem,

(‡) ∀x ∀y (x < y′ ⇒ x 6 y).

This is not so easy to establish, although there are a couple
of ways to do it. The first method assumes we have established
the standard properties of the set N of natural numbers, in-
cluding (‡), perhaps by using the full complement of Peano
Axioms as in Landau [].

Proof . By recursion, we define a homomorphism h from
(N,1, ′) to (S,1, ′). Then:
• h is surjective, by induction in S, because 1 = h(1), and

if a = h(k), then a′ = h(k)′ = h(k′).
• h is injective, since it is order-preserving, by induction

in N. Indeed, in N, ∀x 1 6< x. Moreover, if for some m,

(§) ∀x
(
x < m⇒ h(x) < h(m)

)
,

and k < m′, then k 6 m by (‡) as being true in N, so
h(k) 6 h(m) by the inductive hypothesis (§), and hence
h(k) < h(m)′ = h(m′) by the hypothesis (†) of Theorem
. Thus, in N,

∀x ∀y (x < y ⇒ h(x) < h(y)).
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Therefore h is an isomorphism. Since (N, <) has the desired
property (‡), so does (S,<).

The foregoing proof can serve by itself as a proof of Theo-
rem : since N is well ordered, so must S be. An alternative,
direct proof of Lemma  is as follows; I do not know a simpler
argument.

Proof . We name two formulas,

ϕ(x, y) : x < y ⇒ x′ 6 y,

ψ(x, y) : x < y′ ⇒ x 6 y.

Since < is a linear ordering, we have

(¶) ϕ(x, y) ⇔ ψ(y, x).

(Here and elsewhere, outer universal quantifiers are sup-
pressed.) We want to prove ψ(x, y). We first prove directly,
as a lemma,

(‖) ϕ(x, y) & ψ(x, y) ⇒ ϕ(x, y′).

Suppose ϕ(a, b)&ψ(a, b)& a < b′ for some a and b in S. Then
we have

a 6 b,

a = b ∨ a < b,

a′ = b′ ∨ a′ 6 b,

a′ 6 b′.

[by ψ(a, b)]

[by ϕ(a, b)]

This gives us (‖). We shall use this to establish by induction

(∗∗) ϕ(x, y) & ψ(x, y).
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As the base of the induction, first we prove

(††) ϕ(x,1) & ψ(x,1).

By Lemma , we have ϕ(x,1), so by (¶) we have ψ(1, x) and
in particular ψ(1,1). Using ψ(1, x) and putting (1, x) for
(x, y) in (‖) gives us

ϕ(1, x) ⇒ ϕ(1, x′),

ψ(x,1) ⇒ ψ(x′,1).

Then by induction we have ψ(x,1), hence (††). Now suppose
we have, for some a in S,

ϕ(x, a) & ψ(x, a).

By (‖) we get ϕ(x, a′). We establish ψ(x, a′) by induction:
From (††) we have ϕ(a′,1), hence ψ(1, a′). Suppose ψ(b, a′).
Then ϕ(a′, b). But from ϕ(b, a′) we have ψ(a′, b). Hence by
(‖) we have ϕ(a′, b′), that is, ψ(b′, a′). Thus

ϕ(x, a′) & ψ(x, a′).

By induction then, we have (∗∗). From this we extract ψ(x, y),
as desired.

In Theorem , the condition (†) is not redundant. It is false
that a structure that admits induction must have a linear or-
dering so that (†) is satisfied. It is true that all counterex-
amples to this claim are finite. It may seem that there is no
practical need to use induction in a finite structure, since the
members can be checked individually for their satisfaction of
some property. However, this checking may need to be done for
every member of every finite set in an infinite family. Such is
the case for Fermat’s Theorem, as I have discussed elsewhere:

Henkin investigates them in [].
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Indeed, in the Disquisitiones Arithmeticae of  [, ¶],
which is apparently the origin of our notion of modular arith-
metic, Gauss reports that Euler’s first proof of Fermat’s The-
orem was as follows. Let p be a prime modulus. Trivially
1p ≡ 1 (with respect to p or indeed any modulus). If ap ≡ a
(modulo p) for some a, then, since (a + 1)p ≡ ap + 1, we
conclude (a+1)p ≡ a+1. This can be understood as a per-
fectly valid proof by induction in the ring with p elements
that we denote by Z/pZ: we have then proved ap = a for all
a in this ring. []

In analysis one learns some form of the following, possibly
associated with the names of Heine and Borel.

Theorem . The following are equivalent conditions on an
interval I of R:

. I is closed and bounded.
. All continuous functions from I to R are uniformly con-

tinuous.

Such a theorem is pedagogically useful, both for clarifying
the order of quantification in the definitions of continuity and
uniform continuity, and for highlighting (or at least setting
the stage for) the notion of compactness. A theorem about
the equivalence of induction and well ordering serves no such
useful purpose. If it is loaded up with enough conditions so
that it is actually correct, as in Theorems  and  above, then
there is only one structure (up to isomorphism) that meets the
equivalent conditions, and this is just the usual structure of
the natural numbers. If however the extra conditions are left
out, as being a distraction to the immature student, then that
student may later be insensitive to the properties of structures
like ω+ω or Z/pZ. Thus the assertion that induction and well
ordering are equivalent is nonrigorous in the worst sense: Not

January ,  



only does its proof require hidden assumptions, but the hiding
of those assumptions can lead to real mathematical ignorance.
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. A standard of rigor

The highest standard of rigor might be the formal proof, ver-
ifiable by computer. But this is not a standard that most
mathematicians aspire to. Normally one tries to write proofs
that can be checked and appreciated by other human beings.
In this case, ancient Greek mathematicians such as Euclid and
Archimedes set an unsurpassed standard.

How can I say this? Two sections of Morris Kline’s Mathe-
matical Thought from Ancient to Modern Times [] are called
“The Merits and Defects of the Elements” (ch. , §, p. )
and “The Defects in Euclid” (ch. , §, p. ). One of the
supposed defects is, “he uses dozens of assumptions that he
never states and undoubtedly did not recognize.” I have made
this criticism of modern textbook writers in the previous chap-
ters, and I shall do so again in later chapters. However, it is
not really a criticism unless the critic can show that bad ef-
fects follow from ignorance of the unrecognized assumptions.
I shall address these assumptions in Euclid a bit later in this
chapter.

Meanwhile, I think the most serious defect mentioned by
Kline is the vagueness and pointlessness of certain definitions
in Euclid. However, some if not all of the worst offenders were
probably added to the Elements after Euclid was through with
it. Euclid himself did not need these definitions. In any case,
I am not aware that poor definitions make any proofs in Euclid

See in particular Russo’s ‘First Few Definitions in the Elements ’ [,
.].
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confusing.

Used to prove the Side-Angle-Side Theorem (Proposition
I.) for triangle congruence, Euclid’s method of superposition
is considered a defect. However, if you do not want to use this
method, then you can just make the theorem an axiom, as
Hilbert does in The Foundations of Geometry []. (Hilbert’s
axioms are spelled out in Chapter  below.) I myself do not
object to Euclid’s proof by superposition. If two line segments
are given as equal, what else can this mean but that one of
them can be superimposed on the other? Otherwise equality
would seem to be a meaningless notion. Likewise for angles.
Euclid assumes that two line segments or two angles in a di-
agram can be given as equal. Hilbert assumes not only this,
but something stronger: a given line segment can be copied to
any other location, and likewise for an angle. Euclid proves
these possibilities, as his Propositions I. and .

In his first proposition of all, where he constructs an equi-
lateral triangle on a given line segment, Euclid uses two cir-
cles, each centered at one endpoint of the segment and passing
through the other endpoint as in Figure .. The two circles

Α Β

Γ

∆ Ε

Figure .. Euclid’s Proposition I.
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intersect at a point that is the apex of the desired triangle.
But why should the circles intersect? It is considered a defect
that Euclid does not answer this question. Hilbert avoids this
question by not mentioning circles in his axioms.

Hilbert’s axioms can be used to show that desired points
on circles do exist. It is not a defect of rigor that Euclid
does things differently. The original meaning of geometry in
Greek is surveying. Herodotus [, II.] traces the subject
to ancient Egypt, where the amount of land lost to the an-
nual flooding of the Nile had to be measured. The last two
propositions of Book I of Euclid are the Pythagorean Theo-
rem and its converse; but perhaps the climax of Book I comes
two propositions earlier, with number . Here it is shown
that, for a plot of land having any number of straight sides,
an equal rectangular plot of land with one given side can be
found. The whole point of Book I is to work out rigorously
what can be done with tools such as a surveyor or perhaps a
carpenter might have:

() a tool for drawing and extending straight lines;
() a tool for marking out points that are equidistant from

a fixed point; and
() a set square, not for drawing right angles, but for justi-

fying the postulate that all right angles are equal to one
another.

In the th century, it is shown that the same work can be
accomplished with even less. This possibly reveals a defect of
Euclid, but I do not think it is a defect of rigor.

There is however a danger in reading Euclid today. The
danger lies in a hidden assumption; but it is an assumption
that we make, not Euclid. We assume that, with his postu-
lates, he is doing the same sort of thing that Hilbert is doing
with his axioms. He is not. Hilbert has to deal with the pos-
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sibility of non-Euclidean geometry. Hilbert can contemplate
models that satisfy some of his axioms, but violate others. For
Euclid, there is just one model: this world.

If mathematicians never encountered structures, other than
the natural numbers, that were well ordered or admitted in-
duction, then there might be nothing wrong with saying that
induction and well ordering are equivalent. But then again,
even to speak of equivalence is to suggest the possibility of dif-
ferent structures that satisfy the conditions in question. This
is not a possibility that Euclid has to consider.

If Euclid is not doing what modern mathematicians are do-
ing, what is the point of reading him? I respond that he is
obviously doing something that we can recognize as mathe-
matics. If he is just studying the world, so are mathematicians
today; it is just a world that we have made more complicated.
I suggested in Chapter  (page ) that students are supposed
to come to an analytic geometry class with some notion of
synthetic geometry. As I observed in the Introduction (page
) and shall observe again in Chapter  (pages  and ),
students are also supposed to have the notion that every line
segment has a length, which is a so-called real number. This
is a notion that has been added to the world.

.. Proportion

Nonetheless, the roots of this notion can be found in the El-
ements, in the theory of ratio and proportion, beginning in
Book V. According to this theory, magnitudes A, B, C, and

According to a scholium to Book V, “Some say that the book is the dis-
covery of Eudoxus, the pupil of Plato” [, p. ]. The so-called Eu-
clidean Algorithm as used in Proposition X. of the Elements may be
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D are in proportion, so that the ratio of A to B is the same
as the ratio of C to D, if for all natural numbers k and m,

kA > mB ⇔ kC > mD.

In this case we may write

A : B : : C : D,

though Euclid uses no such notation. What is expressed by
this notation is not the equality, but the identity, of two ra-
tios. Equality is a possible property of two nonidentical mag-
nitudes. Magnitudes are geometrical things, ratios are not.
Euclid never draws a ratio or assigns a letter to it.

a remnant of another theory of proportion. Apparently this possibil-
ity was first recognized in  [, pp. –]. The idea is developed
in [].

I am aware of one possible counterexample to this claim. The last
proposition (number ) in Book VII is to find the number that is
the least of those that will have given parts. The meaning of this is
revealed in the proof, which begins: “Let the given parts be Α, Β, and
Γ. Then it is required to find the number that is the least of those
that will have the parts Α, Β, and Γ. So let ∆, Ε, and Ζ be numbers
homonymous with the parts Α, Β, and Γ, and let the least number
Η measured by ∆, Ε, and Ζ be taken.” Thus Η is the least common
multiple of ∆, Ε, and Ζ, which can be found by Proposition VII..
Also, if for example ∆ is the number n, then Α is an nth, considered
abstractly: it is not given as an nth part of anything in particular.
Then Αmight be considered as the ratio of 1 to n. Possibly VII. was
added later to Euclid’s original text, although Heath’s note [, p. ]
on the proposition suggests no such possibility. If indeed VII. is a
later addition, then so, probably, are the two previous propositions,
on which it relies: they are that if n | r, then r has an nth part, and
conversely. But Fowler mentions Propositions  and , seemingly
being as typical or as especially illustrative examples of propositions
from Book VII [, p. ].
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In any case, in the definition, it is assumed that A and B
have a ratio in the first place, in the sense that some multiple
of either of them exceeds the other; and likewise for C and D.
In this case, the pair

({m
k
: kA > mB

}
,
{m
k
: kA 6 mB

})

is a cut of positive rational numbers in the sense of Dedekind
[, p. ]. Dedekind traces his definition of irrational numbers
to the idea that

an irrational number is defined by the specification of all ra-
tional numbers that are less and all those that are greater
than the number to be defined. . . That an irrational number
is to be considered as fully defined by the specification just
described, this conviction certainly long before the time of
Bertrand was the common property of all mathematicians
who concerned themselves with the irrational. . . [I]f. . . one
regards the irrational number as the ratio of two measur-
able quantities, then is this manner of determining it al-
ready set forth in the clearest possible way in the celebrated
definition which Euclid gives of the equality of two ratios.
[, pp. –]

In saying this, Dedekind intends to distinguish his account
of the completeness or continuity of the real number line from
other accounts. Dedekind does not define an irrational number
as a ratio of two “measurable quantities”: the definition of cuts
as above does not require the use of magnitudes such as A
and B. Dedekind observes moreover that Euclid’s geometrical
constructions do not require continuity of lines. “If any one
should say,” writes Dedekind,

that we cannot conceive of space as anything else than con-
tinuous, I should venture to doubt it and to call attention
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to the fact that a far advanced, refined scientific training is
demanded in order to perceive clearly the essence of conti-
nuity and to comprehend that besides rational quantitative
relations, also irrational, and besides algebraic, also tran-
scendental quantitative relations are conceivable. [, pp. ]

Modern geometry textbooks (as in Chapter  below) assume
continuity in this sense, but without providing the “refined sci-
entific training” required to understand what it means. Euclid
does provide something of this training, starting in Book V
of the Elements; before this, he makes no use of continuity in
Dedekind’s sense.

Euclid has educated mathematicians for centuries. He shows
the world what it means to prove things. One need not read
all of the Elements today. But Book I lays out the basics
of geometry in a beautiful way. If you want students to learn
what a proof is, I think you can do no better then tell them, “A
proof is something like what you see in Book I of the Elements.”

I have heard of textbook writers who, informed of errors,
decide to leave them in their books anyway, to keep the readers
attentive. The perceived flaws in Euclid can be considered this
way. The Elements must not be treated as a holy book. If it
causes the student to think how things might be done better,
this is good.

The Elements is not a holy book; it is one of the supreme
achievements of the human intellect. It is worth reading for
this reason, just as, say, Homer’s Iliad is worth reading.

.. Ratios of circles

The rigor of Euclid’s Elements is astonishing. Students in
school today learn formulas, like A = πr2 for the area of a
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circle. This formula encodes the following.

Theorem  (Proposition XII. of Euclid). Circles are to one
another as the squares on the diameters.

One might take this to be an obvious corollary of:

Theorem  (Proposition XII. of Euclid). Similar polygons
in-
scribed in circles are to one another as the squares on the
diameters.

And yet Euclid himself gives an elaborate proof of XII. by
what is today called the Method of Exhaustion:

Euclid’s proof of Theorem , in modern notation. Suppose a
circle C1 with diameter d1 is to a circle C2 with diameter
d2 in a lesser ratio than d1

2 is to d2
2. Then d1

2 is to d2
2 as

C1 is to some fourth proportional R that is smaller than C2.
More symbolically,

C1 : C2 < d1
2 : d2

2,

d1
2 : d2

2 : : C1 : R,

R < C2.

By inscribing in C2 a square, then an octagon, then a 16-
gon, and so forth, eventually (by Euclid’s Proposition X.) we
obtain a 2n-gon that is greater than R. The 2n-gon inscribed
in C1 has (by Theorem , that is, Euclid’s XII.) the same
ratio to the one inscribed in C2 as d1

2 has to d2
2. Then

d1
2 : d2

2 < C1 : R,

which contradicts the proportion above.
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Such is Euclid’s proof, in modern symbolism. Euclid himself
does not refer to a 2n-gon as such. His diagram must fix a value
for 2n, and the value fixed is 8. I do not know if anybody
would consider this a lack of rigor, as if rigor is achieved by
symbolism. I wonder how often modern symbolism is used to
give only the appearance of rigor. (See Chapter  below.)

A more serious problem with Euclid’s proof is the assump-
tion of the existence of the fourth proportional R. Kline does
not mention this as a defect in the sections of his book cited
above; he does mention the assumption elsewhere (on page his
), but not critically. Heath mentions the assumption in his
own notes [, v. , p. ], though he does not supply the
following way to avoid the assumption.

Second proof of Theorem . We assume that if two unequal
magnitudes have a ratio in the sense of Book V of the El-
ements, then their difference has a ratio with either one of
them. This is the postulate of Archimedes [, p. ]:

among unequal [magnitudes], the greater exceeds the smaller
by such [a difference] that is capable, added itself to itself, of
exceeding everything set forth (of those which are in a ratio
to one another).

In the notation above, since C1 : C2 < d1
2 : d2

2, there are
some natural numbers m and k such that

mC1 < kC2, md1
2 > kd2

2.

Let r be a natural number such that r(kC2 − mC1) > C2.
Then

rmC1 < (rk − 1)C2, rmd1
2 > rkd2

2.
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Assuming 2n−1 > rk, let P1 be the 2n-gon inscribed in C1,
and P2 in C2. Then

C2 − P2 <
1

2n−1
C2 6

1
rk
C2,

rmP1 < rmC1 < (rk − 1)C2 < rkP2.

But also P1 : P2 : : d1
2 : d2

2, so that rmP1 > rkP2, which is
absurd.

Does this second proof of Theorem  supply a defect in
Euclid’s proof? In his note, Heath quotes Simson to the ef-
fect that assuming the mere existence of a fourth proportional
does no harm, even if the fourth proportional cannot be con-
structed. I see no reason why Euclid could not have been
aware of the possibility of avoiding this assumption, although
he decided not to bother his readers with the details.

 . A standard of rigor



. Why rigor

As used by Euclid and Archimedes, the Method of Exhaus-
tion serves no practical purpose. Archimedes has an intuitive
method [] for finding equations of areas and volumes. He
uses this method to discover that

() a section of a parabola is a third again as large as the
triangle with the same base and height;

() if a cylinder is inscribed in a prism with square base,
then the part of the cylinder cut off by a plane through
a side of the top of the prism and the center of the base
of the cylinder is a sixth of the prism; and

() the intersection of two cylinders is two thirds of the cube
in which this intersection is inscribed.

However, Archimedes does not believe that his method pro-
vides a rigorous proof of his equations. He supplies proofs
after the equations themselves have been discovered. Why
does he do this? After all, he believes Democritus should be
credited for discovering that the pyramid is the third part of
the prism with the same base and height, even though it was
Eudoxus who later actually gave a proof. (The theorem is a
corollary to Proposition XII. of Euclid’s Elements.)

Although Heath translated Euclid faithfully into English,
apparently he thought the rigor of Archimedes was too much
for modern mathematicians to handle; so he paraphrased
Archimedes with modern symbolism []. This symbolism is
a way to avoid keeping too many ideas in one’s head at once.
When one wants to use a theorem for some practical purpose,
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then this labor-saving feature of symbolism is perhaps desir-
able. But if the whole point of a theorem is to see and appre-
ciate something, then perhaps symbolism gets in the way of
this.

I do not think Archimedes really explains his compulsion
for mathematical rigor. Being the originator of the “merciless
telegram style” that Landau [, p. xi] for example writes in,

Euclid does not explain anything at all in the Elements; he
just does the mathematics. I suppose the rigor of this math-
ematics, at least regarding proportions, is to be explained as
a remnant of the discovery of incommensurable magnitudes.
This discovery necessitates such a theory of proportion as is
attributed to Eudoxus of Cnidus and is presented in Book V
of the Elements. In any case, given a theory of proportion, if
Euclid is going to assert Proposition XII., he is duty-bound
to prove it in accordance with the theory at hand.

Modern mathematicians are likewise duty-bound to respect
current standards of rigor. As was suggested in Chapter , this
does not mean that a textbook has to prove everything from
first principles; but at least some idea ought to be given of
what those first principles are. This standard is set by Euclid
and respected by Archimedes. It is not so much respected by
modern textbooks of analytic geometry. In Chapters  and ,
I shall look at a couple of examples of these.

It may be said that the purpose of an analytic geometry
text is to teach the student how to do certain things: how
to solve certain problems, as detailed in the first quotation
in Chapter  (page ). The purpose is not to teach proof.

Fowler [, p. , n. ] refers to Landau as the “premier exponent”
of “a more recent German style of setting out mathematics, generally
called ‘Satz-Beweis’ style, that has some affinities with protasis-style,”
that is, Euclid’s style.

 . Why rigor



However, as suggested in Chapter  (page ), Book I of the
Elements is also concerned with doing things, with the help of
such tools as a surveyor or carpenter might use. What makes
the Elements mathematics is that it justifies the methods it
gives for doing things. It provides proofs.

I suppose that, when a student of mathematics is given a
problem, even a numerical problem, she or he is expected to
be able to come up with a solution, and not just an answer. A
solution is a proof that the answer is correct. It tells why the
answer is correct. Thus it gives the reader the means to solve
other problems. An analytic geometry text ought to prove
that its methods are correct. At least it ought to give some
indication of how the proofs might be supplied.
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. A book from the s

.. Equality and identity

For Euclid, equality is not identity. This was noted on page 
in Chapter . It is true in ordinary language as well. Accord-
ing to the  Declaration of Independence of the United
States of America, all men are created equal. It does not
follow that all men are the same man. Nonetheless, students
reading Euclid may not immediately see the difference between
Propositions I. and , which are, respectively,

Parallelograms that are on the same (αὐτός) base and in the
same parallels are equal to one another;

Parallelograms that are on equal (ἴσος) bases and in the same
parallels are equal to one another.

Equality here is what we also call congruence; and indeed the
fourth of the Common Notions in Heiberg’s edition of Euclid
can be translated as,

Things that are congruent (ἐφαρμόζω) to one another are
equal to one another.

The distinction between identity and congruence may help to
clarify analytic geometry.

I would read “man” as meaning human being, although I do not know
that Thomas Jefferson meant this.

Heath has “coincide with” in place of “are congruent to.”
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.. Geometry first

I consider now analytic geometry as presented in an old text-
book, which I possess, only because my mother used it in
college: Nelson, Folley, and Borgman’s  volume Analytic
Geometry []. The Preface (pp. iii-iv) opens with this para-
graph:

This text has been prepared for use in an undergraduate
course in analytic geometry which is planned as preparation
for the
calculus rather than as a study of geometry. In order that
it may be of maximum value to the future student of the
calculus, the basic sciences, and engineering, considerable
attention is given to two important problems of analytic ge-
ometry. They are (a) given the equation of a locus, to draw
the curve, or describe it geometrically; (b) given the geo-
metric description of a locus, to find its equation, that is, to
translate a verbal description of a locus into a mathematical
equation.

These “two important problems” are why I was interested in
this book at the age of : I wanted to understand the curves
that could be encoded in equations. The third paragraph of
the Preface is as follows:

Inasmuch as the student’s ability to use analytic geometry as
a tool depends largely on his understanding of the coordinate
system, particular attention has been given to producing as
thorough a grasp as possible. He must appreciate, for exam-
ple, that the point (a, b) is not necessarily located in the first
quadrant, and that the equation of a curve may be made to
take a simple form if the coordinate axes are placed with
forethought. . .
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By referring to judicious placement of axes, the authors re-
veal their working hypothesis that there is already a geomet-
ric plane, before any coordinatization. It is not clear what
students are expected to know about this plane.

.. The ordered group of directed segments

The book proper begins on page  as follows:

. Directed Line Segments. If A, B, and C (Fig. )
are three points which are taken in that order on an infinite
straight line, then in conformity with the principles of plane
geometry we may write

() AB +BC = AC.

For the purposes of analytic geometry it is convenient to
have equation () valid regardless of the order of the points
A, B, and C on the infinite line. The conventional way of

✲

A B C

Fig. 

accomplishing this is to select a positive direction on the line
and then define the symbol AB to mean the number of linear
units between A and B, or the negative of that number, ac-
cording as we associate with the segment AB the positive or
the negative direction. With this understanding the segment
AB is called a directed line segment. In any given problem
such a segment possesses an intrinsic sign decided in advance
through the arbitrary selection of a positive direction for the
infinite line of which the segment is a part. . . 

This quotation has almost exactly the same visual appearance as in
the original text. The line breaks are the same. The figure should be
placed after “The conventional way of accomplishing this.”
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Thus it is assumed that the student knows what a “number of
linear units” means. I suppose the student has been trained to
believe that () every line segment has a length and () this
length is a number of some unit. But probably the student
has no idea of how numbers in the original sense—natural
numbers—can be used to create all of the numbers that might
be needed to designate geometrical lengths. The student can
express lengths as rational numbers of a unit by means of a
ruler; but Nelson & al. will have the students consider lengths
that are irrational and even transcendental.

Instead of length, we can take congruence as the fundamen-
tal notion. Without defining length itself, we can say that
congruent line segments have the same length. Somebody who
knows about equivalence relations can then define a length it-
self as a congruence class of segments; but this need not be
made explicit.

Alternatively, we can fix a unit line segment in the manner
of Descartes in the Geometry []. Then, by using the def-
inition of proportion found in Book V of Euclid’s Elements
and discussed in Chapter  above, we can define the length
of an arbitrary line segment as the ratio of this segment to
the unit segment. This gives us lengths rigorously as posi-
tive real numbers, if we use Dedekind’s definition of the latter.
As Dedekind observed though, and as we repeated (page ),
there is no need to assume that every positive real number is
the length of some segment.

These details need not be rehearsed with the student. But
neither is it necessary to introduce lengths at all in order to
justify equation (), namely AB +BC = AC. It need only be

This would seem to be the idea behind motivic integration as described
in the expository article [].
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said that an expression like AB no longer represents merely
a line segment, but a directed line segment. Then BA is the
negative of AB, and we can write

BA = −AB, AB = −BA, AB +BA = 0,()

as indeed Nelson & al. do later in their §, on page .

.. Notation

In its entirety, their § is as follows:

. Length, Distance. The length of a directed line seg-
ment is the number of linear units which it contains. The
symbol |AB| will be used to designate the length of the seg-
ment AB, or the distance between the points A and B.

Occasionally the symbol AB will be used to represent the
line segment as a geometric entity, but if a numerical measure
is implied then it stands for the directed segment AB or the
directed distance from A to B.

Two directed segments of the same line, or of parallel lines,
are equal if they have equal lengths and the same intrinsic
signs.

Again we see the unexamined assumption that the reader
knows what a “number of linear units” means. It would be
more rigorous to say that |AB| is the congruence-class of the
segment AB; but I think there is an even better alternative.
In the second paragraph of the quotation, Nelson & al. suggest
that the expression AB will usually stand, not for a segment,
but for a directed segment. Then it can always so stand, and
the expression |AB| can stand for the undirected segment, so
that |BA| stands for the same thing. The last paragraph of

 . A book from the s



the quotation can be understood as corresponding to Com-
mon Notion  of Euclid quoted above: equality of directed
line segments is just congruence of undirected segments that
is established by translation only, without rotation or reflec-
tion. Then an equation like

(∗) BC = DE

means, as in Figure ., either
• BCED is a parallelogram, or
• there is a directed segment FG such that BCFG and
DEFG are both parallelograms.

B C

D E

B C

G F

D E

H

Figure .. Congruence of directed segments

Given BC = DE, we can use Euclid’s Common Notion  (“If
equals be added to equals, the wholes are equal”) to conclude

AB +BC = AB +DE;

then, by applying Common Notion  (“Equals to the same are
also equal to one another”) to this and (), we obtain

(†) AC = AB +DE.

Actually we use a special case: If the same be added to equals, the
wholes are equal. Equality is implicitly a reflexive relation in the
sense that a thing is equal to itself. The proof of Euclid’s Proposition
I. quoted above uses this special case: in the right-hand part of
Figure ., we have BD = BC +CD = CD+DE = CE, so BDG =
CEF (as triangles), and hence BCFG = BDG − CDH + GFH =
CEF − CDH +GFH = DEFG.
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Thus sums of directed segments can be defined; we need not
even require them to be segments of the same straight line,
though we may. More precisely, congruence of sums of directed
segments can be defined so that every sum of two directed seg-
ments is congruent to a single directed segment. Governed by
the relations given by () and (), the congruence classes of
directed segments of a given infinite straight line compose an
abelian group. Although nothing is said in the text of Nel-
son & al. about the commutativity or associativity of addition
of segments, these properties might be understood to follow
from the “principles of plane geometry” mentioned as justify-
ing equation () in the earlier quotation.

Equation () could be understood to hold for arbitrary di-
rected segments of a plane, so that congruence classes of these
would compose an abelian group. Evidently Nelson & al. do
not wish to consider this group, and that is fine. There is
also no need to talk to students about congruence classes and
groups. All that need be established is that there is an “alge-
bra” of directed segments that resembles the algebra of num-
bers studied in school.

There is also nothing wrong with confusing directed seg-
ments with their congruence classes. According to the deriva-
tion of (†), the sum of arbitrary directed segments of a straight
line can be equal to a directed segment; we may just say the
sum is a directed segment. This is like saying that the integers
compose a group of order n, provided equality is understood
to be congruence modulo n. This example is from Mazur, who
observes [, p. ]:

Few mathematical concepts enter our repertoire in a manner
other than ambiguously a single object and at the same time
an equivalence class of objects.
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If a positive direction is fixed for the straight line contain-
ing A and B, then AB itself is understood as positive, if B
is further than A in the positive direction; otherwise AB is
negative. Thus the abelian group of directed segments of a
given straight line becomes an ordered group. Where Nelson
& al. say |AB| means the length of the segment AB, or the
distance between A and B, we can understand it to be simply
the greater of AB and −AB, in the usual sense of “absolute
value.”

What do we mean by “directed segment” in the first place?
We could say formally that, as an undirected segment, AB is
just the set ℓ of points between A and B inclusive. Then, as
a directed segment, AB could be understood formally as the
ordered pair (ℓ, A).

There is an alternative. Our notation distinguishes the frac-
tion 1/2 from the ordered pair (1,2) of numbers, so that we
can have 1/2 = 2/4, although (1,2) 6= (2,4). Likewise,
since the expression BC is distinct from (B,C), we can un-
derstand BC to denote the equivalence class consisting of the
pairs (D,E) such that the equation (∗) holds as defined above.
Then |BC| will be the union of the equivalence classes denoted
by BC and CB (assuming all segments are segments of the
same infinite straight line).

According to the last-quoted passage of Nelson & al., an
expression like AB can have any of three meanings. It can
mean

(i) the segment bounded by A and B,
(ii) the directed segment from A to B, or
(iii) the directed distance from A to B.

We can understand the “directed distance” in (iii) to be the
appropriate equivalence class of (A,B) just mentioned. I pro-
pose to take this equivalence class as the official meaning of
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AB. Writing the equivalence class as AB allows us to infer
that one representative of this class is indeed the directed seg-
ment from A to B indicated in (ii). Similarly, indicating an
arbitary rational number x as a/b allows us to infer that the
multiple bx is the integer a. The rational number x has no
unique numerator and denominator; but nonetheless we speak
of the numerator a and denominator b of a/b. Likewise we can
speak of the initial point A and terminal point B of AB, even
if, strictly, AB is only an equivalence class. Finally, |AB| can
be understood formally as the union of the two equivalence
classes AB and BA. One representative of this class is the
segment indicated in (i).

In fact Nelson & al. will give yet another possible meaning
to the expression AB, a meaning that will be used without
comment in a quotation given below: AB can mean

(iv) the infinite straight line containing A and B.
Meanwhile, let us note how the text actually uses expressions
like AB and |AB|. Here are some examples from the first set
of exercises, on page :

. For Fig.  [omitted] verify that AC + CB + BA = 0.
Show also that |AC| − |CB|+ |BA| = 0.

. In Fig.  [omitted] let M be the mid-point of the
segment AB. Verify that 12(OA + OB) = OM and that
1
2 |OA−OB| = |AM |.

The equation AC + CB + BA = 0 holds by two applications
of (), regardless of the relative positions of the points. If the
second equation is going to be true, then A must lie between
B and C, so that

|AC|+ |BA| = |AC +BA| = |BA+ AC| = |BC| = |CB|.
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Here it does not matter whether AB is a particular directed
segment or an equivalence class. In later exercises, it does
matter:

In Problems –, the consecutive points A, B, C, D, E,
F , G are spaced one inch apart on an infinite line which is
positively directed from A to B.

. Verify that BD +GA = BA+GD.
. Verify that DB +GA = DA+GB.
. Verify that BG+ FC = BC + FG = 2DE.
. Verify that 12(EA+ EG) = ED.

Of the five equations here, the first three can be understood
as equations of directed segments, as in (ii); the remaining
two must be understood as equations of directed distances,
as in (iii), or of directed equivalence classes of segments. For
example,

BD +GA = BD + (GD +DB +BA)

= BD +GD −BD +BA = GD +BA = BA +GD,

regardless of the relative positions of the points; but BC +
FG = 2DE only because it is given that BC = DE = FG.
The preamble to the problems here refers not just to abstract
units, but to inches, which have no mathematical definition.
The reference might as well have been to some particular seg-
ment, even AB itself.

In another problem, the authors display their assumption
that numbers of units can be irrational and even transcenden-
tal:

. On a coordinate axis where the unit of measure is
one inch, plot the points whose coordinates are 2, −53 , π,

3−
√
5, and 3

√
−16, respectively.
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There is no properly geometric reason to introduce transcen-
dental or even nonquadratic lengths. However, as noted in the
quotation from the preface, the book is for students of the cal-
culus. The book has a chapter called “Graphs of Single-Valued
Transcendental Functions”.

.. Coordinatization

Meanwhile, a coordinatization of a straight line is considered
in § of Chapter .

. Coordinates on a Straight Line. The locations of
points on a given infinite straight line may be described with
the help of directed segments. However, preliminary agree-
ments must be made with regard to (a) a point of reference
or origin, (b) a unit of length, (c) a positive direction on the
infinite straight line. Then the location of any point on the
line may be given by a single number, or coordinate, which
is defined as the directed distance from the origin to the
point. . . On the line of Fig.  suppose that the points P1, P2
have the coordinates x1, x2 respectively. Then

P1P2 = P1O +OP2 = OP2 −OP1 = x2 − x1.

That is, on any straight line, the directed distance from one

point to another is equal to the coordinate of the terminal

point minus the coordinate of the initial point.

✲

P1 O P2
x1 0 x2

Points ✲

Coordinates✲

Fig. 
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This all makes sense without reference to units or numbers.
When an origin O is chosen on the straight line, and points
P1 and P2 of the line are labelled as x1 and x2, this means x1
and x2 are abbreviations for OP1 and OP2, so that the given
equations hold.

Next, the plane is considered:

. Rectangular Coordinates. The coordinate system
of the preceding article may be generalized so as to enable us

X

Y

O

b
P

x

y

First
Quadrant

Second
Quadrant

Third
Quadrant

Fourth
Quadrant

Fig. 

to describe the location of a point in a the plane. Through
any point O (Fig. ) select two mutually perpendicular di-
rected infinite straight lines OX and OY , thus dividing the
plane into four parts called quadrants, which are numbered
as shown in the figure. The point O is the origin and the
directed lines are called the x-axis and the y-axis, respec-
tively. A unit of measure is selected for each axis. Unless
the contrary is stated, the units selected will be the same for
both axes.

The directed distance from OY to any point P in the plane
is the x-coordinate, or abscissa, of P ; the directed distance
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from OX to the point is its y-coordinate, or ordinate. To-
gether, the abscissa and ordinate of a point are called its
rectangular coordinates. When a letter is necessary to rep-
resent the abscissa, x is most frequently used; y is used to
represent the ordinate. . .

. . . Consequently, we may represent a point by its coordi-
nates placed in parentheses (the abscissa always first), and
refer to this symbol as the point itself. For example, we
may refer to the point P1 of [the omitted figure] as the point
(3,5). Sometimes it is convenient to use both designations;
we then write P1(3,5). . .When a coordinate of a point is
an irrational number, a decimal approximation is used in
plotting the point. . .

Here OX and OY are not segments, but infinite straight lines.
Nelson & al. evidently do not want to give a name such as R to
the set of all numbers under consideration. Hence they cannot
say that they identify the geometrical plane with R×R; they
can say only that they identify individual points with pairs of
numbers. This is fine, except that again it leaves unexamined
the assumption that lengths are numbers of units.

How many generations of students have had to learn the
words abscissa and ordinate without being given their etymo-
logical meanings? Nelson & al. do not discuss them, even
in their chapter on conic sections, although the terms are the
Latin translations of Greek words used by Apollonius of Perga
in the Conics []. I consider their original meaning in Chapter
 below.

One complaint I have about my own education is that I was expected to
learn technical terms without their etymologies. In a literature class,
learning zeugma would have been easier, if only we had recognized
that the Greek word was cognate with the Latin-derived join and the
Anglo-Saxon yoke.
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Meanwhile, I just have to wonder whether an analytic ge-
ometry textbook cannot be more enticing than that of Nelson
& al. If the purpose of the subject is to solve problems, why
not present some of the actual problems that the subject was
invented to solve? A possible example is the duplication of
the cube, discussed at the end of Chapter . Such an example
requires the use of multiplication.

.. Multiplication

In the text of Nelson & al., multiplication first appears in
§ of Chapter , in the derivation of the distance formula.
Two points P1(x1, y1) and P2(x2, y2) are given, orthogonal
projections onto the coordinate axes are taken, and ultimately
the point Q is found whose coordinates are (x2, y1), although
this is not said. What we are told is that,

Since the angle P1QP2 is a right angle, it follows that

(P1P2)
2 = (P1Q)2 + (QP2)

2 = (x2 − x1)
2 + (y2 − y1)

2.

If d be the unsigned distance between P1 and P2, we have,
by extracting square roots,

d =
√

(x2 − x1)
2 + (y2 − y1)

2.

In words, this formula states that the distance between two

points equals the positive square root of the sum of the squares

of the differences in the coordinates of the points.

There is no reference to the Pythagorean Theorem or any other
theorem. Expressions like (P1P2)

2 are not defined. Presum-
ably, since the text has explained an expression like P1P2 as
a number of linear units, (P1P2)

2 is supposed to be a number
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of “square” units, the number being the product of the original
number with itself. But (P1P2)

2 can be understood alterna-
tively as the equivalence class of squares whose sides make up
the equivalence class P1P2. In this case, the quotation implic-
itly invokes Euclid’s Proposition I..

For Euclid,

A number (ἀριθμός) is a multitude (πλῆθος) composed of units

(μονάς, μονάδ-).

This is the definition in Book VII of the Elements. In this
sense, numbers by themselves are elliptical: “four” can only
mean four things, or four of something. Today, a number of
units has two separable parts: the number, and the unit. The
number can be multiplied by other numbers, without regard
to any associated units. This is true for Euclid as well, but
only because his numbers are our positive integers (usually
with the exception of one: one thing is not a multitude). But
for us today, and in particular for Nelson & al., a number is
a so-called real number, although the reality of these numbers
would appear not to have been well established until the work
of Dedekind (mentioned in §., page ; described more fully
in §., page ).
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. Abscissas and ordinates

In the first of the eight books of the Conics [], Apollonius
derives properties of the conic sections that can be used to
write their equations in rectangular or oblique coordinates. I
review these properties here, because () they have intrinsic
interest, () they are the reason why Apollonius gave to the
three conic sections the names that they now have, and () the
vocabulary of Apollonius is a source for many of our technical
terms, including “abscissa” and “ordinate.”

Apollonius did not create his terms: they are just ordinary
words, used to refer to mathematical objects. When we do not
translate Apollonius, but simply transliterate his words, or use
their Latin translations, then we put some distance between
ourselves and the mathematics. When I first learned that a
conic section had a latus rectum, I had a sense that there was
a whole theory of conic sections that was not being revealed,
although its existence was hinted at by this peculiar Latin
term. If we called the latus rectum by its English name of
“upright side,” it might be easier for the student to ask, “What
is an upright side?” In turn, textbook writers might feel more
obliged to explain what it is. In any case, I am going to give
an explanation here.

English does borrow foreign words freely: this is a charac-
teristic of the language. A large lexicon is not a bad thing. A
choice from among two or more synonyms can help establish

The first four books survive in Greek, the next three in Arabic trans-
lation; the last book is lost.
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the register of a piece of speech. If distinctions between near-
synonyms are carefully maintained, then subtlety of expression
is possible. “Circle” and “cycle” are Latin and Greek words for
the same thing, but the Greek word is used more abstractly
in English, and it would be bizarre to refer to a finite group of
prime order as being circular rather than cyclic.

However, mathematics can be done in any language. Greek
does mathematics without a specialized vocabulary. It is
worthwhile to consider what this is like.

For Apollonius, a cone (ὁ κῶνος “pine-cone”) is a solid figure
determined by () a base (ἡ βάσις), which is a circle, and () a
vertex (ἡ κορυφή “summit”), which is a point that is not in
the plane of the base. The surface of the cone contains all of
the straight lines drawn from the vertex to the circumference
of the base. A conic surface (ἡ κωνικὴ ἐπιφάνεια) consists
of such straight lines, not bounded by the base or the vertex,
but extended indefinitely in both directions.

The straight line drawn from the vertex of a cone to the
center of the base is the axis (ὁ ἄξων “axle”) of the cone. If
the axis is perpendicular to the base, then the cone is right
(ὀρθός); otherwise it is scalene (σκαληνός “uneven”). Apollo-
nius considers both kinds of cones indifferently.

A plane containing the axis intersects the cone in a triangle.
Suppose a cone with vertex A has axial triangle ABC. Then

In the s, the Washington Post described the book called Color
Me Beautiful as offering “the color-wheel approach to female pulchri-
tude.” The New York Times just said the book provided “beauty tips
for women.” (I draw the quotations from memory; they were in the
newspapers’ lists of bestsellers for the week, for many weeks.) The
register of the Post was mocking; the Times, neutral.

The word ἐπιφάνεια means originally “appearance” and is the source of
the English “epiphany.”

 . Abscissas and ordinates



the base BC of this triangle is a diameter of the base of the
cone. Let an arbitrary chord DE of the base of the cone cut
the base BC of the axial triangle at right angles at a point F ,
as in Figure .. In the axial triangle, let the straight line FG
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F

Figure .. Axial triangle and base of a cone

be drawn from the base to the side AC. This straight line FG
may, but need not, be parallel to the side BA. It is not at
right angles to DE, unless the plane of the axial triangle is at
right angles to the plane of the base of the cone. In any case,
the two straight lines FG and DE, meeting at F , are not in a
straight line with one another, and so they determine a plane.
This plane cuts the surface of the cone in such a curve DGE
as is shown in Figure .. Apollonius refers to such a curve
first (in Proposition I.) as a section (ἡ τομή) in the surface
of the cone, and later (I.) as a section of a cone. All of the

Although it is the source of the English “cord” and “chord” [], Apollo-
nius does not use the word ἡ χορδή, although he proves in Proposition
I. that the straight line joining any two points of a conic section is
a chord, in the sense that it falls within the section. The Greek χορδή
means gut, hence anything made with gut, be it a lyre-string or a
sausage [].
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Figure .. A conic section

chords of this section that are parallel to DE are bisected by
the straight line GF . Therefore Apollonius calls this straight
line a diameter (ἡ διάμετρος [γραμμή]) of the section.

The parallel chords bisected by the diameter are said to
be drawn to the diameter in an orderly way. The Greek
adverb here is τεταγμένως [], from the verb τάσσω, which has
meanings like “to draw up in order of battle” []. A Greek
noun derived from this verb is τάξις, which is found in English
technical terms like “taxonomy” and “syntax” []. The Latin
adverb corresponding to the Greek τεταγμένως is ordinate from
the verb ordino. From the Greek expression for “the straight
line drawn in an orderly way,” Apollonius will elide the middle
part, leaving “the in-an-orderly-way.” This term will refer to

The associated verb is διαμετρέ-ω “measure through”; this is the verb
used in Homer’s Iliad [, III.]) for what Hector and Odysseus
do in preparing a space for the dual of Paris and Menelaus. (The
reference is in [].)

Heath [, p. clxi] translates τεταγμένως as “ordinate-wise”; Taliaferro [,
p. ], as “ordinatewise.” But this usage strikes me as anachronistic.
The term “ordinatewise” seems to mean “in the manner of an ordinate”;
but ordinates are just what we are trying to define when we translate

 . Abscissas and ordinates



half of a chord bisected by a diameter. Similar elision in the
Latin leaves us with the word ordinate for this half-chord
[]. Descartes refers to ordinates as [lignes] qui s’appliquent
par ordre [au] diametre [, p. ].

The point G at which the diameter GF cuts the conic sec-
tion DGE is called a vertex (κορυφής as before). The segment
of the diameter between the vertex and an ordinate has come
to be called in English an abscissa; but this just the Latin
translation of Apollonius’s Greek for being cut off (ἀπολαμβα-
νομένη “taken”).

Apollonius will show that every point of a conic section is
the vertex for some unique diameter. If the ordinates corre-
sponding to a particular diameter are at right angles to it, then
the diameter will be an axis of the section. Meanwhile, in de-
scribing the relation between the ordinates and the abscissas
of conic section, there are three cases to consider.

.. The parabola

Suppose the diameter of a conic section is parallel to a side
of the corresponding axial triangle. For example, suppose in
Figure . that FG is parallel to BA. The square on the
ordinate DF is equal to the rectangle whose sides are BF and
FC (by Euclid’s Proposition III.). More briefly, DF 2 =
BF · FC. But BF is independent of the choice of the point
D on the conic section. That is, for any such choice (aside
from the vertex of the section), a plane containing the chosen

τεταγμένως.
I note the usage of the Greek participle in [, I., p. ]. Its general

usage for what we translate as abscissa is confirmed in [], although
the general sense of the verb is not of cutting, but of taking.
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point and parallel to the base of the cone cuts the cone in
another circle, and the axial triangle cuts this circle along a
diameter, and the plane of the section cuts this diameter at
right angles into two pieces, one of which is equal to BF . The
square on DF thus varies as FC, which varies as FG. That
is, the square on an ordinate varies as the abscissa (Apollonius
I.). Hence there is a straight line GH such that

DF 2 = FG ·GH,

and GH is independent of the choice of D.
This straight line GH can be conceived as being drawn at

right angles to the plane of the conic section DGE. Apollonius
calls GH the upright side (ὀρθία [πλευρά]), and Descartes
accordingly calls it le costé droit [, p. ]. Apollonius calls
the conic section itself a parabola (ἡ παραβολή), that is, an
application, presumably because the rectangle bounded by the
abscissa and the upright side is the result of applying (πα-
ραβάλλω) the square on the ordinate to the upright side. Such
an application is made for example in Proposition I. of Eu-
clid’s Elements, where a parallelogram equal to a given trian-
gle is applied to a given straight line. (This proposition is a
lemma for Proposition , mentioned in Chapter  above as
the climax of Book I of the Elements.)

The Latin term for upright side is latus rectum. This term
is also used in English. In the Oxford English Dictionary [],
the earliest quotation illustrating the use of the term is from
a mathematical dictionary published in . Evidently the
quotation refers to Apollonius and gives his meaning:

App. Conic Sections  In a Parabola the Rectangle of the
Diameter, and Latus Rectum, is equal to the rectangle of
the Segments of the double Ordinate.

 . Abscissas and ordinates



I assume the “segments of the double ordinate” are the two
halves of a chord, so that each of them is what we are calling
an ordinate, and the rectangle contained by them is equal to
the square on one of them.

The textbook by Nelson & al. considered in Chapter  above
defines the parabola in terms of a focus and directrix. The
possibility of defining all of the conic sections in this way is
demonstrated by Pappus [, p. ] and was presumably
known to Apollonius. According to Nelson & al.,

The chord of the parabola which contains the focus and
is perpendicular to the axis is called the latus rectum. Its
length is of value in estimating the amount of “spread” of the
parabola.

The first sentence here defines the latus rectum so that it is
four times the length of Apollonius’s. The second sentence cor-
rectly describes the significance of the latus rectum. However,
the juxtaposition of the two sentences may mislead somebody
who knows just a little Latin. The Latin adjective latus, -a,
-um does mean “broad, wide; spacious, extensive” []: it is
the root of the English noun “latitude.” However, this Latin

Each conic section can be understood as the locus of a point whose
distance from a given point has a given ratio to its distance from
a given straight line. As Heath [, pp. xxxvi–xl] explains, Pappus
proves this theorem because Euclid did not supply a proof in his
treatise on surface loci. (This treatise itself is lost to us.) Euclid
must have omitted the proof because it was already well known; and
Euclid predates Apollonius. Kline [, p. ] summarizes all of this
by saying that the focus-directrix property “was known to Euclid and
is stated and proved by Pappus.” Later (on his page ) Kline gives
the precise reference to Pappus: it is Proposition  [in Hultsch’s
numbering] of Book VII. “As noted in the preceding chapter” he says,
“Euclid probably knew it.”
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adjective latus is unrelated to the noun latus, -eris “side; flank”
[], which is found in English in the adjective “lateral”; and
this noun is what is used in the phrase latus rectum.

Denoting abscissa by x, and ordinate by y, and latus rectum
by ℓ, we have for the parabola the modern equation

(∗) y2 = ℓx.

In latus rectum, the adjective rectus, -a, -um “straight, upright” is given
the neuter form, because the noun latus is neuter. The plural of latus
rectum is latera recta. The neuter plural of the adjective latus would
be lata. The dictionary writes the adjective as lātus, with a long “a”;
but the “a” in the noun is unmarked and therefore short. As far as I can
tell, the adjective is to be distinguished from another Latin adjective
with the same spelling (and the same long “a”), but with the mean-
ing of “carried, borne”, used for the past participle of the verb fero,
ferre, tul̄ı, lātum. This past participle appears in English in words like
“translate,” while fer- appears in “transfer.” The American Heritage
Dictionary [] traces lātus “broad” to an Indo-European root stel-
and gives “latitude” and “dilate” as English derivatives; lātus “carried”
comes from an Indo-European root tel- and is found in English words
like “translate” and “relate,” but also “dilatory.” Thus “dilatory” is not
to be considered as a derivative of “dilate.” A French etymological dic-
tionary [] implicitly confirms this under the adjacent entries dilater
and dilatoire. The older Skeat [] does give “dilatory” as a derivative
of “dilate.” However, under “latitude,” Skeat traces lātus “broad” to
the Old Latin stlātus, while under “tolerate” he traces lātum “borne” to
tlātum. In his introduction, Skeat says he has collated his dictionary
“with the New English Dictionary [as the Oxford English Dictionary
was originally called] from A to H (excepting a small portion of G).” In
fact the OED distinguishes two English verbs “dilate,” one for each of
the Latin adjectives lātus. But the dictionary notes, “The sense ‘pro-
long’ comes so near ‘enlarge’, ‘expand’, or ‘set forth at length’. . . that
the two verbs were probably not thought of as distinct words.”

 . Abscissas and ordinates



.. The hyperbola

The second possibility for a conic section is that the diameter
meets the other side of the axial triangle when this side is
extended beyond the vertex of the cone. In Figure ., the
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Figure .. Axial triangle and base of a cone

diameter FG, crossing one side of the axial triangle ABC at G,
crosses the other side, extended, atK. AgainDF 2 = BF ·FC;
but the latter product now varies as KF · FG. The upright
side GH can now be defined so that

BF · FC : KF · FG : : GH : GK.

We draw KH and extend to L so that FL is parallel to GH ,
and we extend GH to M so that LM is parallel to FG. Then

FL · FG : KF · FG : : FL : KF

: : GH : GK

: : BF · FC : KF · FG,
and so FL · FG = BF · FC. Thus

DF 2 = FG · FL.
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Apollonius calls the conic section here an hyperbola (ἡ ὑπερ-
βολή), that is, an exceeding, because the square on the ordi-
nate is equal to a rectangle whose one side is the abscissa,
and whose other side is applied to the upright side; but this
rectangle exceeds (ὑπερβάλλω) the rectangle contained by the
abscissa and the upright side by another rectangle. This last
rectangle is similar to the rectangle contained by the upright
side and GK. Apollonius calls GK the transverse side (ἡ
πλαγία πλευρά) of the hyperbola. Denoting it by a, and the
other segments as before, we have the modern equation

(†) y2 = ℓx+
ℓ

a
x2.

.. The ellipse

The last possibility is that the diameter meets the other side
of the axial triangle when this side is extended below the base.
All of the computations will be as for the hyperbola, except
that now, if it is considered as a directed segment as in Chapter
, the transverse side is negative, and so the modern equation
is

(‡) y2 = ℓx− ℓ

a
x2.

In this case Apollonius calls the conic section an ellipse (ἡ
ἔλλειψις), that is, a falling short, because again the square on
the ordinate is equal to a rectangle whose one side is the ab-
scissa, and whose other side is applied to the upright side; but
this rectangle now falls short (ἐλλείπω) of the rectangle con-
tained by the abscissa and the upright side by another rect-
angle. Again this last rectangle is similar to the rectangle
contained by the upright and transverse sides.

 . Abscissas and ordinates



Thus the terms “abscissa” and “ordinate” are ultimately
translations of Greek words that merely describe certain line
segments that can be used to describe points on conic sections.
For Apollonius, they are not required to be at right angles to
one another.

Descartes generalizes the use of the terms slightly. In one
example [, p. ], he considers a curve derived from a given
conic section in such a way that, if a point of the conic section
is given by an equation of the form

y2 = . . . x . . . ,

then a point on the new curve is given by

y2 = . . . x′ . . . ,

where xx′ is constant. But Descartes just describes the new
curve in words:

toutes les lignes droites appliquées par ordre a son diame-
tre estant esgales a celles d’une section conique, les segmens
de ce diametre, qui sont entre le sommet & ces lignes, ont
mesme proportion a une certaine ligne donnée, que cete ligne
donnée a aux segmens du diametre de la section conique,
auquels les pareilles lignes sont appliquées par ordre.

Thus it appears that, for Descartes, there is still no notion that
an arbitrary point might have two coordinates, called abscissa
and ordinate respectively; at any rate, he is not interested in
inculcating such a notion in his readers.

“All of the straight lines drawn in an orderly way to its diameter being
equal to those of a conic section, the segments of this diameter that
are between the vertex and these lines have the same ratio to a given
line that this given line has to the segments of the diameter of the
conic section to which the parallel lines are drawn in an orderly way.”
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. The geometry of the conic

sections

.. Diameters

For an hyperbola or ellipse, the center (κέντρον) is the mid-
point of the transverse side. In Book I of the Conics, Apollo-
nius shows that the diameters of

() an ellipse are the straight lines through its center,
() an hyperbola are the straight lines through its center

that actually cut the hyperbola,

() a parabola are the straight lines that are parallel to the
axis.

Moreover, with respect to a new diameter, the relation between
ordinates and abscissas is as before, except that the upright
and transverse sides may be different.

I do not know of an efficient way to prove these theorems by
Cartesian methods. Descartes opens his Geometry by saying,

All problems in geometry can easily be reduced to such terms
that one need only know the lengths of certain straight lines
in order to solve them.

However, Apollonius proves his theorems about diameters by
means of areas. Areas can be reduced to products of straight

If the hyperbola is considered together with its conjugate hyperbola,
then all straight lines through the center are diameters, except the
asymptotes.
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lines, but the reduction in the present context seems not to
be particularly easy. For example, to shift the diameter of a
parabola, Apollonius will use the following.

Lemma  (Proposition I. of Apollonius). In Figure .,
it is assumed that () the parabola GDB has diameter AB,
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Figure .. Proposition I. of Apollonius

() AG is tangent to the parabola at G, () GJ is an ordinate,
and () GJBH is a parallelogram. Moreover () the point D
is chosen at random on the parabola, and () triangle EDZ is
drawn similar to AGJ . It follows that

the triangle EDZ is equal to the parallelogram HZ.

Proof. The proof relies on knowing (from I.) that AB = BJ .
Therefore AGJ = HJ . Thus the claim follows when D is just
the point G. In general we have

EDZ : HJ : : EDZ : AGJ [Euclid V.]

: : DZ2 : GJ2 [Euclid VI.]

: : BZ : BJ [Apollonius I.]

: : HZ : HJ, [Euclid VI.]
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and so EDZ = HZ by Euclid V.. The relative positions of
D and G on the parabola are irrelevant to the argument.

Then the diameter of a parabola can be shifted by the fol-
lowing.

Theorem  (Proposition I. of Apollonius). In Figure .,
it is assumed that () KDB is a parabola, () its diameter is
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Figure .. Proposition I. of Apollonius

MBG, () GD is tangent to the parabola, and () through D,
parallel to BG, straight line ZDN is drawn. Moreover () the
point K is chosen at random on the parabola, () through K,
parallel to GD, the straight line KL is drawn, and () BR is
drawn parallel to GD. It follows that

KL2 : BR2 : : DL : DR.

Proof. Let ordinate DX be drawn, and let BZ be drawn par-

Apollonius also finds the upright side corresponding to the new diam-
eter DN : it is H such that ED : DZ : : H : 2GD.

 . The geometry of the conic sections



allel to it. Then

GB = BX [Apollonius I.]

= ZD, [Euclid I.]

and so (by Euclid I. & )

△EGB = △EZD.

Let ordinate KNM be drawn. Adding to either side of the
last equation the pentagon DEBMN , we have the trapezoid
DGMN equal to the parallelogram ZM (that is, ZBMN).

Let KL be extended to P . By the lemma above, the paral-
lelogram ZM is equal to the triangle KPM . Thus

DGMN = KPM.

Subtracting the trapezoid LPMN gives

KLN = LG.

We have also
BRZ = RG

(as by adding the trapezoid DEBR to the equal triangles
EZD and EGB). Therefore

KL2 : BR2 : : KLN : BRZ

: : LG : RG

: : LD : RD.

The proof given above works when K is to the left of D.
The argument can be adapted to the other case. Then, as a
corollary, we have that DN bisects all chords parallel to DG.
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In fact Apollonius proves this independently, in Proposition
I..

Again, I do not see how the foregoing arguments can be
improved by expressing all of the areas involved in terms of
lengths. Rule Four in Descartes’s Rules for the Direction of
the Mind [] is, “We need a method if we are to investigate the
truth of things.” Descartes elaborates:

. . . So useful is this method that without it the pursuit of
learning would, I think, be more harmful than profitable.
Hence I can readily believe that the great minds of the past
were to some extent aware of it, guided to it even by nature
alone. . . This is our experience in the simplest of sciences,
arithmetic and geometry: we are well aware that the ge-
ometers of antiquity employed a sort of analysis which they
went on to apply to the solution of every problem, though
they begrudged revealing it to posterity. At the present
time a sort of arithmetic called “algebra” is flourishing, and
this is achieving for numbers what the ancients did for fig-
ures. . . But if one attends closely to my meaning, one will
readily see that ordinary mathematics is far from my mind
here, that it is quite another discipline I am expounding,
and that these illustrations are more its outer garments than
its inner parts. . . Indeed, one can even see some traces of
this true mathematics, I think, in Pappus and Diophantus
who, though not of that earliest antiquity, lived many cen-
turies before our time. But I have come to think that these
writers themselves, with a kind of pernicious cunning, later
suppressed this mathematics as, notoriously, many inventors
are known to have done where their own discoveries are con-
cerned. . . In the present age some very gifted men have tried
to revive this method, for the method seems to me to be none
other than the art which goes by the outlandish name of
“algebra”—or at least it would be if algebra were divested of

 . The geometry of the conic sections



the multiplicity of numbers and imprehensible figures which
overwhelm it and instead possessed that abundance of clar-
ity and simplicity which I believe true mathematics ought to
have.

Descartes does not mention Apollonius among the ancient
mathematicians, and I do not believe that in his Geometry
he has managed to recover the method whereby Apollonius
proves all of his theorems.

.. Duplication of the cube

On the other hand, Descartes may have recovered one method
used by ancient mathematicians, because perhaps some of
these mathematicians did solve problems by considering equa-
tions of polynomial functions of lengths only. An example
is Menaechmus, “a pupil of Eudoxus and a contemporary of
Plato” [, p. xix].

Apollonius did not discover the conic sections; Menaech-
mus is thought to have done this, if only because his is the
oldest name associated with the conic sections. According to
the commentary by Eutocius on Archimedes, Menaechmus
had two methods for finding two mean proportionals to two
given straight lines; each of these methods uses conic sections.
One of the methods is illustrated by Figure .; apparently
Menaechmus’s own diagram was just like this [, p. ]. Given
the lengths Α and Ε, we want to find Β and Γ so that

Α : Β : : Β : Γ : : Γ : Ε,

Eutocius flourished around  c.e., and his commentary was revised
by Isidore of Miletus [, p. ], who along with Anthemius of Tralles
was a master-builder of Justinian’s Hagia Sophia [].
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Figure .. Menaechmus’s finding of two mean proportionals

or equivalently

Β2 = Α · Γ, Β · Γ = Α · Ε.(∗)
In the special case where Α is twice Ε, we shall have that the
cube with side Γ is double the cube with side Ε. In any case,
we shall have (∗) as desired if

() Β is an ordinate, and Γ the corresponding abscissa, of
the parabola with upright side Α whose axis is ∆Η in the
diagram;

() Β and Γ are the coordinates of a point on the hyperbola
whose asymptotes are ∆Κ and ∆Η in the diagram and
which also passes through the point with coordinates Α
and Ε.

Thus, if Θ is the intersection of the parabola and hyperbola,
we can let Β be ΖΘ and let Γ be ∆Ζ.

We have used the property proved by Apollonius in his
Proposition II., that the rectangle bounded by the straight
lines drawn from a point on an hyperbola to the asymptotes
has constant area. Heath has an idea of how Menaechmus
proved this [, xxv–xxviii]. In any case, by the report of Eu-
tocius, Menaechmus’s other method of finding two mean pro-
portionals was to use two parabolas with orthogonal axes.

 . The geometry of the conic sections



I referred to Β and Γ as coordinates, but this is an anachro-
nism. According to one historian [, pp. –],

Since this material has a strong resemblance to the use of co-
ordinates, as illustrated above, it has sometimes been main-
tained that Menaechmus had analytic geometry. Such a
judgment is warranted only in part, for certainly Menaech-
mus was unaware that any equation in two unknown quan-
tities determines a curve. In fact, the general concept of an
equation in unknown quantities was alien to Greek thought.
It was shortcomings in algebraic notations that, more than
anything else, operated against the Greek achievement of a
full-fledged coordinate geometry.

Boyer evidently considers analytic geometry as the study of
the graphs of arbitrary equations; but this would seem to be
within the purview of calculus rather than geometry. The book
of Nelson & al. discussed in Chapter  does have chapters on
graphs of single-valued algebraic functions, single-valued tran-
scendental functions, and multiple-valued functions, as well as
on parametric equations; but this fits the explicit purpose of
the text as a preparation for calculus.

.. Quadratrix

Did Descartes have a “full-fledged analytic geometry” in the
sense of Boyer? In the Geometry [, pp. –], Descartes

In fact what Boyer refers to as “this material” is the properties of the
conic sections given by equations (∗), (†) and (‡) in the previous
chapter. Boyer will presently give the method of cube-duplication
using two parabolas, and then say, “It is probable that Menaechmus
knew that the duplication could be achieved also by the use of a
rectangular hyperbola and a parabola.” It is not clear why he says “It
is probable that,” unless he questions the authority of Eutocius.
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rejects the study of curves like the quadratrix, which today
can be defined by the equation

tan
(
π

2
· y

)
=
y

x
,

or more elaborately by the pair of equations

θ

y
=

π

2
, tan θ =

y

x
,

the variables being as in Figure .. Descartes does not write

x
y

θ
A

B G

DH

Figure .. The quadratrix

down an equation for the quadratrix; but an equation is not
needed for proving theorems about this curve. Pappus [,
pp. –] defines the quadratrix as being traced in a square
by the intersection of two straight lines, one horizontal and
moving from the top edge BG to the bottom edge AD, the
other swinging about the lower left corner A from the left
edge AB to the bottom edge AD. If there is a point H where
the quadratrix meets the lower edge of the square, then

BD : AB : : AB : AH,

where BD is the circular arc centered at A. Then a straight
line equal to this arc can be found, and so the circle can be
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squared. This is why the curve is called the quadratrix (τετρα-
γωνίζουσα). Pappus demonstrates this property, while point-
ing out that we have no way to construct the quadratrix with-
out knowing where the point H is in the first place. Today
we have a notation for its position: if D is one unit away from
A, then the length of AH is what we call 2/π. However, this
notation does not give us the location of H any better than
Pappus’s description of the quadratrix does.

Is “the general concept of an equation in unknown quanti-
ties” something that is “alien to Greek thought”? Perhaps it
is alien to our own thought. According to Boyer as quoted
above, “any equation in two unknown quantities determines a
curve.” But this would seem to be an exaggeration, unless an
arbitrary subset S of the plane R × R is to be considered a
curve. For, if χS is the characteristic function of S, then S is
the solution-set of the equation

χS(x, y) = 1.

Probably Boyer does not have in mind equations with param-
eters like S, but equations whose only parameters are real
numbers, and in particular equations that are expressed by
means of polynomial, trigonometric, logarithmic, and expo-
nential functions.

If Menaechmus neglects to study all such functions, it is
not for lack of adequate algebraic notation, but lack of inter-
est. He solves the problem of finding two mean proportionals
to two given line segments. If a numerical approximation is
wanted, this can be found, as close as desired; therefore, by the
continuity of the real line established by Dedekind, an exact

Pappus attributes this criticism to one Sporus, about whom we appar-
ently have no source but Pappus himself [, p. , n. ].
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solution exists. But Menaechmus wants a geometric solution,
and he finds one, evidently by using the kind of mathematics
that we refer to today as analytic geometry. Indeed, Heath
suspects that Menaechmus first came up with the equations
(∗) and then discovered that curves defined by these equations
could be obtained as conic sections [, p. xxi]. Figure . could
appear at the beginning of any analytic geometry text, as an
illustration of what the subject is about.

.. Locus problems

Pappus [, pp. –] reports three kinds of geometry prob-
lem: plane, as being solved by means straight lines and circles
only, which lie in a plane; solid, as requiring also the use of
conic sections, which in particular are sections of a solid figure,
the cone; and linear, as involving more complicated lines, that
is, curves, such as the quadratrix. Perhaps justly, Descartes
criticizes this analysis as simplistic. He shows that curves
given by polynomial equations have a hierarchy determined
by the degrees of the polynomials. This hierarchy could have
been meaningful for Pappus, since lower-degree curves can be
used to construct higher-degree curves by methods more pre-
cise than the construction of the quadratrix.

One solid problem described by Pappus [, pp. –] is
the four-line locus problem: find the locus of points such that
the rectangle whose dimensions are the distances to two given
straight lines bears a given ratio to the rectangle whose di-
mensions are the distances to two more given straight lines.
According to Pappus, theorems of Apollonius were needed to
solve this problem; but it is not clear whether Pappus thinks
Apollonius actually did work out a full solution. By the last
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three propositions, namely –, of Book III of the Conics of
Apollonius, it is implied that the conic sections are three-line
loci, that is, solutions to the four-line locus problem when two
of the lines are identical. Taliaferro [, pp. –] works out
the details and derives the theorem that the conic sections are
four-line loci.

Descartes works out a full solution to the four-line locus
problem. He also solves a particular five-line locus problem,
namely, given four equally spaced parallel straight lines and a
fifth straight line perpendicular to them, to find the locus of
points, the product of whose distances to three of the parallel
lines is equal to the product of three other distances: () to
the remaining parallel, () to the fifth line, and () between
adjacent parallels. Descartes expresses the problem with the
equation

(2a− y)(a− y)(y + a) = axy,

and he finds the solution as the curve, each of whose points is
the intersection of a certain parabola and straight line. The
parabola slides, and the straight line passes through a fixed
point and a point that moves with the parabola.

Thus Descartes would seem to have made progress along an
ancient line of research, rather than just heading off in a dif-
ferent direction. As Descartes observes, Pappus [, pp. -]
could formulate the 2n-line locus problem for arbitrary n. If
n > 3, the ratio of the product of n segments with the prod-
uct of n segments can be understood as the ratio compounded
of the respective ratios of segment to segment. That is, given
2n segments A1, . . . , An, B1, . . . , Bn, we can understand the
ratio of the product of the Ak to the product of the Bk as the
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ratio of A1 to Cn, where

A1 : C1 : : A1 : B1,

C1 : C2 : : A2 : B2,

C2 : C3 : : A3 : B3,

. . . . . . . . . . . . . . . . ,

Cn−1 : Cn : : An : Bn.

Descartes expresses the solution of the 2n-line locus problem
as an nth-degree polynomial equation in x and y, where y is
the distance from the point to one of the given straight lines,
and x is the distance from a given point on that line to the
foot of the perpendicular from the point of the locus.

In fact Descartes does not use the perpendicular as such,
but a straight line drawn at an arbitrarily given angle to the
given line. For, the original 2n-line problem literally involves
not distances to the given lines, but lengths of straight lines
drawn at given angles to the given lines. For the methods
of Descartes, the distinction is trivial. For Apollonius, the
distinction would seem not to be trivial.

The question remains: If Descartes can express the solu-
tion of a locus problem in terms that would make sense to
Apollonius or Pappus, would the ancient mathematician ac-
cept Descartes’s proof, a proof that involves algebraic manip-
ulations of symbols?

 . The geometry of the conic sections



. A book from the s

In  in Ankara, with two senior colleagues, I taught a first-
year, first-semester undergraduate analytic geometry course
from a locally published text that was undated, but had ap-
parently been produced in  []. The preface of that text
begins:

This book is meant as a basic text book for a course in
Analytic Geometry.

Throughout the book, the connections and interrelations
between algebra and geometry are emphasized. the notions
of Linear Algebra are introduced and applied simultaneously
with more traditional topics of Analytic Geometry. Some of
the notions of Linear Algebra are used without mentioning
them explicitly.

The preface continues with brief descriptions of the eight chap-
ters and two appendices, and it concludes with acknowledge-
ments. Chapter  of the text, “Fundamental Principle of An-
alytic Geometry”, has five sections:

. Set Theory
. Relations
. Functions
. Families of Sets
. Fundamental Principle of Analytic Geometry

Thus the book appears more sophisticated than the  book
discussed in Chapter . Possibly this shows the influence of the
intervening New Math in the US, if the text draws on Amer-
ican sources; but here I am only speculating. The author’s
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acknowledgements include no written sources, and the book
has no bibliography. The introduction to Chapter  reads:

Analytic Geometry is a branch of mathematics which
studies geometry through the use of algebra. It was Rene

Descartes (–) who introduced the subject for the
first time. Analytic geometry is based on the observation
that there is a one-to-one correspondence between the points
of a straight line and the real numbers (see §). This fact is
used to introduce coordinate systems in the plane or in three
space, so that a geometric object can be viewed as a set of
pairs of real numbers or as a set of triples of real numbers.

In this chapter, we list notations, review set theoretic no-
tions and give the fundamental principle of analytic geome-
try.

The reference to Descartes is too vague to be meaningful.
Descartes does not observe, but he tacitly assumes, that there
is a one-to-one correspondence between lengths and positive
numbers. He assumes too that numbers can be multiplied by
one another; but in case there is any question about this as-
sumption, he proves that this multiplication is induced by a
geometrically meaningful notion. His proof is discussed below
in Chapter .

As spelled out on pages  and  of the book under review,
the Fundamental Principle of Analytic Geometry is that
for every straight line ℓ there is a function P from R to ℓ such
that:

a) P (0) 6= P (1);
b) for every positive integer n, the points P (±n) are n times

as far away from P (0) as P (1) is, and are on the same
and opposite sides of P (0) respectively;

c) similarly for the points P (±k) and P (k/n), when k is
also a positive integer;
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d) if x < y, then the direction from P (x) to P (y) is the
same as from P (0) to P (1).

It follows that any choice of distinct points P (0) and P (1)
uniquely determines such a function P .

In a more rudimentary form, this Fundamental Principle
is called the Cantor–Dedekind Axiom on Wikipedia. I
would analyze this Principle or Axiom into two parts:

. For a point O on a straight line, for one of the two sides
of O, the line has the structure of an ordered (abelian)
group in which the chosen point is the neutral element
and the positive elements are on the chosen side of O.
If A and B are arbitrary points on the line, then A+B
is that point C such that the segments OB and AC are
congruent and C is on the same side of A that B is of
O.

. If a particular point U of the line is chosen on the cho-
sen side of O, then there is an isomorphism P from the
ordered group of real numbers to the ordered group of
the line in which P (1) = U .

The first part here defines addition of points compatibly with
the addition of segments defined in the text of Nelson & al.
discussed in Chapter  above. The second part establishes
continuity of straight lines in the sense of Dedekind discussed
in Chapter  above.

In fact this two-part formulation of the Fundamental Prin-
ciple is strictly stronger than what the text gives. By the
text version, the map P is not a group homomorphism; only
its restriction to Q is a group homomorphism. As noted in

Article of that name accessed October , . It says “the phrase
Cantor–Dedekind axiom has been used to describe the thesis that the
real numbers are order-isomorphic to the linear continuum of geome-
try.” No preservation of algebraic structure is discussed.
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Chapter  above, by Dedekind’s construction, R is initially
obtained from Q as a linear order alone; it must be proved
to have field-operations extending those of Q. By the second
part of the two-part formulation of the Fundamental Principle,
addition on R is geometrically meaningful. This is left out of
the Principle as formulated in the text under review.

As Dedekind observes, and as was repeated in Chapter 
above, continuity is not necessary for doing geometry. Thus
the so-called Fundamental Principle is not necessary. It is
not even sufficient for doing geometry; for it provides no clue
about what happens away from a given straight line. The
Principle holds for every Riemannian manifold with no closed
geodesics. In such a manifold, a chosen point on a geodesic and
a chosen direction along the geodesic determine the structure
of an ordered group on the geodesic, and this ordered group is
isomorphic with R as an ordered group. The bijection from R

to the geodesic induces a multiplication on the geodesic; but
this multiplication is not generally of significance within the
manifold. It is of significance in a Euclidean manifold, where
we have an equation between the product of two lengths and
the area of a rectangle whose dimensions are those lengths.
This equation is fundamental to analytic geometry; but the
so-called Fundamental Principle of Analytic Geometry does
not give it to us.

The first theorem in the book under review is that the usual
formula for the distance between two points is correct. The
proof appeals to the Pythagorean Theorem without further
explanation. This is a failure of rigor. Proposition I. of Eu-
clid’s Elements gives us the Pythagorean Theorem as an equa-
tion of certain linear combinations of areas. To do analytic
geometry, we need to be able to understand this as an equa-
tion of certain polynomial functions of lengths. If all lengths
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are commensurable, this is easy. Since not all lengths are com-
mensurable, more work is needed, which will be discussed in
the next chapter.

The second theorem in the book under review is that every
straight line is defined by a linear equation as follows.

. A vertical straight line is defined by an equation x = a.
. A horizontal straight line is defined by an equation y = b.
. If the line is inclined, then any two points of the line give

the same slope for the line, and so the line is defined by
an equation y = m(x− x1) + y1.

This last conclusion is justified by similarity of triangles. The
possibility of distinguishing straight lines as vertical, horizon-
tal, or oblique is asserted without explanation. The meaning
of straightness is not discussed.

Each of the equations that have been found for a line can
be put into the form Ax + By + C = 0. The third theorem
of the text is the converse. If one of A and B is not 0, then
the equation Ax+By + C = 0 defines

() the vertical line defined by x = −C/A, if B = 0;
() the straight line through (0,−C/B) having slope −A/B,

if B 6= 0.
This assumes that a point and a slope determine a line.

It seems to me that these first three theorems are founded
on notions from high-school mathematics, but add no rigor to
these notions. It would be more honest to say something like,

As we know from high school, straight lines are just graphs

According to the text, the equations x = a, y = b, and y = m(x −
x1) + y1 are called defining equations of the corresponding lines, and
an equation of the form Ax+By+C = 0 is called a linear equation.
The second theorem is given as, “The defining equation of any straight
line is a linear equation.” Taken literally, this is trivial.

This condition is omitted from the text.
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of equations of the form Ax + By + C = 0, where at least
one of A and B is not 0. . .

To write this out as formal numbered theorems, with proofs
labelled as “Proof” and ended with boxes —this is a failure
of rigor, unless the axioms that the proofs rely on are made ex-
plicit. We have already seen that the Fundamental Principle
of Analytic Geometry is an insufficient axiomatic foundation.

I argued in Chapter  above that Euclid’s Proposition I.,
“Side-Angle-Side,” is reasonably treated as a theorem, rather
than a postulate, even though it relies on no postulates. But
Euclid is not working within a formal system. He has no such
notion. Today we have the notion, and a textbook of mathe-
matics ought to give at least a nod to the reader who is familiar
with the notion.

Descartes is more rigorous than the book considered here,
even though he does not write out any theorems as such. It
is clear that his logical basis is Euclidean geometry as used by
the ancient Greek mathematicians.

In the book under review, the first three theorems get the numbers
.., .., and ... The first and third have proofs ended with
boxes. The second is preceded by two pages of discussion and dia-
grams, followed by “We have thus proved”.
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. Geometry to algebra

To consider the matter of rigor in more detail, I propose to
compare the so-called Fundamental Principle of Analytic Ge-
ometry in the previous chapter with the axioms of David
Hilbert []. The latter are given in five groups. For plane
geometry, the axioms can be paraphrased as follows.

I. Connection.
–. Two distinct points lie on a unique straight line.

. A line contains at least two points.
II. Order.

–. The points of a straight line are densely linearly
ordered without extrema.

 (Pasch’s Axiom). A straight line intersecting one side

Hilbert writes this axiom as two:

I, . Two distinct points A and B always completely determine a straight

line a. We write AB = a or BA = a.

I, . Any two distinct points of a straight line completely determine that

line; that is, if AB = a and AC = a, where B 6= C, then is also BC = a.

Evidently Hilbert understands equality as identity. The first axiom
appears to be that there is a function assigning to every (unordered)
pair of points A and B a straight line, called indifferently AB or BA,
that contains them. The first part of the second axiom appears to
be that if AB contains a point C that is distinct from both A and
B, then AB = BC. The second part of the second axiom, given as
a rephrasing of this, would appear to be strictly weaker, since the
assumption AB = AC is stronger than the assumption that C lies
on AB. For example, perhaps the straight line AB is intended in
Euclid’s sense, as the line segment bounded by A and B. In that
case, if AB = AC, then B = C.
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of a triangle intersects one of the other two sides or
meets their common vertex.

III. Parallels (Euclid’s Axiom).
Through a given point, exactly one parallel to a given
straight line can be drawn.

IV. Congruence.
. Every segment can be uniquely laid off upon a

given side of a given point of a given straight line.
–. Congruence of segments is transitive and additive.

. Every angle can be uniquely laid off upon a given
side of a given ray.

. Congruence of angles is transitive.
. “Side-Angle-Side” (Euclid’s Proposition I.).

V. Continuity (Archimedean Axiom).
Some multiple of one segment exceeds another.

Hilbert gives an additional Axiom of Completeness, that
no larger system satisfies the axioms.

In the two-part formulation of the Fundamental Principle of
Analytic Geometry given in Chapter  previous, the first part
is equivalent to Hilbert’s Order and Congruence Axioms, as
restricted to a single straight line.

Granted that Hilbert’s axioms allow the construction of an
ordered field K as discussed below, Pasch’s axiom ensures that
“space” has at most two dimensions. The Completeness Axiom
then ensures that space has exactly two dimensions. Then
the Completeness and Continuity Axioms together ensure that
the ordered field K is R. Indeed, these two axioms, in the
presence of the others, are equivalent to the second part of the
Fundamental Principle of Analytic Geometry.

Hilbert (or his translator) says “half-ray”.
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Hilbert shows that the Axiom of Parallels and the “Side-
Angle-Side” axiom respectively are independent from all of the
other axioms. In particular then, the Fundamental Principle
of Algebraic Geometry is not sufficient for doing geometry. We
have already cited Dedekind to the effect that continuity is not
necessary for doing geometry.

What is needed for doing analytic geometry is something
that Descartes observes. Suppose K is an ordered field, and
ℓ is a straight line with a distinguished direction and point,
so that ℓ becomes an ordered group. Suppose also P is an
isomorphism of ordered groups from K to ℓ. To do analytic
geometry, we must be able to obtain P (x · y) from P (x) and
P (y) in a geometrically meaningful way. In this case, we have
grounded algebra in geometry and so made algebra rigorous.
This is Descartes’s insight.

Having picked a unit length, Descartes defines a multi-
plication of lengths by means of the theory of proportion—
presumably the theory of Book V of the Elements. In particu-
lar, Descartes implicitly uses Euclid’s Proposition VI., that a
straight line parallel to the base of a triangle divides the sides
proportionally. If one side is divided into parts of lengths 1
and a, then the other side is divided into parts of lengths b
and ab for some b, as in Figure .; and a and b can be chosen
in advance.

As developed in Euclid, the theory of proportion uses
the Archimedean Axiom. Hilbert shows how to avoid using
this Axiom, but the arguments are somewhat complicated.
Hartshorne [] has a more streamlined approach, using prop-
erties of circles in Book III of the Elements.

Strictly, Hilbert leaves the Completeness Axiom out of his arguments;
but leaving it in would not affect his independence proofs.
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a

b

ab

Figure .. Multiplication of lengths

In fact, Euclid’s Book I alone provides a sufficient basis for
defining multiplication. It was suggested in Chapter  above
that Proposition  is the climax of that book. It was ob-
served in Chapter  that Proposition  is a lemma for this
proposition. This lemma in turn relies heavily on Proposition
:

In any parallelogram the complements of parallelograms
about the diameter are equal to one another.

In particular, in rectangle ΑΒΓ∆ in Figure ., the diagonal

Ε

Β

Θ ∆Α

ΓΗ

Ζ
Κ

Figure .. Euclid’s Proposition I.

ΑΓ is taken, and rectangles ΕΘ and ΗΖ are drawn sharing this
diagonal. Then the complementary rectangles ΒΚ and Κ∆ are
equal to one another, because they are the same linear combi-
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nations of triangles that are respectively equal to one another:

ΒΚ = ΑΒΓ− ΑΕΚ− ΚΗΓ
= Α∆Γ− ΑΘΚ− ΚΖΓ
= ∆Κ.

Now we can define the product of two lengths a and b as in
Figure ., so that ab is the width of a rectangle of unit height

1

a

b ab

Figure .. Multiplication of lengths

that is equal to a rectangle of dimensions a and b. Given the
theorem (easily proved) that all rectangles of the same dimen-
sions are equal, multiplication is automatically commutative.
Easily too, it distributes over addition, and there are multi-
plicative inverses. Associativity takes a little more work. In
Figure ., by definition of ab, cb, and a(cb), we have

(∗)





A +B = E + F +H +K,

C = G,

A = D + E +G+H.

Also a(cb) = c(ab) if and only if

C +D + E = K.

From (∗) we compute

D + C +B = F +K.
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a

b ab

c

cb a(cb)

A B

C D E F
G H K

Figure .. Associativity of multiplication of lengths

We finish by noting that, by Euclid’s Proposition I.,

B = E + F.

Thus we can establish, by geometric means alone, that lengths
are the positive elements of an ordered field. This is what
makes analytic geometry possible.

Descartes apparently does not recognize any need to estab-
lish commutativity, distributivity, and associativity of multi-
plication. Still he should be credited with the observation that
a geometric definition of multiplication of lengths is what is
needed for the application of algebra to geometry. It is a shame
that textbooks should cite Descartes as the creator of analytic
geometry when his fundamental insight is forgotten.
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. Algebra to geometry

One can work the other way. One can start with an ordered
field K, and one can interpret the product K × K as a Eu-
clidean plane. Hilbert sketches the argument in order to prove
that his axioms for such a plane are consistent [, §, pp. -
].

In fact an arbitrary ordered field is not sufficient. To provide
a model for Hilbert’s axioms, K must also be Pythagorean,
that is, closed under the operation x 7→

√
1+ x2. This allows

hypotenuses of right triangles to have lengths in the field.
For Euclid’s postulates, K must be Euclidean, that is,

closed under taking square roots of all positive elements. In-
deed, Descartes defines square roots geometrically so that

√
a

is, in effect, the ordinate corresponding to the abscissa 1 in
a circle of diameter 1 + a. Hilbert shows [, §, pp. -
] that the Euclidean condition is strictly stronger than the
Pythagorean condition. The Pythagorean closure of Q con-
tains the conjugates of all of its elements. But the conjugate of
a positive element need not be positive. For example,

√
2−1

is positive, but its conjugate −√
2 − 1 is not. Thus

√
2 − 1

has no square root in the Pythagorean closure of Q.
It is perhaps odd that Hilbert should feel the need to prove

his axioms consistent. One might consider them as self-evi-
dently consistent. Hilbert bases his consistency argument on
the existence of a Pythagorean ordered field. One might ar-
gue that we believe such fields exist only because of geometric

Hilbert does not use this terminology.
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demonstrations like Descartes’s as discussed in Chapter  pre-
vious.

On the other hand, we can obtain the ordered field Q with-
out geometry, and Dedekind shows how to do the same for R.
The student may know something about R from calculus class.
Then the student also knows about the product R × R from
calculus, but mainly as the setting for graphs of functions.
With this background, how can the student recover Euclidean
geometry?

By means of the structure of R as an ordered field, we can
give R× R the structure of an inner product space:

. R × R has the abelian group structure induced from R

itself.
. By the standard multiplication, R acts on R × R as a

field, that is, R embeds in the (unital associative) ring
of endomorphisms of R × R as an abelian group. Thus
R× R is a vector space over R.

. The function (x,y) 7→ x · y from R× R to R given by

x · y = x0y0 + x1y1

is a real inner product function, that is, a positive-defi-
nite, symmetric, bilinear function.

. Hence there is a norm function x 7→ |x| given by

|x| =
√
x · x.

We declare that the distance between two points a and b

in R × R is |b − a|. We must check that distance has the
geometrical properties that we expect. The most basic of these
properties are found in the definition of a metric. Easily, the
distance function is symmetric. Also, the distance between
distinct points is positive, while the distance between identical
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points is zero. We can establish the Triangle Inequality by
means of the Cauchy–Schwartz Inequality.

To this end, we first define two elements a and b of R × R

to be parallel, writing
a ‖ b,

if the equation
xa + yb = 000

has a nonzero solution. Given arbitrary a and b in R × R,
where a 6= 000, we have the identity

∑

i<2

(aix+ bi)
2 = |a|2x2 + 2(a · b)x+ |b|2.

If a ‖ b, there is exactly one zero to this quadratic polyno-
mial, and so the discriminant is zero. Otherwise there are no
zeros, so the discriminant is negative. Therefore we have the
Cauchy–Schwartz Inequality

|a · b| 6 |a| · |b|,

with equality if and only if a ‖ b. Hence

(∗)





|a+ b|2 = (a+ b) · (a+ b)

= |a|2 + 2a · b+ |b|2

6 |a|2 + 2|a| · |b|+ |b|2

= (|a|+ |b|)2,

with equality if and only if a ‖ b and a ·b > 0. This condition
is that a and b are in the same direction. We obtain the
Triangle Inequality

|a+ b| 6 |a|+ |b|,
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with equality if and only if a and b are in the same direction.
We can now define the line segment with distinct end-

points a and b to be the set of points x such that

|b− a| = |b− x|+ |x− a|.

This is just the set of x such that b− x and x− a are in the
same direction. We may say in this case that x is between a

and b. We should note that this definition is symmetric in a

and b. The segment can be denoted indifferently by ab or ba.
The distance between a and b is the length of this segment.
Two segments are equal if they have the same length.

The (straight) line containing distinct points a and b con-
sists of those x such that

x− a ‖ b− a.

The points a and b determine this line. Any two distinct
points of the line determine it.

The circle with center a passing through b consists of all
x such that

|x− a| = |b− a|.
The radius of this circle is |b− a|.

It appears we now have Euclid’s first three postulates. But
now is when the accusation that Euclid uses hidden assump-
tions becomes meaningful. In the present context, we do not
automatically have equilateral triangles by Euclid’s Proposi-
tion I.. In the proof as described through Figure . (in
Chapter ) above, one must check that the two circles do in-
deed intersect. Here one would use that R contains

√
3.

For Proposition I., we need the notion of angle. We can
define it as the union of two line segments that share a com-
mon endpoint, provided that the the other endpoints are not
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collinear with the common endpoint. The union of the seg-
ments ab and ac can be denoted indifferently by bac or cab.
If we have the cosine function cos from the interval (0,π) to
(−1,1), along with its inverse arccos, defined analytically by
power series, we can define the measure of the angle bac as

arccos
(c− a) · (b− a)

|c− a| · |b− a| .

Then two angles are equal if they have the same measure. If
d and e are distinct from a, and b − a and d − a are in the
same direction, and likewise for c− a and e− a, then angles
bac and dae are equal.

Our earlier computations now give us the Law of Cosines:
If a, b, and c are three noncollinear points, so that they are
vertices of a triangle, and if the measure of angle bac is θ,
then by (∗) we have

|b− c|2 = |b− a|2 + |a− c|2 − 2|b− a| · |a− c| · cos θ.
Hence the lengths of the sides ab and ac and the measure of
the angle they include determine the length of the opposite
side bc. Conversely, the lengths of all three sides determine
the measure of each angle. So we have Euclid’s I. and also
I. (“Side-Side-Side”).

We have relied on the cosine function and its inverse, al-
though, being defined by power series, they are not algebraic:
their use here assumes that our ordered field is not arbitrary,
but is indeed R. However, we need not actually find measures
of angles. Two angles are equal if and only if their cosines
are equal; and these cosines are defined algebraically from the
sides of the angles.

Hilbert seems to allude to a different approach, apparently
the approach pioneered by Felix Klein [, p. ]. We can
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just declare any two subsets of R×R to be congruent if one
can be carried to the other by a translation

x 7→ x+ a

followed by a rotation

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ)

or a reflection

(x, y) 7→ (x cos θ + y sin θ, x sin θ − y cos θ).

Then two line segments will be equal if and only if they are
congruent. The same will go for angles, provided we define
these as unions of rays rather than segments.

 . Algebra to geometry



A. Ordered fields and valued fields

Here are reviewed the two ways that R is complete. There is
more detail than in the account in Chapter  starting on page
. The aim now is to give the reader the means to recover
everything from a familiarity with calculus.

We are going to make use of the following examples:
• the ring Z of integers, which is also an additive ordered

group;
• the field C of complex numbers and, for each prime num-

ber p, the field Fp of integers modulo p;
• the ordered fields R of real numbers and Q of rational

numbers;
• for an arbitrary field K,

– the ringK[X ] of polynomials in the variableX with
coefficients from K, and

– the field K(X) of rational functions in X over K,
each such function being a quotient of elements of
K[X ].

For completeness, I review the definitions of the algebraic
terms just used. A group is a set equipped with an associa-
tive binary operation that has an identity and a corresponding
operation of inversion. The binary operation is usually written
as multiplication or addition; then the whole group, written
out explicitly, is (G,×,1, −1) or (G,+,0,−). In multiplicative
notation, the equations

x(yz) = (xy)z, 1 · x = x, x−1 · x = 1
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are identities in a group. Even though the multiplication need
not be commutative, one proves x · 1 = x and x · x−1 = 1.
One proves also that the identity is unique and the inverse of
each element is unique. Thus the group is determined by the
multiplication. If the multiplication is commutative, so that
xy = yx, then the group is normally called Abelian; but our
multiplications will always be commutative, and we shall use
“group” to mean Abelian group.

If G is an (Abelian) group with subgroup H , then every a
in G determines a coset H , namely {ah : h ∈ H}, which is
denoted by aH . The set of all such cosets is denoted by G/H
and is a group in the obvious way. For example, if n is a
positive integer, we let (n) be the subgroup {nx : x ∈ Z} of Z;
then the quotient Z/(n) is the group of integers modulo n.

A field is structure (K,+,×,0,1,−) such that
• (K,+,0,−) is a group (that is, Abelian group),
• there is an operation −1 on K r {0} that makes the

structure (K r {0},×,1, −1) a group,
• multiplication distributes over addition, so that x · (y +
z) = x · y + x · z.

Considered as a field, Z/(p) is Fp.
For present purposes, a ring is a substructure of a field.

Thus every ring R contains 0 and 1 and is closed under +, −,
and ×; but Rr {0} need not be closed under −1.

A linear ordering of a set A is a relation < on A that is
irreflexive, transitive, and connected:

x 6< y,

x < y & y < z =⇒ x < z,

x 6< y & x 6= y =⇒ y < x.

An ordered group is a group with a linear ordering that is
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invariant under translation. This means, if the group is written
additively,

x < y =⇒ x+ z = y + z.

Then the elements x such that x > 0 are positive. Another
way to say that an additive group is ordered is that the set
of positive elements is closed under addition. An ordered
field is a field K whose additive group is so ordered that its
positive elements constitute an ordered group K+ with respect
to multiplication.

Every ordered field may be assumed to include Q. This is
not true for fields in general, since for example each field Fp,
being finite, cannot include Q. Moreover, some fields, like C,
that do include Q cannot be ordered. The field Q(X) can be
ordered by letting the positive elements be those f such that
limx→∞ f(x) > 0, equivalently, the values of f are all positive
on some interval (r,∞).

Every ordered field has the absolute-value operation | · |,
given by

|x| = max{x,−x}.

An element of an ordered field that is greater in absolute value
than every element of Q is called infinite. Non-infinite ele-
ments are finite. The element 0 and the reciprocals of infinite
elements are infinitesimal. An ordered field with no infi-
nite elements is Archimedean; with infinite elements, non-
Archimedean. Thus R is Archimedean, but the field Q(X),
ordered as above, is non-Archimedean, with X being infinite,
and X−1 being a positive infinitesimal.

If O is a sub-ring of an arbitrary field K, and the reciprocal
of every element of K r O belongs to O , then O is called a

See page  for Archimedes’s axiom.
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valuation ring of K, andK or more precisely (K,O) is a val-
ued field. For example, the finite elements of an ordered field
constitute a valuation ring of the field. Thus every ordered
field “is” a valued field.

Using the ordering above, let us denote the ring of finite
elements of Q(X) by O∞. Then

O∞ =
{
f ∈ Q(X) :

∣∣∣ lim
x→∞

f(x)
∣∣∣ <∞

}
.

This equation still gives us a valuation ring if we replace ∞
with an element a of Q, obtaining

Oa =
{
f ∈ Q(X) :

∣∣∣lim
x→a

f(x)
∣∣∣ <∞

}
.

If a ∈ Q, then Oa arises from the ordering of Q(X) according
to which the positive elements are those that, as functions, are
positive on some interval (a, a + δ).

The valuation rings O∞ and Oa of Q(X) that we have de-
fined can be defined without use of the ordering of Q. Indeed,
we can replace Q with an arbitrary field K. We extend the
field operations on K partially to K ∪ {∞} by defining

a 6= ∞ =⇒ a±∞ = ∞ &
a

∞ = 0,

a 6= 0 =⇒ a · ∞ = ∞ &
a

0
= ∞.

We leave ∞±∞, ∞/∞, 0 ·∞, and 0/0 undefined. However,
for every f in K(X) and every a in K ∪ {∞}, there is a well-
defined element f(a) of K ∪ {∞}, and so we can define

Oa = {f ∈ K(X) : f(a) 6= ∞}.

This is a valuation ring of K(X), regardless of whether K has
an ordering.

 A. Ordered fields and valued fields



A unit of a ring R is a nonzero element whose reciprocal also
belongs to R. Then the units of R compose a multiplicative
group, denoted by R×. For example, Z× = {1,−1}, but if K
is a field, then K× = K r {0}. An additive subgroup I of
R is an ideal of R if every product of an element of I by an
element of R is in I, but I is not all of R. In this case R/I is
also a well-defined ring.

Let (K,O) be a valued field. One shows that O rO× is an
ideal of O . Then it must be a maximal ideal of O and indeed
the only maximal ideal of O ; let us denote it by MO . The
multiplicative quotient K×/O× becomes an ordered group by
the rule whereby the “negative” elements—the elements less
than 1—are just those cosets aO× such that a ∈ MO . We
define

|x|O =

{
xO×, if x ∈ K×,

0, if x = 0,

with 0 being understood as the least element of the union
{0}∪ (K×/O×). Then the function | · |O is a valuation of K,
and O can be recovered from this as {x ∈ K : |x|O 6 1}.

The absolute-value function on an Archimedean ordered
field may be called an Archimedean valuation, and then
a valuation in the earlier sense is called a non-Archimedean
valuation. Any field equipped with a valuation, be it
Archimedean or not, can be called a valued field. However,
we shall see an important ambiguity in this terminology.

From Q, we can obtain the field R of real numbers in (at
least) two ways:

. Let ω be the set {0,1,2, . . . } of natural numbers. (See
also page .) We define a Cauchy sequence in Q as usual in

Therefore O is called a local ring; but not every local ring is a valuation
ring.
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calculus: it is a sequence (an : n ∈ ω) of rational numbers such
that for every positive rational number ε, there is a natural
number k such that, for all natural numbers m and n,

k 6 m 6 n =⇒ |am − an| < ε.

The Cauchy sequences in Q compose a ring S, and the se-
quences that converge to 0 compose a maximal ideal M of S.
We define R as the quotient S/M. This is an ordered field,
and its every Cauchy sequence of converges, and so it is said to
be complete as a valued field. Also Q embeds densely in R as
the set of cosets of constant sequences; so R is a completion
of Q.

. Alternatively, instead of Cauchy sequences, we start with
the notion of a Dedekind cut of Q, namely a pair (A,B),
where

a) A and B are nonempty disjoint subsets of Q,
b) every rational number belongs to one of A and B,
c) every number in A is less than every number in B,
d) A contains no greatest number.

(See also page .) It will be simpler to think of the set A by
itself as the cut, since B can be recovered from A as Q r A.
We define R as the set of cuts of Q. Each rational number a
can be identified with the cut (in the second sense) comprising
the rational numbers that are less than a. Then R is ordered
by inclusion, and every subset of R with an upper bound has a
supremum, namely the union of the elements of the subset; so
R is said to be complete as a linearly ordered set. Moreover,
addition and multiplication on R can be defined in a natural
way. Then these operations are continuous by the usual defini-
tion from calculus, and so the usual properties follow, making
R a complete ordered field.

 A. Ordered fields and valued fields



The two methods of completing Q yield isomorphic results,
but should still be distinguished, for the following reasons.

Dedekind’s construction can be applied to an arbitrary lin-
early ordered set. In particular, it can be applied to an arbi-
trary ordered field. when the ordering is Archimedean, then
the resulting completion is also a field, isomorphic to R; but if
the ordering is non-Archimedean, then the completion is not
a field or even an additive group.

The Cauchy-sequence construction can also be applied to
an arbitrary ordered field, but now it always yields an ordered
field whose Cauchy sequences converge. If the original ordering
is Archimedean, again the result is a field isomorphic to R. But
suppose we start with Q(X), with the non-Archimedean or-
dering described above, where f > 0 means limx→∞ f(x) > 0.
Cauchy sequences of Q are not Cauchy sequences of Q(X)
unless they are eventually constant, since no positive rational
number is less than the positive infinitesimal X−1. However,
for every sequence (an : n ∈ ω) of rational numbers, the se-
quence

(a0 + a1X
−1 + · · ·+ anX

−n : n ∈ ω)

of polynomials is a Cauchy sequence of Q(X). The quotient
of the ring of these sequences by the ideal of sequences that
converge to 0 is the field Q((X−1)), consisting of power series

a0X
m + a1X

m−1 + a2X
m−2 + · · · ,

where the coefficients ak are in Q, and m ranges over Z.
In the construction of Q((X−1)), the role of the absolute-

value function |·| could have been played by the valuation |·|O∞
,

with no effect on the result. The same is true for an arbitrary
non-Archimedean ordered field; whether we complete it by
using | · | or | · |O∞

makes no difference. Using | · |O∞
relies not
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on its origin in an ordering, but only on its being a valuation.
Thus we can obtain a completion of an arbitrary valued field
(K,O).

For the commonly seen valued fields (K,O), the value
groupK×/O× embeds in R+ and is therefore Archimedean,
even though the valuation |·|O itself is called non-Archimedean.
But non-Archimedean value groups are possible. What is
“worse,” possibly there is no sequence (εk : k ∈ ω} of values
in K×/O× that converges to 0. In this case, every Cauchy
sequence of K is eventually constant, and in particular it con-
verges. We may then wish to consider sequences (aα : α < κ),
where κ is the least of the infinite cardinals λ such that some
sequences of length λ in the value group do converge to 0.

The point for now is that the notion of completeness for
ordered fields is ambiguous. Dedekind himself describes his
construction as achieving the continuity of R as an ordered
field []; this is echoed in the term “continuum.” Then R is
unique as a continuous ordered field or continuum, but not as
a complete valued field.
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