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Abstract

The nine-point circle is established by Euclidean means; the
nine-point conic, Cartesian. Cartesian geometry is developed
from Euclidean by means of Thales’s Theorem. A theory of
proportion is given, and Thales’s Theorem proved, on the ba-
sis of Book i of Euclid’s Elements, without the Archimedean
assumption of Book v. Euclid’s theory of areas is used, al-
though this is obviated by Hilbert’s theory of lengths. It is
observed how Apollonius relies on Euclid’s theory of areas.
The historical foundations of the name of Thales’s Theorem
are considered. Thales is thought to have identified water as a
universal substrate; his recognition of mathematical theorems
as such represents a similar unification of things.





Preface

I review here the theorem, dating to the early nineteenth cen-
tury, that a certain collection of nine points, associated with an
arbitrary triangle, lie on a circle. Some of the nine points are
defined by means of the orthocenter of the triangle. If the or-
thocenter is replaced by an arbitrary point, not collinear with
any two vertices of the triangle, then the same nine points
still lie on a conic section. This was recognized in the late
nineteenth century, and I review this result too. All of this is
an occasion to consider the historical and logical development
of geometry, as seen in work of Thales, Euclid, Apollonius,
Descartes, Hilbert, and Hartshorne. All of the proofs here
are based ultimately, and usually explicitly, on Book i of Eu-
clid’s Elements. Even Descartes’s “analytic” methods are so
justified, although Descartes implicitly used the theory of pro-
portion found in Euclid’s Book v. In particular, Descartes
relied on what is in some countries today called Thales’s The-
orem. Using only Book i of Euclid, and in particular its theory
of areas, I give a proof of Thales’s Theorem in the following
form:

If two triangles share a common angle, the bases of the tri-
angles are parallel if and only if the rectangles bounded by
alternate sides of the common angle are equal.

This allows an alternative development of a theory of propor-
tion.





An even greater logical simplification is possible. As Hilbert
shows, and as I review, using the simpler arguments of
Hartshorne, one can actually prove Euclid’s assumption that
a part of a bounded planar region is less than the whole re-
gion. One still has to assume that a part of a bounded straight
line is less than the whole; but one can now conceive of the
theory of proportion as based entirely on the notion of length.
This accords with Descartes’s geometry, where length is the
fundamental notion.

For Apollonius, by contrast, as I show with an example,
areas are essential. His proofs about conic sections are based
on areas. In Cartesian geometry, we assign letters to lengths,
known and unknown, so as to be able to do computations
without any visualization. This is how we obtain the nine-
point conic.

We may however consider what is lost when we do not di-
rectly, visually, consider areas. Several theorems attributed to
Thales seem to be due to a visual appreciation of symmetry.
I end with this topic, one that I consider further in [], an
article not yet published when the present essay was published.

Aside from the formatting (I prefer A paper, so that two
pages can easily be read side by side on a computer screen, or
for that matter on an A printout)—aside from the format-
ting, the present version of my essay differs from the version
published in the De Morgan Gazette as follows.

. In the Introduction, To the last clause of the rd para-
graph, I have supplied the missing “not,” so that the
clause now reads, “doing this does not represent the ac-
complishment of a preconceived goal.”

. Again, in the Introduction and throughout the essay,
reference [] is now to a published paper, not to the
preliminary version on my own webpage.





. In §., in the paragraph before Theorem , to the sen-
tence, “The definition also ensures that (.) implies

(.),” I have added a second clause: “let (x, y) = (c, d)
in (.).”

. In §., the displayed proportion (a : b) & (b : c) : : a : c
is no longer numbered.

. In the same section, I have deleted the second “this” in
the garbled sentence, “Descartes shows this implicitly,
this in order to solve ancient problems.”

. In §., in the second paragraph, in the clause, “the point
now designed by (x, y) is the one that was called (x −
hy/a, y) before,” I have made the minus sign a plus sign.

. In §., I have enlarged and expanded Figure ..
. In the same section, I have changed “to” to “and” in the

clause, “If d is the distance between the new origin to
the intersection of the x′-axis with the y-axis.”

. Still in §., the proportion (.) formerly had the same
internal label as (.), which meant that the ensuing
proof of (.) was wrongly justified by a reference to
itself, rather than to (.).
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 Introduction

According to Herodotus of Halicarnassus, a war was ended by
a solar eclipse, and Thales of Miletus had predicted the year
[, i.]. The war was between the Lydians and the Medes in
Asia Minor; the year was the sixth of the war. The eclipse is
thought to be the one that must have occurred on May  of
the Julian calendar, in the year  before the Common Era
[, p. , n. ].

The birth of Thales is sometimes assigned to the year 
b.c.e. This is done in the “Thales” article on Wikipedia [];
but it was also done in ancient times (according to the reck-
oning of years by Olympiads). The sole reason for this assign-
ment seems to be the assumption that Thales must have been
forty when he predicted the eclipse [, p. , n. ].

The nine-point circle was found early in the nineteenth cen-
tury of the Common Era. The -point conic, a generalization,
was found later in the century. The existence of the curves
is proved with mathematics that can be traced to Thales and
that is learned today in high school.

In the Euclidean plane, every triangle determines a few
points individually: the incenter, circumcenter, orthocenter,
and centroid. In addition to the vertices themselves, the tri-
angle also determines various triples of points, such as those
in Figure .: the feet • of the altitudes, the midpoints � of
the sides, and the midpoints N of the straight lines running
from the orthocenter to the three vertices. It turns out that
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Figure .: The nine points

these nine points lie on a circle, called the nine-point circle

or Euler circle of the triangle. The discovery of this circle
seems to have been published first by Brianchon and Poncelet
in – [], then by Feuerbach in  [, ].

Precise references for the discovery of the nine-point circle
are given in Boyer’s History of Mathematics [, pp. –]
and Kline’s Mathematical Thought from Ancient to Modern

Times [, p. ]. However, as with the birth of Thales,
precision is different from accuracy. Kline attributes the first
publication on the nine-point circle to “Gergonne and Pon-
celet.” In consulting his notes, Kline may have confused an
author with the publisher, who was himself a mathematician.
Boyer mentions that the joint paper of Brianchon and Poncelet
was published in Gergonne’s Annales. The confusion here is a
reminder that even seemingly authoritative sources may be in
error.

The mathematician is supposed to be a skeptic, accepting
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nothing before knowing its proof. In practice this does not
always happen, even in mathematics. But the ideal should
be maintained, even in subjects other than mathematics, like
history.

There is however another side to this ideal. We shall refer
often in this essay to Euclid’s Elements [, , , , ], and
especially to the first of its thirteen books. Euclid is accused of
accepting things without proof. Two sections of Kline’s history
are called “The Merits and Defects of the Elements” [, ch. ,
§, p. ] and “The Defects in Euclid” (ch. , §, p. ).
One of the supposed “defects” is,

he uses dozens of assumptions that he never states and un-
doubtedly did not recognize.

We all do this, all the time; and it is not a defect. We cannot
state everything that we assume; even the possibility of stating
things is based on assumptions about language itself. We try
to state some of our assumptions, in order to question them,
as when we encounter a problem with the ordinary course of
life. By the account of R. G. Collingwood [], the attempt to
work out our fundamental assumptions is metaphysics.

Herodotus says the Greeks learned geometry from the Egyp-
tians, who needed it in order to measure how much land
they lost to the flooding of the Nile. Herodotus’s word γε-

ωμετρίη means also surveying, or “the art of measuring land”
[, ii.]. According to David Fowler in The Mathematics

of Plato’s Academy [, §.(d), pp. –; §., pp. –],
the Egyptians defined the area of a quadrilateral field as the
product of the averages of the pairs of opposite sides.

The Egyptian rule is not strictly accurate. Book i of the
Elements corrects the error. The climax of the book is the
demonstration, in Proposition , that every straight-sided
field is exactly equal to a certain parallelogram with a given





side.

Euclid’s demonstrations take place in a world where, as
Archimedes postulates [, p. ],

among unequal [magnitudes], the greater exceeds the smaller
by such [a difference] that is capable, added itself to itself,
of exceeding everything set forth . . .

This is the world in which the theory of proportion in Book
v of the Elements is valid. A theory of proportion is needed
for the Cartesian geometry whereby the nine-point conic is
established.

One can develop a theory of proportion that does not require
the Archimedean assumption. Is it a defect that Euclid does
not do this? We shall do it, trying to put into the theory only
enough to make Thales’s Theorem true. This is the theorem
that, if a straight line cuts two sides of a triangle, it cuts them
proportionally if and only if it is parallel to the third side. I
shall call this Thales’s Theorem for convenience, and because
it is so called in some countries today []. There is also some
historical basis for the name: we shall investigate how much.

The present essay is based in part on notes prepared origi-
nally for one of several twenty-minute talks at the Thales Bu-

luşması (Thales Meeting), held in the Roman theater in the
ruins of Thales’s home town, September , . The event
was arranged by the Tourism Research Society (Turizm Araştır-

maları Derneği, TURAD) and the office of the mayor of Didim.
Part of the Aydın province of Turkey, the district of Didim
encompasses the ancient Ionian cities of Priene and Miletus,
along with the temple of Didyma. This temple was linked to
Miletus, and Herodotus refers to the temple under the name
of the family of priests, the Branchidae.

My essay is based also on notes from a course on Pappus’s
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Theorem and projective geometry given at my home univer-
sity, Mimar Sinan, in Istanbul, and at the Nesin Mathematics
Village, near the Ionian city of Ephesus.

To seal the Peace of the Eclipse, the Lydian King Alyat-
tes gave his daughter Aryenis to Astyages, son of the Median
King Cyaxares [, i.]. It is not clear whether Aryenis was
the mother of Astyages’s daughter Mandane, whom Astyages
married to the Persian Cambyses, and whose son Astyages
tried to murder, because of the Magi’s unfavorable interpre-
tation of certain dreams [, i.–]. That son was Cyrus,
who survived and grew up to conquer his grandfather. Again
Herodotus is not clear that this was the reason for the quarrel
with Cyrus by Croesus [, i.], who was son and successor of
Alyattes and thus brother of Astyages’s consort Aryenis. But
Croesus was advised by the oracles at Delphi and Amphiaraus
that, if he attacked Persia, a great empire would be destroyed,
and that he should make friends with the mightiest of the
Greeks [, i.–]. Perhaps it was in obedience to this ora-
cle that Croesus sought the alliance with Miletus mentioned
by Diogenes Laertius, who reports that Thales frustrated the
plan, and “this proved the salvation of the city when Cyrus
obtained the victory” [, i.]. Nonetheless, Herodotus re-
ports a general Greek belief—which he does not accept—that
Thales helped Croesus’s army march to Persia by diverting
the River Halys (today’s Kızılırmak) around them [, i.].
But Croesus was defeated, and thus his own great empire was
destroyed.

When the victorious Cyrus returned east from the Lydian
capital of Sardis, he left behind a Persian called Tabulus to
rule, but a Lydian called Pactyes to be treasurer [, i.].
Pactyes mounted a rebellion, but it failed, and he sought asy-
lum in the Aeolian city of Cyme. The Cymaeans were told by





the oracle at Didyma to give him up [, i.–]. In disbelief,
a Cymaean called Aristodicus began driving away the birds
that nested around the temple.

But while he so did, a voice (they say) came out of the inner
shrine calling to Aristodicus, and saying, “Thou wickedest of
men, wherefore darest thou do this? wilt thou rob my temple
of those that take refuge with me?” Then Aristodicus had his
answer ready: “O King,” said he, “wilt thou thus save thine
own suppliants, yet bid the men of Cyme deliver up theirs?”
But the god made answer, “Yea, I do bid them, that ye may
the sooner perish for your impiety, and never again come to
inquire of my oracle concerning the giving up of them that
seek refuge with you.”

As the temple survives today, so does the sense of the injunc-
tion of the oracle, in a Turkish saying [, p. ]:

İsteyenin bir yüzü kara, vermeyenin iki yüzü.
Who asks has a black face, but who does not give has two.

From his studies of art, history, and philosophy, Colling-
wood concluded that “all history is the history of thought” [,
p. ]. As a form of thought, mathematics has a history. Un-
fortunately this is forgotten in some Wikipedia articles, where
definitions and results may be laid out as if they have been un-
derstood since the beginning of time. We can all rectify this
situation, if we will, by contributing to the encyclopedia. On
May , , to the article “Pappus’s Hexagon Theorem” [],
I added a section called “Origins,” giving Pappus’s own proof.
The theorem can be seen as lying behind Cartesian geometry.

In his Geometry of , Descartes takes inspiration from
Pappus, whom he quotes in Latin, presumably from Com-
mandinus’s edition of  [, p. , n. ]; the  French
edition of the Geometry has a footnote [, p. ], seemingly in
Descartes’s voice, although other footnotes are obviously from
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an editor: “I cite rather the Latin version than the Greek text,
so that everybody will understand me more easily.”

The admirable Princeton Companion to Mathematics [,
pp. –] says a lot about where mathematics is now in its
history. In one chapter, editor Timothy Gowers discusses “The
General Goals of Mathematical Research.” He divides these
goals among nine sections: () Solving Equations, () Clas-
sifying, () Generalizing, () Discovering Patterns, () Ex-
plaining Apparent Coincidences, () Counting and Measuring,
() Determining Whether Different Mathematical Properties
Are Compatible, () Working with Arguments That Are Not
Fully Rigorous, () Finding Explicit Proofs and Algorithms.
These are some goals of research today. There is a tenth sec-
tion of the chapter, but its title is general: “What Do You Find
in a Mathematical Paper?” As Gowers says, the kind of paper
that he means is one written on a pattern established in the
twentieth century.

The Princeton Companion is expressly not an encyclopedia.
One must not expect every species of mathematics to meet one
or more of Gowers’s enumerated goals. Geometrical theorems
like that of the nine-point circle do not really seem to meet
the goals. They are old-fashioned. The nine-point circle itself
is not the explanation of a coincidence; it is the coincidence
that a certain set of nine points all happen to lie at the same
distance from a tenth point. A proof of this coincidence may
be all the explanation there is. The proof might be described
as explicit, in the sense of showing how that tenth point can
be found; but in this case, there can be no other kind of proof.
From any three points of a circle, the center can be found.

One can generalize the nine-point circle, obtaining the nine-

point conic, which is determined by any four points in the
Euclidean plane, provided no three are collinear. As in Fig-
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Figure .: A nine-point hyperbola

ures . and ., where the four points are A, B, C, and D,
the conic passes through the midpoints N of the straight lines
bounded by the six pairs formed out of the four points, and
it also passes through the intersection points • of the pairs of
straight lines that together pass through all four points.

The discovery of the nine-point circle itself would seem
not to be the accomplishment of any particular goal, beyond
simple enjoyment. Indeed, one might make an alternative
list of goals of mathematical research: () personal satisfac-
tion, () satisfying collaboration with friends and colleagues,
() impressing those friends and colleagues, () serving science
and industry, () winning a grant, () earning a promotion,
() finding a job in the first place. These may be goals in any
academic pursuit. But none of them can come to be recog-
nized as goals unless the first one or two have actually been
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Figure .: A nine-point ellipse

achieved. First you have to find out by chance that something
is worth doing for its own sake, before you can put it to some
other use.

The present essay is an illustration of the general point. A
fellow alumnus of St John’s College [] expressed to me, along
with other alumni and alumnae, the pleasure of learning the
nine-point circle. Not having done so before, I learned it too,
and also the nine-point conic. I wrote out proofs for my own
satisfaction. The proof of the circle uses the theorem that a
straight line bisecting two sides of a triangle is parallel to the
third. This is a special case of Thales’s Theorem. The attribu-
tion to Thales actually obscures some interesting mathematics;
so I started writing about this, using the notes I mentioned.
Thales’s Theorem allows a theoretical justification of the mul-
tiplication that Descartes defines in order to introduce algebra





to geometry. The nine-point conic is an excellent illustration
of the power of Descartes’s geometry; Thales’s Theorem can
make the geometry rigorous. However, David Hilbert takes
another approach.

The first-year students in my department in Istanbul read
Euclid for themselves in their first semester. They learn im-
plicitly about Descartes in their second semester, in lectures
on analytic geometry. I have read Pappus with older students
too, as I mentioned. All of the courses have been an oppor-
tunity and an impetus to clarify the transition from Euclid to
Descartes. The nine-point circle and conic provide an occasion
to bring the ideas together; but doing this does not represent
the accomplishment of a preconceived goal.

The high-school geometry course that I took in – in
Washington could have included the nine-point circle. The
course was based on the text by Weeks and Adkins, who taught
proofs in the two-column, “statement–reason” format [, pp.
–]. A  edition of the text is apparently still available,
albeit from a small publisher. The persistence of the text is
satisfying, though I was not satisfied by the book as a student.
The tedious style had me wondering why we did not just read
Euclid’s Elements. I did this on my own, and I did it three
years later as a student at St John’s College.

After experiencing Euclid, both as student and teacher,
I have gone back to detect foundational weaknesses in the
Weeks–Adkins text. One of them is the confusion of equal-
ity with sameness. I discuss this in detail elsewhere []. The
distinction between equality and sameness is important, in ge-
ometry if not in algebra. In geometry, equal line segments have
the same length; but the line segments are still not in any sense
the same segment. An isosceles triangle has two equal sides.
But in Euclid, two ratios are never equal, although they may
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be the same. This helps clarify what can be meant by a ratio
in the first place. In modern terms, a ratio is an equivalence
class; so any definition of ratio must respect this.

Another weakness of Weeks and Adkins has been shared by
most modern books, as far as I know, since Descartes’s Geom-
etry. The weakness lies in the treatment of Thales’s Theorem.
The meaning of the theorem, the truth of the theorem, and
the use of the theorem to justify algebra—none of these are
obvious. In The Foundations of Geometry, Hilbert recognizes
the need for work here, and he does the work [, pp. –].
Weeks and Adkins recognize the need too, but only to the ex-
tent of proving Thales’s Theorem for commensurable divisions,
then mentioning that there is an incommensurable case. They
do this in a section labelled [b] for difficulty and omissibility
[, pp. v, –]. They say,

Ideas involved in proofs of theorems for incommensurable
segments are too difficult for this stage of our mathematics.

Such condescension is annoying; but in any case, we shall es-
tablish Thales’s Theorem as Hilbert does, in the sense of not
using the Archimedean assumption that underlies Euclid’s no-
tion of commensurability.

First we shall use the theory of areas as developed in Book i

of the Elements. This relies on Common Notion : the whole
is greater than the part, not only when the whole is a bounded
straight line, but also when it is a bounded region of the plane.
When point B lies between A and C on a straight line, then
AC is greater than AB; and when two rectangles share a base,
the rectangle with the greater height is the greater. Hilbert
shows how to prove the latter assertion from the former. He
does this by developing an “algebra of segments.”

We shall review this “algebra of segments”; but first we shall
focus on the “algebra of areas.” It is not really algebra, in the





sense of relying on strings of juxtaposed symbols; it relies on
an understanding of pictures. In The Shaping of Deduction

in Greek Mathematics [, p. ], Reviel Netz examines how
the diagram of an ancient Greek mathematical proposition is
not always recoverable from the text alone. The diagram is
an integral part of the proposition, even its “metonym”: it
stands for the entire proposition the way the enunciation of
the proposition stands today [, p. ]. In the summary of
Euclid called the Bones [], both the enunciations and the
diagrams of the propositions of the Elements are given. Unlike,
say, Homer’s Iliad, Euclid’s Elements is not a work that one
understands through hearing it recited by a blind poet.

The same will be true for the present essay, if only because
I have not wanted to take the trouble to write out everything
in words. The needs of blind readers should be respected; but
this might be done best with tactile diagrams, which could
benefit sighted readers as well. What Collingwood writes in
The Principles of Art [, pp. –] about painting applies
also to mathematics:

The forgotten truth about painting which was rediscovered
by what may be called the Cézanne–Berenson approach to it
was that the spectator’s experience on looking at a picture
is not a specifically visual experience at all . . . It does not
belong to sight alone, it belongs also (and on some occasions
even more essentially) to touch . . . [Berenson] is thinking,
or thinking in the main, of distance and space and mass:
not of touch sensations, but of motor sensations such as we
experience by using our muscles and moving our limbs. But
these are not actual motor sensations, they are imaginary
motor sensations. In order to enjoy them when looking at
a Masaccio we need not walk straight through the picture,
or even stride about the gallery; what we are doing is to
imagine ourselves as moving in these ways.
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To imagine these movements, I would add, one needs some
experience of making them. Doing mathematics requires some
kind of imaginative understanding of what the mathematics is
about. This understanding may be engendered by drawings
of triangles and circles; but then it might just as well, if not
better, be engendered by triangles and circles that can be held
and manipulated.

Descartes develops a kind of mathematics that might seem
to require a minimum of imagination. If you have no idea of
the points that you are looking for, you can just call them
(x, y) and proceed. Pappus describes the general method [,
, p. ]:

Now, analysis is the path from what one is seeking, as if it
were established, by way of its consequences, to something
that is established by synthesis. That is to say, in analysis we
assume what is sought as if it has been achieved, and look for
the thing from which it follows, and again what comes before
that, until by regressing in this way we come upon some one
of the things that are already known, or that occupy the rank
of a first principle. We call this kind of method ‘analysis’, as
if to say anapalin lysis (reduction backward).

The derivation of the nine-point conic will be by Cartesian
analysis.

In Rule Four of the posthumously published Rules for the
Direction of the Mind [, , p. ], Descartes writes of a
method that is

so useful . . . that without it the pursuit of learning would, I
think, be more harmful than profitable. Hence I can readily
believe that the great minds of the past were to some ex-
tent aware of it, guided to it even by nature alone . . . This
is our experience in the simplest of sciences, arithmetic and
geometry: we are well aware that the geometers of antiquity





employed a sort of analysis which they went on to apply to
the solution of every problem, though they begrudged reveal-
ing it to posterity. At the present time a sort of arithmetic
called “algebra” is flourishing, and this is achieving for num-
bers what the ancients did for figures . . . But if one attends
closely to my meaning, one will readily see that ordinary
mathematics is far from my mind here, that it is quite an-
other discipline I am expounding, and that these illustrations
are more its outer garments than its inner parts . . . Indeed,
one can even see some traces of this true mathematics, I
think, in Pappus and Diophantus who, though not of that
earliest antiquity, lived many centuries before our time. But
I have come to think that these writers themselves, with a
kind of pernicious cunning, later suppressed this mathemat-
ics as, notoriously, many inventors are known to have done
where their own discoveries are concerned . . . In the present
age some very gifted men have tried to revive this method,
for the method seems to me to be none other than the art
which goes by the outlandish name of “algebra”—or at least
it would be if algebra were divested of the multiplicity of
numbers and imprehensible figures which overwhelm it and
instead possessed that abundance of clarity and simplicity
which I believe true mathematics ought to have.

Possibly Apollonius is, for Descartes, of “earliest antiquity”;
but in any case he precedes Pappus and Diophantus by cen-
turies. He may have a secret weapon in coming up with his
propositions about conic sections; but pace Descartes, I do not
think it is Cartesian analysis. One cannot have a method for
finding things, unless one already has—or somebody has—a
good idea of what one wants to find in the first place. As if
opening boxes to see what is inside, Apollonius slices cones.
This is why we can now write down equations and call them
conic sections.

  Introduction



Today we think of conic sections as having axes: one for
the parabola, and two each for the ellipse and hyperbola. The
notion comes from Apollonius; but for him, an axis is just
a special case of a diameter. A diameter of a conic section
bisects certain chords of the section that are all parallel to one
another. In Book i of the Conics [, ], Apollonius shows that
every straight line through the center of an ellipse or hyperbola
is a diameter in this sense; and every straight line parallel to
the axis is a diameter of a parabola. One can give a proof
by formal change of coordinates; but the proof of Apollonius
involves areas, and it does not seem likely that this is his
translation of the former proof. In any case, for comparison,
we shall set down both proofs, for the parabola at least.

In introducing the nine-point circle near the beginning of his
Introduction to Geometry [, p. ], Coxeter quotes Pedoe on
the same subject from Circles [, p. ]:

This [nine-point] circle is the first really exciting one to ap-
pear in any course on elementary geometry.

I am not sure whether to read this as encouragement to learn
the nine-point circle, or as disparagement of the education that
the student might have had to endure, in order to be able to
learn the circle. In any case, all Euclidean circles are the same
in isolation. In Book iii of the Elements are the theorems that
every angle in a semicircle is right (iii.) and that the parts of
intersecting chords of a circle bound equal rectangles (iii.).
The former theorem is elsewhere attributed to Thales. Do
not both theorems count as exciting? The nine-point circle is
exciting for combining the triangles of Book i with the circles
of Book iii.





 The Nine-point Circle

. Centers of a triangle

The angle bisectors of a triangle, and the perpendicular bi-
sectors of the sides of the triangle, meet respectively at single
points, called today the incenter and circumcenter of the
triangle [, pp. –]. This is an implicit consequence of
Elements iv. and , where circles are respectively inscribed
in, and circumscribed about, a triangle; the centers of these
circles are the points just mentioned.

The concurrence of the altitudes of a triangle is used in
the Book of Lemmas. The book is attributed ultimately to
Archimedes, and Heiberg includes a Latin rendition in his own
edition of Archimedes [, p. ]. However, the book comes
down to us originally in Arabic. Its Proposition  [, p. –
] concerns a semicircle with two semicircles removed, as in
Figure .; the text quotes Archimedes as having called the
shape an arbelos, or shoemaker’s knife. In the only such
instance that I know of, the big Liddell–Scott lexicon [, p.
] illustrates the ἄρβηλος entry with a picture of the shape.
The term and the shape came to my attention, before the high-
school course that I mentioned, in a “Mathematical Games”
column of Martin Gardner [, ch. , p. ]. The second
theorem that Gardner mentions is Proposition  of the Book

of Lemmas: the arbelos ABCD is equal to the circle whose
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Figure .: The arbelos

diameter is BD. Proposition  is that the circles inscribed in
the two parts into which the arbelos is cut by BD are equal;
the proof appeals to the theorem that the altitudes of a triangle
concur at a point.

Today that point is the orthocenter of the triangle, and its
existence follows from that of the circumcenter. In Figure .,
where the sides of triangle GHK are parallel to the respective
sides of ABC, the altitudes AD, BE, and CF of ABC are

the perpendicular bisectors of the sides of GHK. Since these
perpendicular bisectors concur at L, so do the altitudes of
ABC.

In Propositions  and  of On the Equilibrium of Planes

[, p. –], Archimedes shows that the center of gravity
of a triangle must lie on a median, and therefore must lie at
the intersection of two medians. Implicitly then, the three
medians must concur at a point, which we call the centroid,

though Archimedes’s language suggests that this is known in-
dependently. The existence of the centroid follows from the
special case of Thales’s Theorem that we shall want anyway,

. Centers of a triangle 
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to prove the nine-point circle.

Theorem . A straight line bisecting a side of a triangle bi-

sects a second side if and only if the cutting line is parallel to

the third side.

Proof. In triangle ABC in Figure ., let D be the midpoint of
side AB (Elements i.), and let DE and DF be drawn paral-
lel to the other sides (Elements i.). Then triangles ADE and
DBF have equal sides between equal angles (Elements i.),
so the triangles are congruent (Elements i.). In particular,
AE = DF . But in the parallelogram CEDF , DF = EC (El-

ements i.). Thus AE = EC. Therefore DE is the bisector
of two sides of ABC. Conversely, since there is only one such
bisector, it must be the parallel to the third side.

For completeness, we establish the centroid. In Figure .,
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if AD and CF are medians of triangle ABC, and BH is drawn
parallel to AD, then, by passing though G, BE bisects CH by
the theorem just proved, and the angles FBH and FAG are
equal by Elements i.. Since the vertical angles BFH and
AFG are equal (Elements i.), and BF = AF , the triangles
BFH and AFG must be congruent (Elements i.), and in
particular BH = AG. Since these straight lines are also par-
allel, so are AH and BE (Elements i.). Again by Theorem
, BE bisects AC.

. The angle in the semicircle

We shall want to know that the angle in a semicircle is right.
This is Proposition iii. of Euclid; but an attribution to
Thales is passed along by Diogenes Laertius, the biographer
of philosophers [, I.–]:

Pamphila says that, having learnt geometry from the Egyp-
tians, he [Thales] was the first to inscribe in a circle a right-
angled triangle, whereupon he sacrificed an ox. Others say
it was Pythagoras, among them being Apollodorus the cal-

. The angle in the semicircle 
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culator.

The theorem is easily proved by means of Elements i.: the
angles of a triangle are together equal to two right angles. Let
the side BC of triangle ABC in Figure . be bisected at D,
and let AD be drawn. If A lies on the circle with diameter
BC, then the triangles ABD and ACD are isosceles, so their
base angles are equal, by Elements i.: this is also attributed
to Thales, as we shall discuss later. Meanwhile, the four base
angles being together equal to two right angles, the two of them
that make up angle BAC must together be right. The converse
follows from Elements i., which has no other obvious use:
an angle like BEC inscribed in BAC is greater than BAC;
circumscribed, like BFC, less.

Thales may have established Elements iii.; but it is hard
to attribute to him the proof based on i. when Proclus, in

  The Nine-point Circle



B

A

CD

E

F

Figure .: The angle in the semicircle

his Commentary on the First Book of Euclid’s Elements, at-
tributes this result to the Pythagoreans [, .], who came
after Thales. Proclus cites the now-lost history of geometry
by Eudemus, who was apparently a student of Aristotle.

In his History of Greek Mathematics, Heath [, pp. –]
proposes an elaborate argument for iii. not using the gen-
eral theorem about the sum of the angles of a triangle. If a
rectangle exists, one can prove that the diagonals intersect at
a point equidistant from the four vertices, so that they lie on a
circle whose center is that intersection point, as in Figure .a.
In particular then, a right angle is inscribed in a semicircle.

It seems to me one might just as well draw two diameters
of a circle and observe that their endpoints, by symmetry, are
the vertices of an equiangular quadrilateral. This quadrilateral
must then be a rectangle: that is, the four equal angles of
the quadrilateral must together make a circle. This can be
inferred from the observation that equiangular quadrilaterals

. The angle in the semicircle 
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can be used to tile floors.

Should the existence of rectangles be counted thus, not as a
theorem, but as an observation, if not a postulate? In A Short

History of Greek Mathematics, which is earlier than Heath’s
history, Gow [, p. ] passes along a couple of ideas of one
Dr Allman about inductive reasoning. From floor tiles, one
may induce, as above, that the angle in a semicircle is right.
By observation, one may find that the locus of apices of right
triangles whose bases (the hypotenuses) are all the same given
segment is a semicircle, as in Figure .b.

. The nine-point circle

Theorem  (Nine-point Circle). In any triangle, the mid-

points of the sides, the feet of the altitudes, and the midpoints

of the straight lines drawn from the orthocenter to the vertices
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lie on a single circle.

Proof. Suppose the triangle is ABC in Figure .. Let the
altitudes BE and CF be dropped (Elements i.); their inter-
section point is P . Let AP be drawn and extended as needed,
so as to meet BC at D. We already know that P is the ortho-
center of ABC, so AD must be at right angles to BC; in fact
we shall prove this independently.

Bisect BC, CA, and AB at G, H , and K respectively, and
bisect PA, PB, and PC at L, M , and N respectively. By

. The nine-point circle 



Theorem , GK and LN are parallel to AC; so they are par-
allel to one another, by Elements i.. Similarly KL and NG
are parallel to one another, being parallel to BE. Then the
quadrilateral GKLN is a parallelogram; it is a rectangle, by
Elements i., since AC and BE are at right angles to one
another. Likewise GHLM is a rectangle. The two rectangles
have common diagonal GL, and so the circle with diameter GL
also passes through the remaining vertices of the rectangles,
by the converse of Elements iii., discussed above. Similarly,
the respective diagonals KN and HM of the two rectangles
must be diameters of the circle, and so KHNM is a rectan-
gle; this yields that AD is at right angles to BC. The circle
must pass through E, since angle MEH is right, and MH is
a diameter; likewise the circle passes through F and G.

The Nine-point Circle Theorem is symmetric in the ver-
tices and orthocenter of the triangle. These four points have
the property that the straight line through any two of them
passes through neither of the other two; moreorever, the line
is at right angles to the straight line through the remaining
two vertices. In other words, the points are the vertices of a
complete quadrangle, and each of its three pairs of opposite
sides are at right angles to one another. The intersection of a
pair of opposite sides being called a diagonal point, a single
circle passes through the three of these and the midpoints of
the six sides.

We proceed to the case of a complete quadrangle whose
opposite sides need not be at right angles. There will be a
single conic section passing through the three diagonal points
and the midpoints of the six sides. The proof will use Cartesian
geometry, as founded on Thales’s Theorem.

  The Nine-point Circle



 The Nine-point Conic

. Thales’s Theorem

A rudimentary form of Thales’s Theorem is mentioned in the
fanciful dialogue by Plutarch called Dinner of the Seven Wise
Men [, §, pp. –]. Here the character of Neiloxenus says
of and to Thales,

he does not try to avoid, as the rest of you do, being a friend
of kings and being called such. In your case, for instance,
the king [of Egypt] finds much to admire in you, and in
particular he was immensely pleased with your method of
measuring the pyramid, because, without making any ado
or asking for any instrument, you simply set your walking-
stick upright at the edge of the shadow which the pyramid
cast, and, two triangles being formed by the intercepting of
the sun’s rays, you demonstrated that the height of the

pyramid bore the same relation to the length of the

stick as the one shadow to the other.

The word translated as “relation” here, in the sentence that I
have emboldened, is λόγος. This is usually translated as “ratio”
in mathematics. The whole sentence is

ἔδειξας

ὃν ἡ σκιὰ πρὸς τὴν σκιὰν λόγον εἶχε

τὴν πυραμίδα πρὸς τὴν βακτηρίαν ἔχουσαν [];

stretching the bounds of English style, one might render this
literally as





You showed,
what ratio the shadow had to the shadow,

the pyramid [as] having to the staff.

It would be clearer to reverse the order of the last two lines.
If the pyramid’s height and shadow have lengths P and L, the
shadow and height being measured from the center of the base,
while the lengths of Thales’s height and shadow are p and ℓ,
then we may write the claim as

P : p : : L : ℓ. (.)

If not theoretically, this must mean practically

P · ℓ = L · p, (.)

that is, the rectangle of dimensions P and ℓ is equal to the rect-
angle of dimensions L and p. Then what is being attributed
to Thales is something like the rectangular case of Elements
i.:

In any parallelogram the complements of the parallelograms
about the diameter are equal to one another.

Thus in the parallelogram ABCD in Figure ., where AGC
is a straight line, the parallelograms BG and GD are equal.
I pause to note that Euclid’s two-letter notation for parallel-
ograms here is not at all ambiguous in Euclid’s Greek, where
a diagonal of a parallelogram may be ἡ ΑΒ, while the parallel-
ogram itself is τὸ ΑΒ; the articles ἡ and τό are feminine and
neuter respectively. Euclid’s word παραπλήρωμα for comple-
ment is neuter, like παραλληλόγραμμον “parallelogram” itself,
while γραμμή “line” is feminine. This observation, made in
[], is based on similar observations by Reviel Netz [].

In Figure ., the parallelograms BG and GD are equal
because they are the result of subtracting equal triangles from
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equal triangles; the equalities of the triangles (AEG = GHA
and so forth) are by Elements i.. The theorem that Plutarch
attributes to Thales may now simply be the following.

Theorem . In equiangular right triangles, the rectangles

bounded by alternate legs are equal.

Proof. Let the equiangular right triangles be ABC and AEF
in Figure .. We shall show

AF · AB = AE · AC. (.)

It will be enough to show AF · EB = AE · FC, since we
can then add the common rectangle AE · AF to either side.
Let rectangles AG and AH be completed, as by the method
whereby Euclid constructs a square in Elements i.; this gives
us also the rectangle AELF . Let BH and CG be extended
to meet at D; by Elements i., it will be enough to show
that the diagonal AL, extended, passes through D, or in other
words, L lies on the diagonal AD of the rectangle ABDC. But

. Thales’s Theorem 
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triangles AFE and FAL are congruent by Elements i., and
likewise triangles ACB and CAD are congruent. Thus

∠FAL = ∠AFE = ∠ACB = ∠CAD,

which is what we wanted to show.

The foregoing is a special case of the following theorem,
which does not require the special case in its proof.

Theorem . In triangles that share an angle, the parallelo-

grams in this angle that are bounded by alternate sides of the

angle are equal if and only if the triangles are equiangular.

Proof. Let the triangles be ABC and AEF in Figure ., and
let the parallelograms AG and AH be completed. Let the diag-
onals CE and BF be drawn. If the triangles are equiangular,
then we have

FE ‖ CB (.)

by Elements i.. In this case, as in Euclid’s proof of vi., the
triangles FEC and EFB are equal by i.. Adding triangle
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AEF in common, we obtain the equality of the triangles AEC
and AFB. This gives us the equality of their doubles; and
these, by i., are just the parallelograms AG and AH .

Conversely, if these parallelograms are equal, then so are
their halves, the triangles AEC and AFB; hence the triangles
FEC and EFB are equal, so (.) holds by Elements i., and
then the original triangles ABC and AEF are equiangular by
Elements i..

Proclus [, .] inadvertently gives evidence that Thales
could use Theorem , if not Theorem . Discussing Elements
i., which is the triangle-congruence theorem whose two parts
are now abbreviated as A.S.A. and A.A.S. [, p. ], and
which we used earlier to prove the concurrence of the medians
of a triangle, Proclus says,

Eudemus in his history of geometry attributes the theorem
itself to Thales, saying that the method by which he is re-
ported to have determined the distance of ships at sea shows
that he must have used it.

. Thales’s Theorem 



If Thales really used Euclid’s i. for measuring distances of
ships, it may indeed have been by the method that Heath
suggests [, pp. –]: climb a tower, note the angle of de-
pression of the ship, then find an object on land at the same
angle. The object’s distance is that of the ship. This obviates
any need to know the height of the tower, or to know propor-
tions. Supposedly one of Napoleon’s engineers measured the
width of a river this way.

Nonetheless, Gow [, p. ] observes plausibly that the
method that Heath will propose is not generally practical.
Thales must have had the more refined method of similar tri-
angles:

It is hardly credible that, in order to ascertain the distance
of the ship, the observer should have thought it necessary
to reproduce and measure on land, in the horizontal plane,
the enormous triangle which he constructed in imagination
in a perpendicular plane over the sea. Such an undertaking
would have been so inconvenient and wearisome as to de-
prive Thales’ discovery of its practical value. It is therefore
probable that Thales knew another geometrical proposition:
viz. ‘that the sides of equiangular triangles are proportional.’
(Euc. VI. .)

But Proposition vi. is overkill for measuring distances. All
one needs is the case of right triangles, in the form of Theorem
 above. This must be the real theorem that Gow goes on to
discuss:

And here no doubt we have the real import of those Egyptian
calculations of seqt, which Ahmes introduces as exercises in
arithmetic. The seqt or ratio, between the distance of the
ship and the height of the watch-tower is the same as that
between the corresponding sides of any small but similar
triangle. The discovery, therefore, attributed to Thales is
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probably of Egyptian origin, for it is difficult to see what
other use the Egyptians could have made of their seqt, when
found. It may nevertheless be true that the proposition, Euc.
VI. , was not known, as now stated, either to the Egyptians
or to Thales. It would have been sufficient for their purposes
to know, inductively, that the seqts of equiangular triangles
were the same.

Gow is right that Euclid’s Proposition vi. need not have been
known. But what he seems to mean is that the Egyptians and
Thales need only have had a knack for applying the theorem,
without having stepped back to recognize the theorem as such.
This may be so; but there is no reason to think they had a
knack for applying the theorem in full generality.

To establish that theorem, Thales’s Theorem, in full gener-
ality, we shall prove that, in the proof of Theorem , equation
(.) still holds, even when applied to Figure . in the proof
of Theorem . To do this, we shall rely on the converse of El-

ements i.: in Figure ., if the parallelograms BG and GD
are equal, then the point G must lie on the diagonal AD. We
can prove this by contradiction, or by contraposition. If G did
not lie on the diagonal, then we should be in the situation of
Figure ., where now parallelograms BN and ND are equal,
but BG is part of BN , and ND is part of GD, so BG is less
than GD, by Euclid’s Common Notion .

In Euclid’s proof of the Pythagorean Theorem, Elements

i., three auxiliary straight lines concur. Heath [, Vol. , p.
] passes along Hero’s proof of this, including, as a lemma,
the converse of i.. Hero’s proof is direct, but relies on Ele-

ments i.: equal triangles lying on the same side of the same
base are in the same parallels. We used this in proving The-
orem , and it is the converse of i.; Euclid proves it by
contradiction, using Common Notion .

. Thales’s Theorem 
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Theorem . If two parallelograms share an angle, the paral-

lelograms are equal if and only if the rectangles bounded by the

same sides are equal.

Proof. Let the parallelograms be AG and AH in Figure ..
Supposing them equal, we prove (.), namely AF · AB =
AE · AC. Let the parallelogram ABDC be completed. By
the converse of Elements i., the point L lies on the diag-
onal AD. Now erect the perpendiculars AR and AM (using
Elements i.), and make them equal to AE and AF respec-
tively, as by drawing circles. Each of the parallelograms NE
and SF is equal to a rectangle of sides equal to AE and AF ,
by Elements i.. Therefore A lies on the diagonal LX, again
by the converse of Elements i., so A and L both lie on the
diagonal DX of the large parallelogram. Consequently, the
parallelograms SC and NB are equal; but they are also equal
to AE · AC and AF · AB respectively. The converse is simi-
lar.
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Theorems  and  together are what we are calling Thales’s
Theorem, provided we can establish Elements vi.:

If four straight lines be proportional, the rectangle contained
by the extremes is equal to the rectangle contained by the
means; and [conversely].

To do this, we need a proper theoretical definition of propor-
tion.

. Thales and Desargues

I suggested that the equivalence of the proportion (.) with
the equation (.) was “practical.” To read the colons in the
expression

a : b : : c : d, (.)

we can say any of the following:
• a, b, c, and d are proportional;

. Thales and Desargues 



• a is to b as c is to d;
• the ratio of a to b is the same as the ratio of c to d.

From the last clause, we can delete the phrase “the same as”:
this is effectively what Plutarch does in the passage quoted
above, although the translator puts the phrase back in. The
equation

a · d = b · c. (.)

does not in itself express a property of the ordered pair (a, b)
that is the same as the corresponding property of (c, d); it
expresses only a relation between the pairs. Immediately we
have a · b = b · a, and if (.) holds, so does c · b = d · a; so the
relation expressed by (.) between (a, b) and (c, d) is reflexive
and symmetric. The relation is not obviously transitive: if
(.) holds, and c · f = d · e, it is not obvious that a · f = b · e.
It would be true, for example, if we allowed passage to a fourth
dimension, obtaining from the hypotheses

a · d · c · f = b · c · d · e,

whence, presumably, the desired conclusion would follow; but
this would be a theorem. Therefore (.) alone cannot con-
stitute the definition of (.). I have argued this elsewhere in
the context of Euclid’s number theory [].

Suppose now that each of the letters in (.) stands for a
length: not a number, but the class of Euclidean bounded
straight lines that are equal to a particular straight line. I
propose to define (.) to mean that for all lengths x and y,

b · x = a · y ⇐⇒ d · x = c · y. (.)

In other words, (.) means that the sets

{(x, y) : b · x = a · y}, {(x, y) : d · x = c · y}
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are the same. This definition ensures logically that the re-
lation of having the same ratio is transitive, as any relation
described as a sameness should be. The definition also en-
sures that (.) implies (.): let (x, y) = (c, d) in (.). The
definition avoids the “Archimedean” assumption required by
the definition attributed to Eudoxus, found in Book v of the
Elements. However, we need to prove that (.) implies (.).
This implication is Elements vi. for the new definition of
proportion.

Theorem . If, of four lengths, the rectangle bounded by the

extremes is equal to the rectangle bounded by the means, then

the lengths are in proportion.

Proof. Supposing we are given four lengths a, b, c, d such that
(.) holds, we want to show (.), as defined by (.). It is
enough to show that, if two lengths e and f are such that

a · f = b · e, (.)

then
c · f = d · e. (.)

In Figure ., let AH and AL have lengths c and e respectively.
Draw AG parallel to HL (Elements i.), and let AG have
length a. Complete the parallelogram ABDC so that GB and
HC have lengths b and d respectively. By (.) and Theorem ,
the parallelograms GP and HN are equal. Now complete the
parallelogram ABFE, and denote by g the length of LE. The
parallelograms GR and GP are equal, by Elements i.. Both
LM and HK have length a (Elements i.), so parallelograms
LQ and HN are equal, by Elements i.. Thus GR and LQ
are equal. Hence, by Theorem , we have

a · g = b · e,

. Thales and Desargues 
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so a · g = a · f by (.), and therefore g = f by Common
Notion . Since LH ‖ EC, we have (.) by Theorem .

There are easy consequences, corresponding to Propositions
 and  of Elements Book v; but these propositions are not
themselves so easy to prove with the Eudoxan definition of
proportion.

Corollary  (Alternation).

a : b : : c : d =⇒ a : c : : b : d.

Proof. Each proportion is equivalent to a · d = b · c.

In a note on v., Heath [, Vol. , pp. –] observes
that the proposition is easier to prove when—as for us—the
magnitudes being considered are lengths. He quotes the text-
book of Smith and Bryant [, pp. –], which derives the
special case from vi.: parallelograms and triangles under the
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same height are to one another as their bases. We might write
this as

a : b : : a · c : b · c.
One could take this as a definition of proportion; but then one
has the problem of transitivity, as before. If

a : b : : c · e : d · e

for some e, meaning c · e = a · f and d · e = b · f for some f ,
one has to show the same for arbitrary e.

Corollary  (Cancellation).

a : b : : d : e

b : c : : e : f

}

=⇒ a : c : : d : f.

Proof. Under the hypothesis, by alternation, a : d : : b : e and
b : e : : c : f . Then a : d : : c : f , since sameness of ratio is
transitive by definition.

Theorems , , and  together constitute Thales’s Theorem.
In proving Theorem , we effectively showed in Figure .

BC ‖ GH & CE ‖ HL =⇒ BE ‖ GL, (.)

provided also
CE ‖ AB. (.)

Then by Thales’s Theorem itself, since sameness of ratio is
transitive, (.) holds, without need for (.). This is De-
sargues’s Theorem: if the straight lines through corresponding
vertices of two triangles concur, and two pairs of correspond-
ing sides of the triangles are parallel, then the third pair must
be parallel, as in Figure .. We have proved this from Book

. Thales and Desargues 
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i of Euclid, without the Archimedean assumption of Book v,
though with Common Notion  for areas.

Desargues’s Theorem has other cases in the Euclidean plane.
When we add to this plane the “line at infinity,” thus obtain-
ing the projective plane, then the three pairs of parallel lines
in the theorem intersect on the new line. But then any line
of the projective plane can serve as a line at infinity added
to a Euclidean plane. A way to show this is by the kind of
coordinatization that we are in the process of developing.

. Locus problems

Fixing a unit length, Descartes [, p. ] defines the product
ab of lengths a and b as another length, given by the rule that
we may express as

1 : a : : b : ab.

Denoting Decartes’s product thus, by juxtaposition alone,
while continuing to denote with a dot the area of a rectan-
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gle with given dimensions, by Theorem  we have

ab · 1 = a · b.

In particular, Cartesian multiplication is commutative, and it
distributes over addition, since

a · b = b · a, a · (b+ c) = a · b+ a · c,

and from Common Notion  we have

d · 1 = e · 1 =⇒ d = e.

That Cartesian multiplication is associative can be seen from
the related operation of composition of ratios, given by the
rule

(a : b) & (b : c) : : a : c.

One may prefer to use the sign = of equality here, rather than
the sign : : of sameness of ratio, if one judges it not to be
immediate that the compound ratio (a : b) & (b : c) depends
not merely on the ratios a : b and b : c, but on their given
representations in terms of a, b, and c. Nonetheless, it does
depend only on the ratios, by Corollary . Then composition
of ratios is immediately associative. We have generally

(a : b) & (c : d) : : e : d,

provided a : b : : e : c; and such e can be found, by the method
of Elements i. and . Then

(a : 1) & (b : 1) : : ab : 1,

and from this we can derive a(bc) = (ab)c. Also

(a : 1) & (1 : a) : : 1 : 1,
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so multiplication is invertible.
One can define the sum of two ratios as one defines the sum

of fractions in school, by finding a common denominator. In
particular,

(a : 1) + (b : 1) = (a + b) : 1,

where now it does seem appropriate to start using the sign
of equality. Now both lengths and ratios compose fields, in
fact ordered fields, which are isomorphic under x 7→ x : 1.
Descartes shows this implicitly, in order to solve ancient prob-
lems. One may object that we have not introduced additive
inverses, whether of lengths or of ratios. We can do this by
assigning to each class of parallel straight lines a direction,
so that the signed length of BA is the additive inverse of the
signed length of AB.

Descartes [, p. , n. ] alludes to a passage in the Col-

lection where Pappus [, pp. –] describes three kinds
of geometry problem: plane, as being solved by means of
straight lines and circles, which lie in a plane; solid, as requir-
ing also the use of conic sections, which are sections of a solid
figure, the cone; and linear, as involving more complicated
lines, that is, curves. An example of a linear problem then
would be the quadrature or squaring of the circle, achieved by
means of the quadratrix or “tetragonizer” (τετραγωνίζουσα),
which Pappus [, pp. –] defines as being traced in a
square, such as ABGD in Figure ., by the intersection of
two straight lines, one horizontal and moving from the top
edge BG to the bottom edge AD, the other swinging about
the lower left corner A from the left edge AB to the bottom
edge AD. If there is a point H where the quadratrix meets
the lower edge of the square, then, as Pappus shows,

BD : AB : : AB : AH,
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Figure .: The quadratrix

where BD is the circular arc centered at A. In modern terms,
with variables as in the figure, AB being taken as a unit,

θ

y
=

π

2
, tan θ =

y

x
,

so

x =
2

π

· θ

tan θ
.

As θ vanishes, x goes to 2/π. This then is the length of
AH . Pappus points out that we have no way to construct
the quadratrix without knowing where the point H is in the
first place. He attributes this criticism to one Sporus, about
whom we apparently have no source but Pappus himself [,
p. , n. ].

A solid problem that Pappus describes [, pp. –] is
the four-line locus problem: find the locus of points such
that the rectangle whose dimensions are the distances to two
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given straight lines bears a given ratio to the rectangle whose
dimensions are the distances to two more given straight lines.
According to Pappus, theorems of Apollonius were needed to
solve this problem; but it is not clear whether Pappus thinks
Apollonius actually did work out a full solution. By the last
three propositions, namely –, of Book III of the Conics of
Apollonius, it is implied that the conic sections are three-line
loci, that is, solutions to the four-line locus problem when two
of the lines are identical. Taliaferro [, pp. –] works out
the details and derives the theorem that the conic sections are
four-line loci.

Descartes works out a full solution to the four-line locus
problem [, pp. –]. He also solves a particular five-line
locus problem, where four of the straight lines—say ℓ0, ℓ1,
ℓ2, and ℓ3—are parallel to one another, each a distance a from
the previous, while the fifth line—ℓ4—is perpendicular to them
[, pp. –]. What is the locus of points such that the prod-
uct of their distances to ℓ0, ℓ1, and ℓ3 is equal to the product
of a with the distances to ℓ2 and ℓ4? One can write down an
equation for the locus, and Descartes does. Letting distances
from ℓ4 and ℓ2 be x and y respectively, Descartes obtains

y3 − 2ay2 − a2y + 2a3 = axy. (.)

This may allow us to plot points on the desired locus, obtaining
the bold solid curve in Figure .; but we could already do
that. The equation is thus not a solution to the locus problem,
since it does not tell us what the locus is. But Descartes
shows that the locus is traced by the intersection of a moving
parabola with a straight line passing through one fixed point
and one point that moves with the parabola, as suggested by
the dashed lines in Figure .. The parabola has axis sliding
along ℓ2, and the latus rectum of the parabola is a, so the
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Figure .: Solution of a five-line locus problem
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parabola is given by ax = y2 when its vertex is on ℓ4. The
straight line passes through the intersection of ℓ0 and ℓ4 and
through the point on the axis of the parabola whose distance
from the vertex is a.

We shall be looking at latera recta again later; meanwhile,
one may consult my article “Abscissas and Ordinates” [], to
learn more than one ever imagined wanting to know about the
terminology.

Descartes’s solution of a five-line locus problem is apparently
one that Pappus would recognize as such. Thus Descartes’s
algebraic methods would seem to represent an advance, and
not just a different way of doing mathematics. As Descartes
knows [, p. , n. ], Pappus [, pp. -] could formulate

the 2n- and (2n + 1)-line locus problems for arbitrary n. If
n > 3, the ratio of the product of n segments with the product
of n segments can be understood as the ratio compounded of
the respective ratios of segment to segment. Given 2n lengths
a1, . . . , an, b1, . . . , bn, we can understand the ratio of the
product of the ak to the product of the bk as the composite
ratio

(a1 : b1) & · · ·& (an : bn).

Pappus recognizes this. Descartes expresses the solution of the
2n-line locus problem as an nth-degree polynomial equation in
x and y, where y is the distance from a point of the locus to
one of the given straight lines, and x is the distance from a
given point on that line to the foot of the perpendicular from
the point of the locus. Today we call the line the x-axis, and
the perpendicular through the given point on it the y-axis;

but Descartes does not seem to have done this expressly.

Descartes does effectively allow oblique axes. The original
locus problems literally involve not distances to the given lines,
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but lengths of straight lines drawn at given angles to the given
lines.

. The nine-point conic

The nine-point conic is the solution of a locus problem. The
solution had been known earlier; but apparently the solution
was first remarked on in  by Maxime Bôcher [], who
says,

It does not seem to have been noticed that a few well-
known facts, when properly stated, yield the following direct
generalization of the famous nine point circle theorem:—

Given a triangle ABC and a point P in its plane, a conic
can be drawn through the following nine points:

() The middle points of the sides of the triangle;

() The middle points of the lines joining P to the vertices
of the triangle;

() The points where these last named lines cut the sides
of the triangle.

The conic possessing these properties is simply the locus
of the centre of the conics passing through the four points
A, B, C, P (cf. Salmon’s Conic Sections, p. , Ex. , and
p. , Ex. ).

Bôcher’s references fit the sixth and tenth editions of Salmon’s
Treatise on Conic Sections, dated  and  respectively
[, ]; but in the “Third Edition, revised and enlarged,” dated
 [], the references would be p. , Ex. , and p. ,
Art. .

Following Salmon, we start with a general equation

ax2 + 2hxy + by2 + 2gx+ 2fy + c = 0 (.)
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of the second degree. We do not assume that x and y are
measured at right angles to one another: we allow oblique
axes. We do assume ab 6= 0. If we wish, we can eliminate
the xy term by redrawing the x-axis, and changing its scale,
so that the point now designed by (x, y) is the one that was
called (x + hy/a, y) before. The curve that was defined by
(.) is now defined by

ax2 +

(

b− h2

a

)

y2 + 2gx+ 2

(

f − gh

a

)

y + c = 0. (.)

If the linear terms in (.) are absent, then they are absent
from (.) as well.

The equation (.) defines an ellipse or hyperbola, no mat-
ter what the angle is between the axes, or what their relative
scales are. This is perhaps not, strictly speaking, high-school
knowledge. One may know from school that an equation

x2

a2
± y2

b2
= 1

defines a certain curve called ellipse or hyperbola, depending
on whether the upper or lower sign is taken. But one assumes
that x and y are measured orthogonally. One does not learn
why the curves are named as they are [], and one does not
learn that, if the appropriate oblique axes are chosen, then the
curve has an equation of the same form. But this is just what
Book I of the Conics of Apollonius is devoted to showing [].

Going back to the original axes, and the curve defined by
(.), we translate the axes, so that the new origin is the
point formerly called (x′, y′). The curve is now given by

ax2 + 2hxy + by2 + 2g′x+ 2f ′y + c′ = 0,
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where

g′ = ax′ + hy′ + g, f ′ = by′ + hx′ + f, (.)

and we are not interested in c′. The curve given by (.) has
center at (x′, y′) just in case (g′, f ′) = (0, 0).

For a complete quadrangle in which one pair (at least) of
opposite sides are not parallel, those sides determine a coor-
dinate system. In this system, suppose the vertices of the
complete quadrilateral are (λ, 0) and (λ′, 0) on the x-axis and
(0, µ) and (0, µ′) on the y-axis. Let the conic given by (.)
pass through these four points. Setting y = 0, we obtain the
equation

ax2 + 2gx+ c = 0,

which must have roots λ and λ′, so that the equation is

a
(

x2 − (λ+ λ′)x+ λλ′
)

= 0.

From this we obtain

2g = −a(λ + λ′), c = aλλ′.

Likewise, setting x = 0 in (.) yields the equation

by2 + 2fy + c = 0,

which must be

b
(

y2 − (µ+ µ′)y + µµ′
)

= 0,

from which we obtain

2f = −b(µ + µ′), c = bµµ′.
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From the two expressions for c, we have

aλλ′ = bµµ′.

In (.), we are free to let a = µµ′. Then b = λλ′, and (.)
becomes

µµ′x2 + 2hxy + λλ′y2

− µµ′(λ+ λ)x− λλ′(µ+ µ′)y + λλ′µµ′ = 0. (.)

By the computations for (.), the center of the conic in (.)
satisfies

2µµ′x+ 2hy − µµ′(λ+ λ′) = 0,

2λλ′y + 2hx− λλ′(µ+ µ′) = 0.

Eliminating h yields

2µµ′x2 − µµ′(λ+ λ′)x = 2λλ′y2 − λλ′(µ+ µ′)y. (.)

This is the equation of an ellipse or hyperbola passing through
the origin. We can also write the equation as

µµ′x

(

x− λ+ λ′

2

)

= λλ′y

(

y − µ+ µ′

2

)

; (.)

this shows that the conic passes through the midpoints of
the sides of the complete quadrangle that lie along the axes.
By symmetry, the conic passes through the midpoints of all
six sides of the quadrangle, and through its three diagonal
points—if these exist, that is, if none of the three pairs of
opposite sides of the quadrangle are parallel.

I suggested earlier that for Descartes to solve a five-line locus
problem, it was not enough to find the equation (.); he had
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to describe the solution geometrically. We do have a thorough
geometric understanding of solutions of second-degree equa-
tions like (.) and (.) or even (.). Alternatively, there
is a modern “synthetic” approach [, ., p. ], that is, an
approach based not on field axioms, but on geometric axioms:
here axioms for a projective plane, but with a line at infinity
designated, so that midpoints of segments of other lines can
be defined.

I do not know how directly the nine-point conic can be de-
rived from the work of Apollonius. Here I shall just want to
look briefly at an example of how Apollonius uses areas in a
way not easily made algebraic. David Hilbert shows how alge-
bra is possible, without a priori assumptions about areas; but
it is not clear how much is gained.

. The nine-point conic 



 Lengths and Areas

. Algebra

The points of an unbounded straight line are elements of an
ordered abelian group with respect to the obvious notion of ad-
dition, once an origin and a direction have been selected. If we
set up two straight lines at right angles to one another, letting
their intersection point be the origin, then, after fixing also a
unit length, we obtain Hilbert’s definition of multiplication as
in Figure ., the two oblique lines being parallel.

Not having accepted the Eudoxan definition of proportion,
or Thales’s Theorem, Hilbert can still show that multiplication
is commutative and associative. He does this by means of what
he calls Pascal’s Theorem, although it was referred to in the
Introduction above as Pappus’s Theorem: if the vertices of a

1 b

a

ab

0

Figure .: Hilbert’s multiplication





b b

b

b

b

b

b

0
a db

d(ca)

b

ca

c(db)

Figure .: Pappus’s Theorem

hexagon lie alternately on two straight lines in the projective
plane, then the intersection points of the three pairs of opposite
sides lie on a straight line. Pascal announced the generalization
in which the original two straight lines can be an arbitrary
conic section [, ].

When we give Pappus’s Theorem in the Euclidean plane,
the simplest case occurs as in Figure ., labelled for prov-
ing commutativity and associativity of multiplication (in case
the angle at 0 is right). In general, if there are two pairs of
parallel opposite sides of the hexagon that is woven like a spi-
der’s web or cat’s cradle across the angle, then the third pair
of opposite sides are parallel as well. By the numbering in
Hultsch’s edition of Pappus’s Collection [], which is appar-
ently the numbering made originally by Commandinus [, pp.
–, ], the result is Proposition  in Book vii; it is also
number viii of Pappus’s lemmas for the now-lost Porisms of
Euclid.

Lemma viii seems to have been sadly forgotten. The case
of Pappus’s Theorem where the three pairs of opposite sides
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c

α

Figure .: Hilbert’s trigonometry

all intersect is Propositions  and , or Lemmas xii and
xiii: these cover the cases when the straight lines on which the
vertices of the hexagon lie are parallel and not, respectively.
Kline cites only Proposition  as giving Pappus’s Theorem
[, p. ]. In his summary of most of Pappus’s lemmas for
Euclid’s Porisms, Heath [, p. –] lists Propositions ,
, , and  as constituting Pappus’s Theorem. The last
two are converses of the first two, as Pappus states them. It
is not clear that Pappus recognizes a single theme behind the
several of his lemmas that constitute the theorem named for
him. He omits the case where exactly one pair of opposite
sides are parallel.

Heath omits to mention Proposition  at all. This is a
strange oversight for an important theorem. Pappus proves it
by means of areas, using Euclid’s i., as we proved Theorem
. Without using areas, Hilbert gives two elaborate proofs,
one of which, in the situation of Figure ., uses the notation

a = αc

for what today might be written as a = c cosα.
For proving associativity and commutativity of multiplica-

tion, Hartshorne has a more streamlined approach, in Geom-
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bc

b(ac)

a(bc)

Figure .: Associativity and commutativity

etry: Euclid and Beyond [, pp. –]. In Figure ., AC
has the two lengths indicated, so these are the same; that is,

a(bc) = b(ac). (.)

Letting c = 1 gives commutativity; then this with (.) gives
associativity. Distributivity follows from Figure ., where

ab+ ac = a(b+ c).

The advantage of defining multiplication in terms of lengths
alone (and right angles, and parallelism, but not parallelo-
grams or other bounded regions of the plane) is that it allows
all straight-sided regions to be linearly ordered by size, with-
out assuming a priori that the whole region is greater than
the part.
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c

ac

Figure .: Distributivity

Euclid provides for an ordering in Elements i. and ,
which show that every straight-sided region is equal to a rect-
angle on a given base. Finding the rectangle involves i..
Showing the rectangle unique requires the converse of i.,
which in turn requires Common Notion  for areas. The trian-
gle may be equal to the rectangle on the same base with half
the height; but there are three choices of base, and so three
rectangles result that are equal to the triangle. When they
are all made equal to rectangles on the same base, why should
they have the same height? Common Notion  is one reason;
but Hilbert doesn’t need it.

The triangle is equal to the rectangle whose base is half the
perimeter of the triangle and whose height is the radius of
the inscribed circle: see Figure ., where the triangle ABC
is equal to the sum of AG · GD, BG · GD, and CE · ED,
but ED = GD. However, if ABC is cut into two triangles,
and rectangles equal to the two triangles are found, added
together, and made equal to a rectangle whose base is again
half the perimeter of ABC, we need to know that the height
is equal to GD.
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Figure .: Circle inscribed in triangle

A
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h

k

c

b

α

Figure .: Area of triangle in two ways

In the notation of Figure ., we have

h = c sinα, k = b sinα,

where sinα stands for the appropriate length, and the multi-
plication is Hilbert’s; and then

bh = bc sinα = cb sinα = ck.

Thus we can define the area of ABC unambiguously as the
length bh/2. With this definition, when the triangle is divided
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into two parts, or indeed into many parts, as Hilbert shows,
the area of the whole is the sum of the areas of the parts.

Moreover, if two areas become equal when equal areas are
added, then the two original areas are themselves equal: this
is Euclid’s Common Notion , but Hilbert makes it a theorem.
One might classify this theorem with the one that almost ev-
ery human being learns in childhood, but almost nobody ever
recognizes as a theorem: no matter how you count a finite set,
you always get the same number. It can be valuable to be-
come clear about the basics, as I have argued concerning the
little-recognized distinction between induction and recursion
[].

. Apollonius

We look at a proof by Apollonius, in order to consider
Descartes’s idea, quoted in the Introduction, that ancient
mathematicians had a secret method.

We first set the stage; this is done in more detail in []. A
cone is determined by a base, which is a circle, and a vertex,

not in the plane of the base, but not necessarily hovering right
over the center of the base either: the cone may be oblique.
The surface of the cone is traced out by the straight lines that
pass through the vertex and the circumference of the base. A
diameter of the base is also the base of an axial triangle,

whose apex is the vertex of the cone. If a chord of the base
of the cone cuts the base of the axial triangle at right angles,
then a plane containing the chord and parallel to a side of
the axial triangle cuts the surface of the cone in a parabola.

The cutting plane cuts the axial triangle in a straight line that
is called a diameter of the parabola because the line bisects
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the chords of the parabola that are parallel to the base of the
cone. Half of such a chord is an ordinate; it cuts off from the
diameter the corresponding abscissa, the other endpoint of
this being the vertex of the parabola. There is some bounded
straight line, the latus rectum, such that, when the square
on any ordinate is made equal to a rectangle on the abscissa,
the other side of the rectangle is precisely the latus rectum:
this is Proposition i. of Apollonius, and it is the reason for
the term parabola, meaning application.

The tangent to the parabola at the vertex is parallel to the
ordinates. We are going to show that every straight line paral-
lel to the diameter is another diameter, with a corresponding
latus rectum; and latera recta are to one another as the squares
on the straight lines, each of which is drawn drawn tangent to
the parabola from vertex to other diameter.

In Cartesian terms, we may start with a diameter that is an
axis in the sense of being at right angles to its ordinates. If
the latus rectum is ℓ, then the parabola can be given by

ℓy = x2. (.)

As in Figure ., the tangent to the parabola at (a, a2/ℓ) cuts
the y-axis at −a2/ℓ: this can be shown with calculus, but it is
Proposition i. of Apollonius. The tangent then is

ℓy = 2ax− a2.

We shall take this and x = a as new axes, say x′- and y′-axes.
If d is the distance between the new origin and the intersection
of the x′-axis with the y-axis, then, since the x- and y-axes are
orthogonal, by the Pythagorean Theorem (Elements i.) we
have

d2 = a2 +

(

2a2

ℓ

)2

=
a2

ℓ2
(ℓ2 + 4a2).
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Figure .: Change of coordinates
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Let b =
√
ℓ2 + 4a2, so d = ba/ℓ. Then

ℓx′ =
ℓd

a
(x− a) = bx− ba, ℓy′ = ℓy − 2ax+ a2,

so

bx = ℓx′ + ba, ℓy = ℓy′ +
2a

b
(ℓx′ + ba)− a2

= ℓy′ +
2ℓa

b
x′ + a2.

Plugging into (.) yields

ℓy′ +
2ℓa

b
x′ + a2 =

(

ℓ

b
x′ + a

)2

,

b2y′ = ℓ(x′)2.

In particular, the new latus rectum is b2/ℓ, which is as claimed,
since b2/ℓ2 = d2/a2.

For his own proof of this, Apollonius uses a lemma, Propo-
sition i. [, p. –]. In Figure ., we have a parabola
Γ∆Β with diameter ΒΘ. Here ∆Ζ and ΓΘ are ordinates, and ΒΗ

is parallel to these, so it is tangent to the parabola at B. The
straight line ΑΓ is tangent to the parabola at Γ, which means,
by i.,

ΑΒ = ΒΘ. (.)

Then
ΑΓΘ = ΗΘ, (.)

the latter being the parallelogram with those opposite vertices.
The straight line ∆Ε is drawn parallel to ΓΑ. Then triangles
ΑΓΘ and Ε∆Ζ are similar, so their ratio is that of the squares on
their bases, those bases being the ordinates mentioned. Then
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Figure .: Proposition i. of Apollonius

the abscissas ΒΘ and ΒΖ are in that ratio, and hence the par-
allelograms ΗΘ and ΗΖ are in that ratio. By (.) then, ΑΓΘ

has the same ratio to ΗΖ that it does to Ε∆Ζ. Therefore

Ε∆Ζ = ΗΖ.

The relative positions of ∆ and Γ on the parabola are irrelevant
to the argument: this will matter for the next theorem.

In Figure . now, Κ∆Β is a parabola with diameter ΒΜ,
and Γ∆ is tangent to the parabola, and through ∆, parallel to
the diameter, straight line ∆Ν is drawn and extended to Ζ so
that ΖΒ is parallel to the ordinate ∆Ξ. A length Η is taken
such that

Ε∆ : ∆Ζ : : Η : 2Γ∆. (.)

Through a random point Κ on the parabola, ΚΛ is drawn
parallel to the tangent Γ∆. We shall show

ΚΛ2 = Η · ∆Λ, (.)
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Figure .: Proposition i. of Apollonius

so that ∆Ν serves as a new diameter of the parabola, with cor-
responding latus rectum Η. This is Proposition i. of Apol-
lonius.

Since, as before, ΓΒ = ΒΞ, we have

ΕΖ∆ = ΕΓΒ. (.)

Let ordinate ΚΝΜ be drawn. Adding to either side of (.)
the pentagon ∆ΕΒΜΝ, we have

ΖΜ = ∆ΓΜΝ.

Let ΚΛ be extended to Π. By the lemma that we proved above,
ΚΠΜ = ΖΜ. Thus

ΚΠΜ = ∆ΓΜΝ.
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Subtracting the trapezoid ΛΠΜΝ gives

ΚΛΝ = ΛΓ.

From this, by Theorem  above, we have

ΚΛ · ΛΝ = 2Λ∆ · ∆Γ. (.)

We now compute

ΚΛ2 : ΚΛ · ΛΝ : : ΚΛ : ΛΝ

: : Ε∆ : ∆Ζ

: : Η : 2Γ∆ [by (.)]

: : Η · Λ∆ : 2Λ∆ · Γ∆

: : Η · Λ∆ : ΚΛ · ΛΝ, [by (.)]

which yields (.). We have assumed Κ to be on the other side
of ∆Ν from ΒΜ. The argument can be adapted to the other
case. Then, as a corollary, we have that ∆Ν bisects all chords
parallel to ∆Γ. In fact Apollonius proves this independently,
in Proposition i..

Could Apollonius have created the proof of i. for pedagog-
ical or ideological reasons, after verifying the theorem itself by
Cartesian methods, such we we employed? I have not found
any reason to think so. Before Apollonius, it seems that only
the right cone was studied, and the only sections considered
were made by planes that were orthogonal to straight lines
in the surface of the cone [, p. xxiv]. Whether an ellipse,
parabola, or hyperbola was obtained depended on the angle
at the vertex of the cone. The recognition that the cone can
be oblique, and every section can be obtained from every cone,
seems to be due to Apollonius. That our Cartesian argument
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started with orthogonal axes corresponds to starting with a
right cone. On the other hand, this feature was not essential
to the argument; we did not really need the parameter b.

. Apollonius 
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In addition to Elements i., which is A.S.A. and A.A.S. as
discussed earlier, Proclus [, ., ., .] attributes
to Thales three more of Euclid’s propositions, depicted in Fig-
ure .:

) the diameter bisects the circle, as in the remark on, or
addendum to, the definition of diameter given at the
head of the Elements;

) the base angles of an isosceles triangle are equal (i.);
) vertical angles are equal (i.).

Kant alludes to the second of these theorems in the Preface
to the B Edition of the Critique of Pure Reason, in a purple
passage of praise for the person who discovered the theorem
[, b x–xi, p. –]:

Mathematics has, from the earliest times to which the his-
tory of human reason reaches, in that admirable people the

Figure .: Symmetries





Greeks, traveled the secure path of a science. Yet it must not
be thought that it was as easy for it as for logic—in which
reason has to do only with itself—to find that royal path, or
rather itself to open it up; rather, I believe that mathemat-
ics was left groping about for a long time (chiefly among the
Egyptians), and that its transformation is to be ascribed to
a revolution, brought about by the happy inspiration of a
single man in an attempt from which the road to be taken
onward could no longer be missed, and the secure course of a
science was entered on and prescribed for all time and to an
infinite extent. The history of this revolution in the way of
thinking—which was far more important than the discovery
of the way around the famous Cape—and of the lucky one
who brought it about, has not been preserved for us. But the
legend handed down to us by Diogenes Laertius—who names
the reputed inventor of the smallest elements of geometri-
cal demonstration, even of those that, according to common
judgment, stand in no need of proof—proves that the mem-
ory of the alteration wrought by the discovery of this new
path in its earliest footsteps must have seemed exceedingly
important to mathematicians, and was thereby rendered un-
forgettable. A new light broke upon the person who demon-
strated the isosceles triangle (whether he was called “Thales”
or had some other name).

The boldface is Kant’s. The editors cite a letter in which Kant
confirms the allusion to Elements i..

In apparent disagreement with Kant, I would suggest that
revolutions in thought need not persist; they must be made
afresh by each new thinker. The student need not realize her
or his potential for new thought, no matter how open the royal
path may seem to the teacher.

Kant refers to the discovery of the southern route around
Africa: does he mean the discovery by Bartolomeu Dias in





, or the discovery by the Phoenicians, sailing the other
directions, two thousand years earlier, described by Herodotus
[, iv., pp. –]? The account of Herodotus is made
plausible by his disbelief that, in sailing west around the Cape
of Good Hope, the Phoenicians could have found the sun on
their right. Their route was not maintained, which is why Dias
can be hailed as its discoverer.

Likewise may routes to mathematical understanding not be
maintained. Much of ancient mathematics has been lost to us,
in the slow catastrophe alluded to by the title of The Forgot-

ten Revolution [, p. ]. Here Lucio Russo points out that
the last of the eight books of Apollonius on conic sections no
longer exists, while Books v–vii survive only in Arabic trans-
lation, and we have only Books i–iv in the original Greek.
Presumably this is because the later books of Apollonius were
found too difficult by anybody who could afford to have copies
made.

We may be able to recover the achievement of Thales, if
Thales be his name. There is no reason in principle why we
cannot understand him as well as we understand anybody; but
time and loss present great obstacles. Kant continues with his
own interpretation of Thales’s thought:

For he found that what he had to do was not to trace what
he saw in this figure, or even trace its mere concept, and
read off, as it were, from the properties of the figure; but
rather that he had to produce the latter from what he him-
self thought into the object and presented (through construc-
tion) according to a priori concepts, and that in order to
know something securely a priori he had to ascribe to the
thing nothing except what followed necessarily from what he
himself had put into it in accordance with its concept.
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Kant is right, if he means that the equality of the base angles of
an isosceles triangle does not follow merely from a figure of an
isosceles triangle. The figure itself represents only one instance
of the general claim. One has to recognize that the figure is
constructed according to a principle, which in this case can
be understood as symmetry. The three shapes in Figure .
embody a symmetry that justifies the corresponding theorems,
even though Euclid does not appeal to this symmetry in his
proofs.

As we discussed, Thales is also thought to have discovered
that the angle in a semicircle is right, and he may have done
this by recognizing that any two diameters of a circle are diag-
onals of an equiangular quadrilateral. Such quadrilaterals are
rectangles, but this is not so fundamental an observation as
the equality of the base angles of an isosceles triangle; in fact
the “observation” can be disputed, as it was by Lobachevski
[].

Thales is held to be the founder of the Ionian school of
philosophy. In Before Philosophy [, p. ], the Frankforts
say of the Ionian school that its members

proceeded, with preposterous boldness, on an entirely un-
proved assumption. They held that the universe is an intel-
ligible whole. In other words, they presumed that a single
order underlies the chaos of our perceptions and, further-
more, that we are able to comprehend that order.

For Thales, the order of the world was apparently to be ex-
plained through the medium of water. However, this informa-
tion is third-hand at best. Aristotle says in De Caelo [, II.,
pp. ],

By these considerations some have been led to assert that
the earth below us is infinite, saying, with Xenophanes of
Colophon, that it has ‘pushed its roots to infinity’,—in or-





der to save the trouble of seeking for the cause . . . Others
say the earth rests upon water. This, indeed, is the oldest
theory that has been preserved, and is attributed to Thales
of Miletus. It was supposed to stay still because it floated
like wood and other similar substances, which are so consti-
tuted as to rest upon water but not upon air. As if the same
account had not to be given of the water which carries the
earth as of the earth itself!

Aristotle has only second-hand information on Thales, who
seems not to have written any books. It may be that Aristo-
tle does not understand what questions Thales was trying to
answer. Aristotle has his own questions, and criticizes Thales
for not answering them.

Aristotle may do a little better by Thales in the Metaphysics
[, a, pp. –], where he says,

Of the first philosophers, then, most thought the principles
which were of the nature of matter were the only principles
of all things . . . Yet they do not all agree as to the number
and the nature of these principles. Thales, the founder of
this type of philosophy, says the principle is water (for which
reason he declared that the earth rests on water), getting the
notion perhaps from seeing that the nutriment of all things
is moist, and that heat itself is generated from the moist and
kept alive by it (and that from which they come to be is a
principle of all things). He got his notion from this fact, and
from the fact that the seeds [τὰ σπέρματα] of all things have
a moist nature, and that water is the origin of the nature of
moist things.

In The Idea of Nature [, pp. –], Collingwood has a poetic
interpretation of this:

The point to be noticed here is not what Aristotle says but
what it presupposes, namely that Thales conceived the world
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of nature as an organism: in fact, as an animal . . . he may
possibly have conceived the earth as grazing, so to speak, on
the water in which it floats, thus repairing its own tissues and
the tissues of everything in it by taking in water from this
ocean and transforming it, by processes akin to respiration
and digestion, into the various parts of its own body . . . This
animal lived in the medium out of which it was made, as a
cow lives in a meadow. But now the question arose, How
did the cow get there? . . . The world was not born, it was
made; made by the only maker that dare frame its fearful
symmetry: God.

Collingwood is presumably alluding to the sixth and final
stanza of William Blake’s poem “The Tyger” []:

Tyger Tyger burning bright,
In the forests of the night,
What immortal hand or eye,
Dare frame thy fearful symmetry?

Like most animals, the tiger exhibits bilateral symmetry, the
kind of symmetry shown in Figure ., though this may not be
what Blake is referring to: his illustration for the poem shows
a tiger from the side, not the front. For Euclid, συμμετρία is
what we now call commensurability; symmetry may also be
balance and harmony in a non-mathematical sense []. But
this would seem to be what Thales saw, or sought, in the
world, and it is akin to his recognition of the unity underlying
all isosceles triangles, a unity whereby the equality of the base
angles of each of them can be established once for all. What
made Thales a philosopher made him a mathematician.
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