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Preface

The geometry presented in the thirteen books of Euclid’s Elements is
founded on five postulates; but the arithmetic in Books vii, viii, and ix

makes no explicit use of postulates. Nonetheless, Euclid proves rigorously
the commutativity of multiplication in any ordered ring whose positive
elements are well ordered. His tool is a theory of proportion founded on
what we call the Euclidean Algorithm. Such is the main mathematical
burden of this essay, discharged in the third and last chapter.

That chapter is so long, and it is preceded by two other chapters,
because Euclid, if he is going to be read at all, deserves to be read with
more care than we often read anything today. Today we may not need
to read carefully, because of some common understandings that we can
take for granted. It is not so with Euclid.

The foregoing can be said briefly, as I have just done; showing it is
what I try to do in the whole essay. Still, the chapters and their sections
might be summarized as follows.

Chapter . The study of Euclid is an instance of doing history. As
such, the study can both benefit from, and illustrate, the philosophy of
history developed by R. G. Collingwood in several of his books.
§.. Studying the Elements is like studying an ancient building, such as

the Hagia Sophia in Istanbul: it is a kind of archeology. Archeology
is in turn a kind of history. Historical inference resembles math-
ematical inference; but the way to understand this is by actually
doing history and mathematics—which we do by studying Euclid.

§.. The present study of Euclid is motivated by questions such as: Can
students today learn number theory from Euclid? Does Euclid cor-
rectly prove such results as the commutativity of multiplication,
and “Euclid’s Lemma”? I am going to pursue my questions, mak-
ing use of some scholarship that I know of, though overlooking (of
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course) the scholarship that I do not know.
§.. We cannot decide whether a particular statement or argument of

Euclid is correct or incorrect without first understanding what it
means. The meaning is not always obvious.

§.. In studying Euclid, we have to re-enact his thoughts, as best we
can.

§.. In reading Euclid (or any philosopher), we cannot just say that he
is wrong (if we think he is), without also offering a correction that
(in our best judgment) he (or she) can agree with.

Chapter . Mathematicians used to learn mathematics from Euclid.
Since this no longer commonly happens, we may be better able now to
understand Euclid properly. Nonetheless, some students do still learn
mathematics from Euclid. Among those students are undergraduates in
my own mathematics department in Istanbul: reading with them brings
out certain features of Euclid.
§.. Dedekind did not learn his construction of the real numbers from

Euclid. Unlike some of his contemporaries, he understood Euclid
well enough to see that what he was doing was different.

§.. Looking back at Euclid’s Greek (for the sake of translating this
into Turkish) brings out some misleading features of the standard
English translation by Heath. Heath aids the reader by typograph-
ical means; but this may cause us to think wrongly that Euclid’s
propositions are like modern theorems. Euclid may have estab-
lished a pattern for modern mathematical exposition; but this does
not mean he is obliged to follow it.

§.. Contrary to modern mathematical practice, Euclid’s equality is not
sameness or identity. Thinking about what equality really means,
one can see that Euclid’s Proposition i., the “Side Angle Side”
theorem of triangle congruence, is a real theorem.

§.. According to Hilbert, Euclid’s Fourth Postulate, the equality of all
right angles, is really a theorem. Examining Hilbert’s proof of this
theorem shows how different is his way of thinking of geometry from
Euclid’s.

Chapter . We turn to Book vii of Euclid’s Elements and to the
specific investigation of questions raised earlier.





§.. The definition of unity may well be a late addition to this book.
§.. By definition, if a number is of a second number the same part or

parts that a third number is of a fourth, then the four numbers
are proportional. Whatever else this means, a proportion is not an
equation of ratios, but an identification of them.

§.. Euclid’s numbers are finite nonempty sets. Euclid distinguishes
between dividing numbers into parts and measuring numbers by
numbers. It so happens that for infinite sets, being divisible into
two equipollent subsets is logically stronger than being measurable
by a two-element set.

§.. If a number is parts of a number in Euclid’s sense, this does not
mean that the one number is a fraction of the other.

§.. When the numbers in Euclid’s diagrams appear as line segments,
one may think of these as lyre strings. The ancient musical treatise
called Sectio Canonis suggests a way of thinking about numerical
ratios that is useful for understanding the Elements.

§.. Lying behind the notion of a ratio is the alternating subtraction or
anthyphaeresis used in the Euclidean Algorithm.

§.. Proposition , that the less number is either part or parts of the
greater, should be understood as an explanation of what being the
same parts means in the definition of proportion: it means that
application of the Euclidean Algorithm requires the same pattern
of alternating subtractions in either case.

§.. With this understanding, the proof of the commutativity of multi-
plication, Proposition , unfolds logically.

§.. So does the proof of “Euclid’s Lemma,” Proposition .
§.. The last three propositions (–) of Book vii may be a late ad-

dition. In any case, they are written by somebody who is starting
to think of mathematics as symbol-manipulation.
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. Archeology

We are going to investigate foundational aspects of Euclid’s arithmetic, as
presented in Books vii, viii, and ix of the thirteen books of the Elements.
Our investigation might be called archeology, though it will require no
actual digging. We want to know something about the Elements, and
in particular its theory of numbers; however, we have no first-hand tes-
timony about what Euclid was doing, or trying to do. We just have
the Elements itself. As for the earlier tradition that Euclid came out of,
we have only traces of it. We have later works about Euclid, especially
Proclus’s Commentary on the First Book of Euclid’s Elements. We shall
make some use of this commentary, but it was written centuries after the
Elements.

Euclid himself does not provide testimony about what he is doing; he
just does it. If proper history requires such testimony, then we cannot
make an historical study of Euclid’s arithmetic. We can still make an
archeological study. We can read the Elements itself, for evidence of
what Euclid was trying to do there. In the same way, one might read the
Church of St Sophia in Constantinople, for evidence of the aims of its
master builders, Anthemius of Tralles and Isidore of Miletus: the basilica
itself can still be visited in Istanbul.

Concerning this basilica, called the Hagia Sophia or Ayasofya, we do
also have some written testimony. Procopius saw the church constructed
in the sixth century, at the command of Emperor Justinian, after an

A Wikipedia article requires testimony in a stricter sense. Because of the rule of
No Original Research, a Wikipedia article about a book should be based on the
testimony of published sources other than the book itself.
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earlier church had been destroyed in the so-called Nika Insurrection. Jus-
tinian spared no expense to build a new church, says Procopius,

so finely shaped, that if anyone had enquired of the Christians before
the burning if it would be their wish that the church should be destroyed
and one like this should take its place, shewing them some sort of model
of the building we now see, it seems to me they would have prayed
that they might see their church destroyed forthwith, in order that the
building might be converted to its present form. [, I.i., p. ]

We might infer that Anthemius and Isidore did actually show Justinian
a model of the basilica that they planned to build. Like this model, or
like the old church that the new Hagia Sophia would replace, some kind
of mathematics came before the Elements as we have it now; but we
have only hints (as in Plato’s Meno) of what this was like. About the
construction of the Hagia Sophia itself, from Procopius we know

it was not with money alone that the Emperor built it, but also with
labour of the mind and with the other powers of the soul, as I shall
straightway show. One of the arches which I just now mentioned (lôri
the master-builders call them), the one which stands towards the east,
had already been built up from either side, but it had not yet been
wholly completed in the middle, and was still waiting. And the piers
(pessoi), above which the structure was being built, unable to carry the
mass which bore down upon them, somehow or other suddenly began
to crack, and they seemed on the point of collapsing. So Anthemius
and Isidorus, terrified at what had happened, carried the matter to the
Emperor, having come to have no hope in their technical skill. And
straightway the Emperor, impelled by I know not what, but I suppose
by God (for he is not himself a master-builder), commanded them to
carry the curve of this arch to its final completion. “For when it rests
upon itself,” he said, “it will no longer need the props (pessoi) beneath
it.” And if this story were without witness, I am well aware that it
would have seemed a piece of flattery and altogether incredible; but
since there were available many witnesses of what then took place, we
need not hesitate to proceed to the remainder of the story. So the
artisans carried out his instructions, and the whole arch then hung
secure, sealing by experiment the truth of his idea. Thus, then, was
this arch completed. [, I.i.–, pp. –],
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We have no such contemporary account of the Elements. Nobody who
knew Euclid can tell us, for example, of Euclid’s discovery of the Fifth or
Parallel Postulate, as being needed to prove such results as the equality
of an exterior angle of a triangle to the two opposite interior angles.
Nobody can testify that, since the Parallel Postulate is phrased in terms
of right angles, Euclid figured he needed another postulate, according to
which all right angles are equal to one another, and thus arose the Fourth
Postulate. We have no testimony that Euclid’s thoughts proceeded in this
way; we can only infer it (or something like it) from the edifice of the
Elements as it has come down to us.

By some accounts then, there can be no properly historical study of
the Elements, but only a “prehistorical” or archeological study. However,
I am going to agree with the philosopher and historian R. G. Collingwood
(–) that archeology is history. It is hard to say that we know
more about the construction of the Hagia Sophia than of the Elements,
simply because we have Procopius’s fanciful story about how the Emperor
saved a partially erected arch from collapse. That story might after all
be true; but it can hardly be credited without independent reason for
thinking it plausible.

I shall make use of Collingwood’s ideas about history, because I know
them and find them relevant. The Hagia Sophia is relevant as being, like
the Elements, one of the great structures of the ancient world.After the
Turkish conquest of Constantinople, nine centuries after the construction
of the Hagia Sophia, this edifice and especially its great dome became a
model for Ottoman Imperial mosques []. Euclid’s Elements became a
model for mathematics, even as it is done today.

As for Collingwood, though some of his books have remained in print or
been brought back into print, he is little known today. After speculating
on why this is, in a review of a biography, Simon Blackburn concludes,

A lucky life, then, rather than an unlucky one, is the explanation for
Collingwood’s unattractive features—unless, as Aristotle thought, we

One might classify the Hagia Sophia as medieval rather than ancient. The edifice at
least symbolizes the ancient mathematical world, in that the master builder Isidore
also compiled texts of Archimedes with the commentaries of Eutocius, and he is
mentioned in the extant manuscripts of these texts [, p. , n. ].
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cannot even call men lucky when they die, since we can be harmed
after our death. I do not know whether Aristotle was right, but if he
was wrong, then in most respects the neglect of Collingwood’s thought
may be our tragedy rather than his. []

In Blackburn’s judgment, “Collingwood was the greatest British philoso-
pher of history of the twentieth century” []. In her own assessment of
Collingwood, Mary Beard argues,

it is surely crucial that he was a product of the old Oxford ‘Greats’
(that is, classics) course, which focused the last two and a half years
of a student’s work on the parallel study of ancient history on the one
hand, and ancient and modern philosophy on the other. Most students
were much better at one side than the other . . . In the context of
Greats, Collingwood was not a maverick with two incompatible inter-
ests. Given the educational aims of the course, he was a rare success,
even if something of a quirky overachiever; his combination of interests
was exactly what Greats was designed to promote. []

Collingwood’s combination of interests does not seem to have included
mathematics especially. Nonetheless, he was aware of it and talked about
it, as will be seen below. His sense of what it means to do history will
help us as we bring our own interest in mathematics to the reading of
Euclid.

In directing actual archeological excavations, Collingwood found him-
self “experimenting in a laboratory of knowledge,” as he reports in An
Autobiography of  [, p. ]. The study of Euclid can likewise serve
as a laboratory of ideas about history. Collingwood likens history to
mathematics in The Idea of History, posthumously edited and first pub-
lished in :

One hears it said that history is ‘not an exact science’. The meaning
of this I take to be that no historical argument ever proves its conclu-
sion with that compulsive force which is characteristic of exact science.
Historical inference, the saying seems to mean, is never compulsive, it
is at best permissive; or, as people sometimes rather ambiguously say,
it never leads to certainty, only to probability. Many historians of the
present writer’s generation, brought up at a time when this proverb
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was accepted by the general opinion of intelligent persons (I say noth-
ing of the few who were a generation ahead of their time), must be
able to recollect their excitement on first discovering that it was wholly
untrue, and that they were actually holding in their hands an historical
argument which left nothing to caprice, and admitted of no alternative
conclusion, but proved its point as conclusively as a demonstration in
mathematics. [, pp. –]

These words were originally intended for The Principles of History [,
p. ], whose extant manuscripts were rediscovered in , having been
thought discarded after being (severely) edited to form part of The Idea of
History. I do not know whether historians generally agree with Colling-
wood on the subject of historical inference. According to one archeolo-
gist’s explanation of his field,

Since nobody knows what happened in the past (even in the recent
historical past), there will never be an end to archaeological research.
Theories will come and go, and new evidence or discoveries will alter
the accepted fiction that constitutes the orthodox view of the past and
which becomes established through general repetition and widespread
acceptance. As Max Planck wrote, ‘A scientific truth does not triumph
by convincing its opponents and making them see the light, but rather
because its opponents die and a new generation grows up that is familiar
with it.’

Archaeology is a perpetual search, never really a finding; it is an
eternal journey, with no true arrival. Everything is tentative, nothing
is final. [, p. ]

We shall return later (in §., p. ) to Paul Bahn’s skepticism here.
His reference to “accepted fiction” calls to my mind Gore Vidal’s 
Introduction to his  historical novel Julian []. Vidal quotes one
historian on another as being “The best in the field. Of course he makes
most of it up, like the rest of us.” Speaking for himself, Vidal says,

Why write historical fiction instead of history? Because, when dealing
with periods so long ago, one is going to make a lot of it up anyway,
as Finley blithely admitted. Also, without the historical imagination
even conventional history is worthless. Finally, there is the excitement
when a pattern starts to emerge.
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An emerging pattern in history is the opportunity for the flights of fancy
that Vidal takes in novels like Julian and Creation. Vidal does however
admit a difference between fiction and history, as when he says,

as every dullard knows, the historical novel is neither history nor a
novel . . . I personally don’t care for historical novels as such (I’m
obliged to read history in order to write stories set in the past).

In any case, our present topic is not history as such, but Euclid. The
editors of The Principles of History lament that, when declaring the
compulsive force of historical inference, Collingwood does not give “at this
point an example of historians actually reasoning to certain conclusions”
[, p. xxix]. But one should be able to supply one’s own examples.
Euclid will be our example, and in a footnote, the editors supply theirs.
They report that, in a  article, Collingwood said, “it is more certain
than ever that the forts [on Hadrian’s Wall] were built before the stone
Wall.” This conclusion is now held to be incorrect.

Collingwood’s supposed historical mistake does not disprove his ideas
of historical inference, any more than mathematical mistakes dispel our
belief that mathematical correctness is possible. I suppose every mathe-
matician has had the pleasure and excitement of discovering a theorem,
only to find later that it was not a theorem after all. We may then give
up mathematics, or we may simply return to it with more care.

Again, if Collingwood does not give examples of historical inference in
The Principles of History, it is because he expects readers to come up
with their own. He has already said,

Like every science, history is autonomous. The historian has the right,
and is under an obligation, to make up his own mind by the methods
proper to his own science as to the correct solution of every problem
that arises for him in the pursuit of that science . . . There is no need
for me to offer the reader any proof of this statement. If he knows
anything of historical work, he already knows of his own experience
that it is true. If he does not already know that it is true, he does not
know enough about history to read this essay with any profit, and the
best thing he can do is to stop here and now. [, p. ] [, pp. –]

Actually, the best thing the reader could do would be to do some history—
which is just what we are going to do with Euclid.
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. Questions

In his own experiments in the historical or archeological “laboratory of
knowledge,” Collingwood was

at first asking myself a quite vague question, such as: ‘was there a Fla-
vian occupation on this site?’ then dividing that question into various
heads and putting the first in some such form as this: ‘are these Fla-
vian sherds and coins mere strays, or were they deposited in the period
to which they belong?’ and then considering all the possible ways in
which light could be thrown on this new question, and putting them
into practice one by one, until at last I could say, ‘There was a Flavian
occupation; an earth and timber fort of such and such plan was built
here in the year a± b and abandoned for such and such reasons in the
year x ± y.’ Experience soon taught me that under these laboratory
conditions one found out nothing at all except in answer to a question;
and not a vague question either, but a definite one. [, p. ]

Concerning Euclid’s number-theory, my own vague initial question is,
“Can Books vii–ix of the Elements serve as a text for undergraduates
today, as Book i can?” Book i is indeed a text for students in my own
mathematics department, as will be discussed in §. (p. ). Euclid does
prove several famous results that those students should also learn:

• the efficacy of the “Euclidean Algorithm” for finding greatest com-
mon divisors (vii., );

• “Euclid’s Lemma,” that a prime divisor of the product of two num-
bers divides one of the numbers (vii.);

• that the set of prime numbers is unbounded (ix.);
• that if the sum

∑n

k=0
2k of consecutive powers of two (starting from

one) is a prime p, then its product p · 2n with the last term in the
sum is a perfect number (ix.).

Towards formulating a more precise question than whether Euclid is suit-
able as a textbook, I note a certain unsuitability in the textbooks of today.

The result is called Euclid’s Lemma by Burton [, p. ] and by Wikipedia; Hardy
& Wright [, p. , Thm ] call it Euclid’s First Theorem (the Second being, “The
number of primes is infinite”).
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There is a common foundational error of assuming that recursive defini-
tions of number-theoretic functions are justified by induction alone. Thus
if we say 1! = 1 and (k+1)! = k! · (k+1), it may be thought that () we
have defined n! when n = 1, and () if we have defined n! when n = k,
then we have defined it when n = k + 1; therefore, “by induction,” we
have defined n! for all natural numbers n. Actually cannot define it by
induction alone. We have made a recursive definition, and this requires
k + 1 to uniquely determine k, and 1 not to be of the form k + 1. Clari-
fication of this point leads to insight, as I have argued elsewhere []. It
so happens that induction is enough to justify the recursive definitions
of addition and multiplication, as Landau shows tacitly in The Founda-
tions of Analysis []. Therefore congruence of integers with respect to a
particular modulus respects addition and multiplication, since induction
is valid on integers considered with respect to a modulus. One can then
use induction to prove associativity and commutativity of addition and
multiplication, as well as distributivity of the latter over the former. The
proofs of these results can be exercises for students today. Euclid himself
establishes commutativity of multiplication in Proposition vii. of the
Elements. A more definite question for the present investigation is then,
“Does Euclid give a valid proof of the commutativity of multiplication?”

Another question is whether Euclid gives a valid proof of “Euclid’s
Lemma.” The question is investigated by Pengelley and Richman [] and
then by Mazur []; the former also review earlier, albeit still modern,
investigations. Such investigations can be inhibited by the modern notion
of a fraction. In the Elements, there are two definitions of proportion, to
be quoted in full in §. (p. ): there is a clear definition of proportion of
magnitudes at the head of Book v, and an unclear definition of proportion
of numbers at the head of Book vii. By the latter definition, is A to B as
C to D, just in case the fractions A/B and C/D are equal? To answer
this, we should ask what question Euclid was trying to answer in his
writing.

The phrase “with respect to the modulus m” is, in Gauss’s Latin, secundum modulum

m [, §]. For reasons unknown to me, the English translation [] sticks to Latin,
but drops the preposition secundum and puts modulus in the dative or ablative
case, as in “modulo m.”
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I shall propose that Euclid’s question is, “Can we simplify the anthy-
phaeretic definition of proportion, that is, the definition based on the
method of finding greatest common divisors [the Euclidean Algorithm]?”
I think this proposal is at least hinted at by David Fowler in The Math-
ematics of Plato’s Academy [], which is all about anthyphaeresis, al-
though the book does not say a great deal about Euclid’s arithmetic as
such.

I am aware of other writing on Euclid and his theory of numbers; there
may be much more of which I am not aware. As an apology for just going
ahead anyway, and saying what I have to say, I cite Robert Pirsig, who
coins a useful word in his philosophical novel Lila [, ch. , pp. –]
and defines it by an analogy:

Philosophology is to philosophy as musicology is to music, or as art
history and art appreciation are to art, or as literary criticism is to
creative writing.

One might add two more terms to the analogy, namely history of math-
ematics and mathematics itself. And yet, as has already been suggested,
you cannot properly study the history of mathematics without already
being something of a mathematician. The point for now is that, according
to Pirsig, philosophologists put

a philosophological cart before the philosophical horse. Philosophol-
ogists not only start by putting the cart first; they usually forget the
horse entirely. They say first you should read what all the great philoso-
phers of history have said and then you should decide what you want
to say. The catch here is that by the time you’ve read what all the
great philosophers of history have said you’ll be at least two hundred
years old.

Some questions about Euclid have arisen in the course of my own mathe-
matical life, and here I take them up. In the next chapter, I shall consider
the question of how Richard Dedekind and David Hilbert (and my own
students) read Euclid. One could raise the same question about every
earlier mathematician, since just about all of them must have read Eu-
clid. But one has only so much time. One should also have something
one is looking for: this was said by Collingwood above, and it is said by
Pirsig, or more precisely by his persona, called Phaedrus:



. Evidence 

Phaedrus, in contrast, sometimes forgot the cart but was fascinated
by the horse. He thought the best way to examine the contents of
various philosophological carts is first to figure out what you believe
and then to see what great philosophers agree with you. There will
always be a few somewhere. These will be much more interesting to
read since you can cheer what they say and boo their enemies, and
when you see how their enemies attack them you can kibitz a little and
take a real interest in whether they were right or wrong.

It is unfortunate that Pirsig thinks of intellectual life as an arena for
attack and defense; but apparently he has reasons for this.

. Evidence

We can read Euclid as if he were a contemporary mathematician. Then
we may think that we understand him if we have translated his mathe-
matics into our own terms. This is the approach that E. C. Zeeman takes
and defends in an article (originally a talk) on Euclid:

In our discussions we found ourselves following the traditional opposing
roles of historian and mathematician. The historian thinks extrinsi-
cally in terms of the written evidence and adheres strictly to that data,
whereas the mathematician thinks intrinsically in terms of the mathe-
matics itself, which he freely rewrites in his own notation in order to
better understand it and to speculate on what might have been passing
through the mind of the ancient mathematician, without bothering to
check the rest of the data. [, p. ]

The person given the role of historian here is the late David Fowler,
mentioned above; but he was a mathematician as well. Zeeman seems
to suggest that the mathematician has an advantage over the historian,
because an understanding of mathematics can take a researcher places
where a lack of evidence prevents the historian from going.

Though we have seen (or at least seen it argued by Collingwood) that
mathematics is similar to history, the two disciplines are still different.
Collingwood suggests this himself in The Principles of History [, p. ].
Mathematics and history are sciences; but
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anything that is a science at all must be more than merely a science, it
must be a science of some special kind. A body of knowledge is never
merely organized, it is always organized in some particular way.

There are sciences of observation, like meteorology; there are sciences of
experiment, like chemistry. There is mathematics, not named as such by
Collingwood here, but described as being

organized not by observing events at all, but by making certain as-
sumptions and proceeding with the utmost exactitude to argue out
their consequences.

History is not like this. In meteorology and chemistry, the aim is “to
detect the constant or recurring features in all events of a certain kind.”
In being different from this, history does resemble mathematics, but only
to a certain point:

It is true that in history, as in exact science, the normal process of
thought is inferential; that is to say, it begins by asserting this or that,
and goes on to ask what it proves. But the starting-points are of very
different kinds. In exact science they are assumptions, and the tradi-
tional way of expressing them is in sentences beginning with a word of
command prescribing that a certain assumption be made: ‘Let ABC
be a triangle, and let AB = AC.’ In history they are not assumptions,
they are facts, and facts coming under the historian’s observation, such
as, that on the page open before him there is printed what purports
to be a charter by which a certain king grants certain lands to a cer-
tain monastery. The conclusions, too, are of different kinds. In exact
science, they are conclusions about things which have no special habi-
tation in space or time: if they are anywhere, they are everywhere,
and if they are at any time they are at all times. In history, they are
conclusions about events, each having a place and date of its own.

Collingwood appears to have the view of mathematics described by Tim-
othy Gowers in Mathematics: A Very Short Introduction [, pp. –].
Gowers recognises it as a twentieth-century view. It is a view that has
its place in history:

[T]he steps of a mathematical argument can be broken down into
smaller and therefore more clearly valid substeps. These steps can
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then be broken down into subsubsteps, and so on. A fact of fundamen-
tal importance to mathematics is that this process eventually comes to

an end . . .
What I have just said in the last paragraph is far from obvious: in fact

it was one of the great discoveries of the early th century, largely due
to Frege, Russell, and Whitehead. This discovery has had a profound
impact on mathematics, because it means that any dispute about the

validity of a mathematical proof can always be resolved. In the th
century, by contrast, there were genuine disagreements about matters
of mathematical substance. For example, Georg Cantor, the father of
modern set theory, invented arguments that relied on the idea that one
infinite set can be ‘bigger’ than another. These arguments are accepted
now, but caused great suspicion at the time.

Cantor’s arguments are accepted now, and one might say this is because
they can be worked out in a formal system based on the Zermelo–Fraenkel
theory of sets. Does Gowers mean to suggest that any dispute about the
validity of a proof in Euclid can now be resolved? I do not know; but I
myself would say that today’s mathematics does not automatically give
us a good criterion for assessing Euclid. Though Euclid may have inspired
the formal systems alluded to by Gowers, Euclid himself is not using a
formal system, or at least he is not obviously using one, even though it
may well be possible to retrofit the Elements with a formal system, as is
done by Avigad, Dean, and Mumma [].

Mathematics can be held up as an example of the peaceable resolution
of disputes. Gowers finds it to be unique in this way [, p. ]:

There is no mathematical equivalent of astronomers who still believe in
the steady-state theory of the universe, or of biologists who hold, with
great conviction, very different views about how much is explained by
natural selection, or of philosophers who disagree fundamentally about
the relationship between consciousness and the physical world, or of
economists who follow opposing schools of thought such as monetarism
and neo-Keynesianism.

And yet, if all mathematical disputes are resoluble in principle, this is only
because we accept the principle. Collingwood finds the same principle at
work in history. “History,” he says [, p. ],
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has this in common with every other science: that the historian is not
allowed to claim any single piece of knowledge, except where he can
justify his claim by exhibiting to himself in the first place, and secondly
to anyone else who is both able and willing to follow his demonstration,
the grounds upon which it is based. This is what was meant, above,
by describing history as inferential.

Mathematics is inferential in the same way. Now, can the grounds of an
inference be accepted by one person, yet rejected by another? Practically
speaking, it is less likely in mathematics than elsewhere. Nonetheless, it
can happen anywhere, because one can always be faced with a skeptic,
whom Collingwood goes on to distinguish from a proper critic:

a critic is a person able and willing to go over somebody else’s thoughts
for himself to see if they have been well done; whereas a sceptic is a
person who will not do this; and because you cannot make a man think,
any more than you can make a horse drink, there is no way of proving
to a sceptic that a certain piece of thinking is sound, and no reason for
taking his denials to heart. It is only by his peers that any claimant to
knowledge is judged.

Mathematical disputes are resoluble in principle. In practice, they may
not be resoluble; but in this case, we may say of the parties to the dispute
that one is a skeptic in Collingwood’s sense. This is possible in any
dispute, be it in mathematics or history or anywhere else.

According to Zeeman as quoted above, “The historian thinks extrinsi-
cally in terms of the written evidence and adheres strictly to that data,”
although this is admittedly a “traditional” view. It sounds like the ob-
solescent view of history that distinguishes history from archeology and
that is described by Collingwood as “scissors and paste”:

It is characteristic of scissors-and-paste history, from its least critical
to its most critical form, that it has to do with ready-made statements,
and that the historian’s problem about any one of these statements is
whether he shall accept it or not: where accepting it means reasserting
it as a part of his own historical knowledge. [, p. ]

We can take an example from Euclid. Among the “definitions” at the
head of Book vii of the Elements, there are the following two statements,
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numbered  and  in the Greek text established by Heiberg [], and
hence so numbered in translations like Heath’s []:

Μέρος ἐστὶν ἀριθμὸς ἀριθμοῦ ὁ ἐλάσσων τοῦ μείζονος,
ὅταν καταμετρῇ τὸν μείζονα.

Μέρη δέ, ὅταν μὴ καταμετρῇ.
A number is part of a number, the less5 of the greater,

when it measures the greater.
But parts, when it does not measure.

In the body of Book vii, Proposition  has the following enunciation.

Ἅπας ἀριθμὸς παντὸς ἀριθμοῦ ὁ ἐλάσσων τοῦ μείζονος
ἤτοι μέρος ἐστὶν ἢ μέρη.

Every number is of every number, the less of the greater,
either a part or parts.

If the first two statements are really definitions, then the last statement
follows immediately from them; but Euclid gives a nontrivial proof any-
way. Suppose we think of geometry as a body of knowledge consisting of
axioms and the theorems that they entail; and suppose we are, as it were,
historians of this geometry. If we are scissors-and-paste historians, then
we are going to reject at least one of the three ready-made statements of
Euclid, because they cannot all be respectively definitions and theorem.

In fact we are going to reject none of the statements out of hand; nor
shall we just accept them as definitions and theorem respectively. We
shall do something like what Collingwood goes on to describe:

Confronted with a ready-made statement about the subject he is study-
ing, the scientific historian never asks himself: ‘Is this statement true
or false?’, in other words ‘Shall I incorporate it in my history of that
subject or not?’ The question he asks himself is: ‘What does this state-
ment mean?’ And this is not equivalent to the question ‘What did the
person who made it mean by it?’, although that is doubtless a question

Etymologically, “less” is a comparative form, although we seem not to have retained
a positive form of its root, but we take “little” for the positive form []. The
second S in “less” can be considered to stand for the R of the usual comparative
suffix “-er.” The word “lesser” is thus a double comparative, as “greaterer” would
be, if there were such a word.
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that the historian must ask, and must be able to answer. It is equiv-
alent, rather, to the question ‘What light is thrown on the subject in
which I am interested by the fact that this person made this statement,
meaning by it what he did mean?’

Our ultimate interest is in our own statements, as mathematicians and
historians of mathematics. Collingwood describes these statements on
his next page:

A statement to which an historian listens, or one which he reads,
is to him a ready-made statement. But the statement that such a
statement is being made is not a ready-made statement. If he says
to himself ‘I am now reading or hearing a statement to such and such
effect’, he is himself making a statement; but it is not a second-hand
statement, it is autonomous. He makes it on his own authority. And it
is this autonomous statement that is the scientific historian’s starting-
point . . .

If the scientific historian gets his conclusions not from the statement
that he finds ready made, but from his own autonomous statement of
the fact that such statements are made, he can get conclusions even
when no statements are made to him.

Thus the mathematician’s activity described by Zeeman, the rewriting
of Euclid’s mathematics in one’s own notation, the better to under-
stand it—this would seem to be an activity of the scientific historian, in
Collingwood’s terms. “In scientific history” says Collingwood [, p. ],

anything is evidence which is used as evidence, and no one can know
what is going to be useful as evidence until he has had occasion to use
it.

Thus the mathematics that we work out can serve as evidence of what
Euclid was doing. And yet it must be used with care, since its use
will be based on the presupposition of a kind of unity of mathematics—
the presupposition about mathematical truths that, as Collingwood said

Since we shall look briefly at Euclid’s use of the definite article in §. (p. ), let us
note that the word “the” in “the better” is not the usual definite article descended
from the Old English þe. It is rather a descendent of this pronoun’s instrumental
case, spelled as þy and þon [].
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above, “if they are anywhere, they are everywhere, and if they are at any
time they are at all times.”

In the study of Euclid at least, it is desirable to question this presuppo-
sition. In his article [] on the International Congresses of Mathematics,
David Mumford’s theme is that the unity of mathematics (as reflected in
the very existence of the Congresses) cannot be taken for granted, but
must be worked for, and will not be achieved by forcing all of mathemat-
ics into the same mold. This is especially true when the mathematics
under consideration is spread out over more than two thousand years.

. Re-enactment

In a quotation above from The Principles of History, Collingwood distin-
guishes between what a statement means and what the person who made
the statement means. We want to understand the mathematics thought
about by Euclid, and we want to understand what Euclid thought about
the mathematics; but these are different. Collingwood does not seem
so concerned with the distinction in An Autobiography ; but he does es-
tablish there that all history is the history of thought. He distinguishes
history from pseudo-history, the latter meaning

the narratives of geology, palaeontology, astronomy, and other natural
sciences which in the late eighteenth and the nineteenth centuries had
assumed a semblance at least of historicity . . .

History and pseudo-history alike consisted of narratives: but in his-
tory these were narratives of purposive activity, and the evidence for
them consisted of relics they had left behind (books or potsherds, the
principle was the same) which became evidence precisely to the extent
to which the historian conceived them in terms of purpose, that is,
understood what they were for. [, pp. –]

Thus we shall ask of Euclid’s “definitions” of part and parts of a number,
and of his propositions about the same: what are they for?

I expressed this new conception of history in the phrase: ‘all history
is the history of thought.’ You are thinking historically, I meant, when
you say about anything, ‘I see what the person who made this (wrote



  Philosophy of History

this, used this, designed this, &c.) was thinking.’ Until you can say
that, you may be trying to think historically but you are not succeeding.
And there is nothing else except thought that can be the object of
historical knowledge. Political history is the history of political thought:
not ‘political theory’, but the thought which occupies the mind of a man
engaged in political work: the formation of a policy, the planning of
means to execute it, the attempt to carry it into effect, the discovery
that others are hostile to it, the devising of ways to overcome their
hostility, and so forth. [, p. ]

As historians of mathematics, and in particular of Euclid’s mathematics,
we study what Euclid was thinking while composing the Elements.

We should acknowledge at some point that the author of the Elements,
whom we call Euclid, was not necessarily one person. This should remind
us that, if different parts of the Elements, or even of one of its thirteen
books, do not seem to fit together, it may be because different hands put
them together. Then again, we can decide the question of the value of
the Elements for us, without knowing whether Euclid was one person or
many. This is a point made by Collingwood in The Principles of Art of
 [, pp. –]:

Individualism would have it that the work of a genuine artist is al-
together ‘original’, that is to say, purely his own work and not in any
way that of other artists . . . All artists have modelled their style upon
that of others, used subjects that others have used, and treated them
as others have treated them already . . .

The individualistic theory of authorship would lead to the most ab-
surd conclusions. If we regard the Iliad as a fine poem, the question
whether it was written by one man or by many is automatically, for
us, settled. If we regard Chartres cathedral as a work of art, we must
contradict the architects who tell us that one spire was built in the
twelfth century and the other in the sixteenth, and convince ourselves
that it was all built at once.

If the Elements is a fine work of mathematics, its authorship is not nec-
essarily singular; if not, not necessarily multiple.

For Collingwood in An Autobiography, our study of Euclid is not only
history, but typical or exemplary history. We want to understand the
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thoughts expressed in the Elements, and to do this, since they are math-
ematical thoughts, we have to be mathematicians:

the historian must be able to think over again for himself the thought
whose expression he is trying to interpret. If for any reason he is such
a kind of man that he cannot do this, he had better leave that prob-
lem alone. The important point here is that the historian of a certain
thought must think for himself that very same thought, not another like
it. If some one, hereinafter called the mathematician, has written that
twice two is four, and if some one else, hereinafter called the historian,
wants to know what he was thinking when he made those marks on
paper, the historian will never be able to answer this question unless
he is mathematician enough to think exactly what the mathematician
thought, and expressed by writing that twice two are four. When he
interprets the marks on paper, and says, ‘by these marks the mathe-
matician meant that twice two are four’, he is thinking simultaneously:
(a) that twice two are four, (b) that the mathematician thought this,
too; and (c) that he expressed this thought by making these marks on
paper. I will not offer to help a reader who replies, ‘ah, you are making
it easy for yourself by taking an example where history really is the
history of thought; you couldn’t explain the history of a battle or a
political campaign in that way.’ I could, and so could you, Reader, if
you tried.

This gave me a second proposition: ‘historical knowledge is the re-
enactment in the historian’s mind of the thought whose history he is
studying.’ [, pp. –]

Re-enactment is not discussed in The Principles of History, as we have
the text; but re-enactment is discussed in some preliminary notes that
Collingwood made for the book [, pp. –]:

all genuine historians interest themselves in the past just so far as they
find in it what they, as practical men, regard as living issues. Not
merely issues resembling these: but the same issues . . . And this must
be so, if history is the re-enactment of the past in the present: for a past
so re-enacted is not a past that has finished happening, it is happening
over again.

People have been quite right to say that the historian’s business
is not to narrate the past in its entirety . . . but to narrate such of
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the past as has historical importance . . . historical importance means
importance for us. And to call a thing important for us means that we

are interested in it, i.e. that it is a past which we desire to re-enact in
our present.

We are studying Euclid for the sake of doing mathematics today. Re-
enacting Euclid means doing his mathematics. There are things called
re-enactment that are not what Collingwood has in mind. It does not
mean dressing in period costumes and aping archaic manners. Thus, the
passage from An Autobiography mentioning political history continues:

Consider how the historian describes a famous speech. He does not
concern himself with any sensuous elements in it such as the pitch of
the statesman’s voice, the hardness of the benches, the deafness of the
old gentleman in the third row: he concentrates his attention on what
the man was trying to say (the thought, that is, expressed in his words)
and how his audience received it (the thoughts in their minds, and how
these conditioned the impact upon them of the statesman’s thought).
[, p. ]

Treating the Elements historically does not mean just reading it, or re-
producing its propositions in lectures delivered at a blackboard. It does
involve understanding those propositions somehow. Historical study of
Euclid does not even require learning Ancient Greek, though this does
seem to be of value, and I shall usually quote Euclid in Greek as well
as English. Euclid’s Greek is easy, being formulaic and having a small
lexicon, many of whose words can be seen in the mathematical language
of today.

Proper re-enactment of the past is nonetheless a grand project. Many
years before writing the books quoted so far, Collingwood engaged in
another grand project, in Speculum Mentis of  [, p. ]:

This book is the outcome of a long-growing conviction that the only
philosophy that can be of real use to anybody . . . is a critical review
of the chief forms of human experience . . . We find people practicing
art, religion, science, and so forth, seldom quite happy in the life they
have chosen, but generally anxious to persuade others to follow their
example. Why are they doing it, and what do they get for their pains?
This question seems, to me, crucial for the whole of modern life . . .



. Re-enactment 

After using the bulk of the book to review the “forms of experience” called
art, religion, science, history, and philosophy, Collingwood sums things
up:

We set out to construct a map of knowledge on which every legit-
imate form of human experience should be laid down, its boundaries
determined, and its relations with its neighbors set forth . . .

Such a map of knowledge is impossible . . .
Beginning, then, with our assumption of the separateness and au-

tonomy of the various forms of experience, we have found that this
separateness is an illusion . . .

The various countries on our initial map, then, turn out to be vari-
ously-distorted versions of one and the same country . . . What, then,
is this one country? It is the world of historical fact, seen as the mind’s
knowledge of itself. [, pp. –]

I would read the emphasis on historical fact as follows. To know a the-
orem, such as Fermat’s “Little” Theorem, means knowing that it is true,
and this means knowing, as historical fact, that one has worked through
a proof of the theorem and verified its correctness. One may have estab-
lished a proof by induction, having noted that

) 1p ≡ 1 (mod p), and
) if ap ≡ a (mod p), then (a+ 1)p ≡ ap + 1 ≡ a+ 1 (mod p).

One can then file the proof away. Asserting the theorem as true does not
require reopening the file; but it requires summoning up the historical
fact of the proof’s having been placed in the file.

One may find this “historical fact” inadequate; for, in the words of Paul
Bahn quoted earlier (§., p. ), “nobody knows what happened in the
past (even in the recent historical past).” If these words are to be taken
seriously, then the memory of having proved a theorem does not suffice to
provide knowledge that the theorem is true. Maybe we made a mistake
when we proved the theorem yesterday. Maybe as students we accepted
a teacher’s proof, but had not yet acquired sufficient mathematical skep-
ticism to find the gaps in the proof.

We may then try to ensure that the stating of a theorem includes
within itself an actual proof. I think this is Mazur’s “self-proving theorem
principle” [, p. ], namely:
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if you can restate a theorem, without complicating it, so that its proof,
or the essence of its proof, is already contained in the statement of the
theorem, then you invariably have

• a more comprehensible theorem,
• a stronger theorem, and
• a shorter and more comprehensible proof!

For Mazur, the self-proving formulation of the Euclidean Algorithm is,

Suppose you are given a pair of numbers A and B with A greater
than B. Any common divisor of A and B is a common divisor of B
and A − B; and conversely, any common divisor of B and A − B is a
common divisor of A and B.

This formulation gives us a key part of the theorem; but it omits that
the process of continually replacing the greater of two numbers with the
difference of the two numbers must eventually come to an end. That the
natural numbers are well ordered must still be summoned up somehow.

Collingwood seems to have anticipated our difficulty. As we were read-
ing him in Speculum Mentis, he was speaking of a country, namely “the
world of historical fact”:

Can we, then, sketch this country’s features in outline?
We cannot. To explore that country is the endless task of the mind;

and it only exists in its being explored. Of such a country there is no
map, for it is itself its own map . . .

There is and can be no map of knowledge, for a map means an
abstract of the main features of a country, laid before the traveller in
advance of his experience of the country itself. Now no one can describe
life to a person who stands on the threshold of life. The maxims given
by age to youth are valueless not because age means nothing by them
but because what it means is just its own past life. To youth they
are empty words. The life of the spirit cannot be described except by
repeating it: an account of it would just be itself.

The bare statement of a theorem is thus a valueless maxim given by age
to youth. This would appear to be so, even if “age” here is our former,
younger self. As Wordsworth wrote in “My Heart Leaps Up” [, p. ],
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The child is the father of the man;
And I could wish my days to be
Bound each to each by natural piety.

The child, or younger person, passes along a theorem to the man, or older
person; but how can the older person properly receive this legacy? How
can one day be remembered in the next, without being simply relived?
To give a proper account of Euclid would seem to require us to repeat
him; not to parrot him, but, as it were, to be him.

The same goes for Collingwood too, by the way. If I parrot him here,
in the sense of just quoting him, it is because I think his words need little
translation, but usually make good-enough sense as they are. Further
sense will come, if it comes at all, from applying them to one’s own
experience, such as the experience of reading Euclid.

What Serge Lang says of mathematics [, p. v] is true for any of
Collingwood’s “forms of human experience”:

Unfortunately, a book must be projected in a totally ordered way on
the page axis, but that’s not the way mathematics “is,” so readers have
to make choices how to reset certain topics in parallel for themselves,
rather than in succession.

Thoughts projected on the axis of time become totally ordered; but some-
times a different ordering is needed for understanding them. My present
anthology of quotations of Collingwood (and others) is intended to offer
such an ordering. In any case, our main purpose is to understand Euclid ;
Collingwood is here to serve that purpose. On the other hand, if that
purpose is served, this in turn will illuminate Collingwood.

There is a certain pessimism or futility in Speculum Mentis: the old—
Euclid—can give nothing to the young—us—, but we must go over ev-
erything thoroughly for ourselves. And yet progress is possible:

In the toil of art, the agony of religion, and the relentless labour of
science, actual truth is being won and the mind is coming to its own
true stature. [, p. ]

Progress of a sort is possible:
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This process of the creation and destruction of external worlds might
appear, to superficial criticism, a mere futile weaving and unweaving of
Penelope’s web, a declaration of the mind’s inability to produce solid
assets, and thus the bankruptcy of philosophy. And this it would be
if knowledge were the same thing as information, something stored
in encyclopaedias and laid on like so much gas and water in schools
and universities. But education does not mean stuffing a mind with
information; it means helping a mind to create itself, to grow into an
active and vigorous contributor to the life of the world. The information
given in such a process is meant to be absorbed into the life of the
mind itself, and a boy leaving school with a memory full of facts is
thereby no more educated than one who leaves table with his hands
full of food is thereby fed. At the completion of its education, if that
event ever happened, a mind would step forth as naked as a new-born
babe, knowing nothing, but having acquired the mastery over its own
weaknesses, its own desires, its own ignorance, and able therefore to
face any danger unarmed. [, p. ]

How does the mind “create itself,” with the help of education? Colling-
wood continued to work on this question. The pessimism of Speculum
Mentis did not lead to despair. Collingwood continued to think, as the
mathematician continues to think after finding an error in a supposed
proof.

The answer given in An Autobiography is summarized in three “propo-
sitions,” two of which we have seen: history is history of thought, and
historical knowledge is re-enactment of thought. Then there is

my third proposition: ‘Historical knowledge is the re-enactment of a
past thought incapsulated in a context of present thoughts which, by
contradicting it, confine it to a plane different from theirs.’

How is one to know which of these planes is ‘real’ life, and which
mere ‘history’? By watching the way in which historical problems arise.
Every historical problem ultimately arises out of ‘real’ life. The scissors-
and-paste men think differently: they think that first of all people get
into the habit of reading books, and then the books put questions into
their heads. But am not talking about scissors-and-paste history. In the
kind of history that I am thinking of, the kind I have been practising all
my life, historical problems arise out of practical problems. We study
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history in order to see more clearly into the situation in which we are
called upon to act. Hence the plane on which, ultimately, all problems
arise is the plane of ‘real’ life: that to which they are referred for their
solution is history. [, p. ]

To the question how we know which plane of life is real, and which history,
I am not sure whether Collingwood’s answer is any clearer than saying,
“We just do know, at least if we are paying attention.” Collingwood
works through the example of Admiral Nelson, on the deck of the Vic-
tory, wondering whether to remove his decorations so as to become a less
conspicuous target to snipers on enemy ships. To understand Nelson’s
answer, as apparently Collingwood tried as a boy, we have to understand
what Nelson thinks about the question; and yet we still know that the
question does not actually arise in our own lives. Nonetheless, young
Collingwood may have had a personal interest in the question, knowing
that Nelson had a friend and colleague bearing the name of Collingwood,
who took command at the Battle of Trafalgar after Nelson’s death [].

We are interested in Euclid now, and difficulties in reading him arise
precisely when the questions that underlie what he tells us are not our
own questions. We must make them our own questions, and this will
be re-enacting them. But the very difficulty of doing this will tell us
that we are doing history. This is how I understand Collingwood’s “third
proposition.”

. Science

Before continuing with Euclid, I want to note again that, for Colling-
wood in The Principles of History, history is a science. This classifi-
cation agrees with the general account of science given in An Essay on
Metaphysics of :

The word ‘science’, in its historical sense, which is still its proper sense
not in the English language alone but in the international language of
European civilization, means a body of systematic or orderly thinking
about a determinate subject-matter. This is the sense and the only
sense in which I shall use it. [, p. ]
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And yet earlier, in An Essay on Philosophical Method of , Colling-
wood distinguished history from science:

Historical thought concerns itself with something individual, scientific
thought with something universal; and in this respect philosophy is
more like science than history, for it likewise is concerned with some-
thing universal: truth as such, not this or that truth; art as such, not
this or that work of art. In the same way exact science considers the
circle as such, not this or that individual instance of it; and empirical
science considers man as such, not, like history, this man as distinct
from that. [, p. ]

In An Autobiography [, p. ], Collingwood described An Essay on
Philosophical Method as

my best book in matter; in style, I may call it my only book, for it is
the only one I ever had the time to finish as well as I knew how, instead
of leaving it in a more or less rough state.

Did Collingwood nonetheless change his mind about science later? The
passage from An Essay on Metaphysics continues:

There is also a slang sense of the word [‘science’], unobjectionable (like
all slang) on its lawful occasions, parallel to the slang use of the word
‘hall’ for a music-hall or the word ‘drink’ for an alcoholic drink, in which
it stands for natural science.

In the earlier Essay on Philosophical Method, was Collingwood using the
word “science” in its slang sense? Does the term “natural science” in the
later Essay encompass both empirical and exact science? These questions
are not of great importance for us, but provide an opportunity to note
the grand theme of the earlier Essay, which is the “overlap of classes”:

The specific classes of a philosophical genus do not exclude one another,
they overlap one another. This overlap is not exceptional, it is normal;
and it is not negligible in extent, it may reach formidable dimensions.

Thus in The Principles of Art of , Collingwood will be at pains to
distinguish art from craft, although, for example,
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The distinction between planning and executing certainly exists in some
works of art, namely those which are also works of craft or artifacts; for
there is, of course, an overlap between these two things, as may be seen
by the example of a building or a jar, which is made to order for the
satisfaction of a specific demand, to serve a useful purpose, but may
none the less be a work of art. But suppose a poet were making up
verses as he walked . . . [, p. ]

The poem may be unplanned, and so not be craft, but nonetheless be a
work of art; yet other things are both craft and art.

The overlap of classes has a practical result [, p. ]. First:

On a matter of empirical fact it is possible, when asked for example
‘where did I leave my purse?’ to answer ‘not in the taxi, I am sure’,
without having the least idea where the purse was actually left . . .

Likewise, when asked, “Is this proof correct?” we may answer “No,” with-
out having the least idea of a correct proof, if indeed there is a correct
proof. Nonetheless,

In philosophy this is not so. The normal and natural way of replying
to a philosophical statement from which we dissent is by saying, not
simply ‘this view seems to me wrong’, but ‘the truth, I would suggest,
is something more like this’, and then we should attempt to state a
view of our own . . . This is not a mere opinion. It is a corollary of
the Socratic principle (itself a necessary consequence of the principle
of overlapping classes) that there is in philosophy no such thing as a
transition from sheer ignorance to sheer knowledge, but only a progress
in which we come to know better what in some sense we know already.

Euclid’s Elements is not philosophy; and yet perhaps the best reason for
reading it is philosophical: to deepen our understanding of mathematics
as we already know it. In this case, if we detect what we think are errors
in Euclid, we ought to be prepared to correct them, and correct them in
a way that Euclid himself would agree with.

Mathematics is not philosophy; but there is an overlap. After writ-
ing An Essay on Philosophical Method, with its doctrine of the overlap
of classes, Collingwood applied the method to nature; the resulting lec-
tures were posthumously published in  as The Idea of Nature. What
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Collingwood says at the beginning about natural science applies as well
to mathematics:

The detailed study of natural fact is commonly called natural science,
or for short simply science; the reflection on principles, whether those
of natural science or of any other department of thought or action, is
commonly called philosophy. Talking in these terms, and restricting
philosophy for the moment to reflection on the principles of natural
science, what I have just said may be put by saying that natural sci-
ence must come first in order that philosophy may have something to
reflect on; but that the two things are so closely related that natural
science cannot go on for long without philosophy beginning; and that
philosophy reacts on the science out of which it has grown by giving it
in future a new firmness and consistency arising out of the scientist’s
new consciousness of the principles on which he has been working.

For this reason it cannot be well that natural science should be as-
signed exclusively to one class of persons called scientists and philoso-
phy to another class called philosophers. [, p. ]

Collingwood saw the need for a bridge between science and philosophy,
and thought himself not alone in this:

In the nineteenth century a fashion grew up of separating natural scien-
tists and philosophers into two professional bodies, each knowing little
about the other’s work and having little sympathy with it. It is a bad
fashion that has done harm to both sides, and on both sides there is an
earnest desire to see the last of it and to bridge the gulf of misunder-
standing it has created. The bridge must be begun from both ends; and
I, as a member of the philosophical profession, can best begin at my
end by philosophizing about what experience I have of natural science.
Not being a professional scientist, I know that I am likely to make a
fool of myself; but the work of bridge-building must go on. [, p. ]

Why build bridges? Collingwood had seen the great destructive folly of
the First World War, albeit from a desk in London at the Admiralty
Intelligence Division [, p. ].

The War was an unprecedented triumph for natural science. Bacon
had promised that knowledge would be power, and power it was: power
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to destroy the bodies and souls of men more rapidly than had ever
been done by human agency before. This triumph paved the way to
other triumphs: improvements in transport, in sanitation, in surgery,
medicine, and psychiatry, in commerce and industry, and, above all, in
preparations for the next war.

But in one way the War was an unprecedented disgrace to the human
intellect . . . nobody has ever supposed that any except at most the
tiniest fraction of the combatants wanted it . . . I seemed to see the
reign of natural science, within no very long time, converting Europe
into a wilderness of Yahoos. [, pp. –]

Collingwood saw salvation in history, pursued scientifically in the sense
described earlier, and not by scissors and paste.

It was suggested earlier that a kind of salvation from conflict lay in
mathematics, where all disputes could be resolved amicably. And yet,
strictly speaking, what can be so resolved are disputes about mathematics
that can be expressed in formal systems. Mathematics, and number
theory in particular for its relevance to encryption, can no longer be
distinguished from other sciences as Hardy distinguished it in  by
saying,

science works for evil as well as for good (and particularly, of course, in
time of war); and both Gauss and less mathematicians may be justified
in rejoicing that there is one science at any rate, and that their own,
whose very remoteness from ordinary human activities should keep it
gentle and clean. [, §, p. ]

The Elements is an old book, and certain old books have been, and
continue to be, the nominal causes of bloody disputes. Euclid is different.
There have been no wars in his name. There may still be academic
disputes about him. If history has the potential that Collingwood saw in
it, Euclid may be as good a place as any for a mathematician, at least,
to try out the possibilities.



 Euclid in History

. Dedekind and Hilbert

Today we may be better able to learn Euclid’s mathematics, precisely
because the Elements is not commonly used as a textbook. We can
approach Euclid more easily now, without assuming that he is doing just
what we are doing when we do mathematics.

In the preface of his  translation of the Elements [, v. i, p. vii],
Thomas Heath said,

no mathematician worthy of the name can afford not to know Euclid,
the real Euclid as distinct from any revised or rewritten versions which
will serve for schoolboys or engineers.

I do not know why engineers and schoolchildren, boys and girls, do not
also deserve to know the real Euclid; but in any case, I suppose mathe-
maticians of Heath’s day did know Euclid. Whether they knew him more
directly than through the “revised or rewritten versions” that Heath refers
to, I do not know. However, a few years before Heath, David Hilbert in-
troduced his Foundations of Geometry [, p. ] by saying,

Geometry, like arithmetic, requires for its logical development only a
small number of simple, fundamental principles. These fundamental
principles are called the axioms of geometry. The choice of the axioms
and the investigation of their relations to one another is a problem
which, since the time of Euclid, has been discussed in numerous excel-
lent memoirs to be found in the mathematical literature. This problem
is tantamount to the logical analysis of our intuition of space.

Presumably Hilbert had actually read Euclid, at least in some form. Thus
he could disagree explicitly with Euclid on whether the congruence of all
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right angles is an axiom or a theorem [, p. ]. On the other hand,
this disagreement may represent a somewhat careless reading of Euclid;
I shall discuss this point in §. (p. ).

A few years before Hilbert, Richard Dedekind [, pp. –] com-
plained about critics who thought that his theory of irrational numbers
could be found already in the Traité d’Arithmétique of Joseph Bertrand.
According to Dedekind, the theory in Bertrand’s work had already been
present in Euclid’s work; but his own theory was different. Dedekind
traced his own definition of irrational numbers to the idea that

an irrational number is defined by the specification of all rational num-
bers that are less and all those that are greater than the number to be
defined . . . That an irrational number is to be considered as fully de-
fined by the specification just described, this conviction certainly long
before the time of Bertrand was the common property of all mathe-
maticians who concerned themselves with the irrational . . . [I]f, as
Bertrand does exclusively in his book (the eighth edition, of the year
, lies before me,) one regards the irrational number as the ratio
of two measurable quantities, then is this manner of determining it al-
ready set forth in the clearest possible way in the celebrated definition
which Euclid gives of the equality of two ratios (Elements, V., ).

In the  edition of his Traité [] (the one that I was able to find),
Bertrand indeed defines irrational square roots and other irrational num-
bers as measures of quantities with respect to a predetermined unit. Thus
he writes:

. Lorsqu’un nombre N, n’est le carré d’aucun nombre entier ou
fractionnaire, la définition de sa racine carrée exige quelques développe-
ments.

On dit qu’un nombre est plus grand ou plus petit que
√
N suivant

que son carré est plus grand ou plus petit que N; d’après cela, pour
définir les grandeurs dont

√
N est la mesure, supposons, par exemple,

qu’après avoir adopté une certaine unité de longueur on regarde tous les
nombres comme exprimant des longueurs portées sur une mème ligne
droite à partir d’une origine donnée. Une portion de cette ligne recevra
les extrémités des longueurs dont la mesure est moindre que

√
N, et

une autre portion celles des lignes dont la mesure est plus grande que√
N; entre ces deux régions, il ne pourra évidemment exister aucun
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intervalle, mais, seulement, un point de démarcation. La distance à
laquelle se trouve ce point, est, par définition, mesurée par

√
N.

That is, if N is not a square, we define
√
N by saying first x >

√
N if

x2 > N , and x <
√
N if x2 < N , where implicitly the x are rational. If

such x are taken to measure lengths along a straight line from a given
origin, a unit length having been chosen, then the extremities of the
lengths measuring less than

√
N will be separated from the extremities

of the lengths measuring more than
√
N by a single point, whose distance

from the origin is
√
N .

Dedekind seems right in saying that Euclid had “already set forth in
the clearest possible way” the approach that Bertrand would take. Thus,
suppose A and B are magnitudes that have a ratio to one another in
the sense of Definition v. of the Elements. This means some multiple
of either magnitude exceeds the other, or, in our terms, A and B are
positive elements of an archimedean ordered group. We derive from
these magnitudes the set {m/n : mB < nA} consisting of positive rational
numbers; here m and n range over the set N of positive integers. The set
{m/n : mB < nA} determines the ratio of A to B, in the sense that, if
C and D are also magnitudes having a ratio to one another, then they
have the same ratio that A and B have, provided

{m/n : mB < nA} = {m/n : mD < nC}.

Such is Euclid’s Definition v., in modern form. I suggested in §. (p.
) that fractions were problematic; but in the present context, we can
just replace m/n with the ordered pair (m,n).

Dedekind’s insight was that a set of the form {m/n : mB < nA} had
properties that could be specified without reference to magnitudes like A
and B; and then the sets of rational numbers with those properties could
be used to define the irrational numbers. In the Geometry [], Descartes
had justified algebraic manipulations geometrically, by showing how the

In the paper [] discussed earlier (p. ), Zeeman shows how to avoid using the full
group structure in order to define the ratio of A to B. One may not be able to find
the difference of A and B; but if A < B, one should know that (n+1)A < nB for
some natural number n.
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product of two line-segments could be understood as another segment,
once a unit length was chosen. Bertrand, for one, seems to have contin-
ued the tradition of finding the ultimate foundation of mathematics in
geometry. Dedekind saw that arithmetic also could serve as a foundation
of mathematics, even a better foundation. This was a significant advance,
not always appreciated by Dedekind’s contemporaries, who were perhaps
too strongly attached to ideas traceable to Euclid.

Or did Dedekind perhaps understand Euclid more clearly than others
did? Dedekind showed that we need not assume that the number line is
continuous; we can make it continuous. He observed [, p. ] that if all
of the points M of a plane have algebraic coordinates (according to some
coordinatization),

then is the space made up of the points M , as is easy to see, every-
where discontinuous; but in spite of this discontinuity, and despite the
existence of gaps in this space, all constructions that occur in Euclid’s
Elements, can, so far as I can see, be just as accurately effected as in
perfectly continuous space; the discontinuity of this space would not be
noticed in Euclid’s science, would not be felt at all. If any one should
say that we cannot conceive of space as anything else than continuous,
I should venture to doubt it and to call attention to the fact that a far
advanced, refined scientific training is demanded in order to perceive
clearly the essence of continuity and to comprehend that besides ra-
tional quantitative relations, also irrational, and besides algebraic, also
transcendental quantitative relations are conceivable.

Mathematicians had drifted away from the rigor of Euclid without re-
alizing it. They worked with kinds of numbers never contemplated by
Euclid, while still founding their ideas of such numbers in geometric in-
tuition. For Dedekind, this would not do. There is more to the story;
but the point for now is that when there has been a continuous tradition
of building up mathematics from Euclid, the tradition may lose sight of
what Euclid actually did. Now that we no longer have this tradition, we
may be better able to do what Dedekind could do, and understand what
Euclid really did do.

My article [] has some model-theoretic developments from Descartes’s idea.



  Euclid in History

. From a course of Euclid

Some students do still learn mathematics from Euclid. My own math-
ematics department in Turkey now has a first-semester undergraduate
course based on the first book of the Elements. Students go to the board
and demonstrate propositions, more or less on the pattern of my own
alma mater, St. John’s College in the United States. However, they use
a Turkish translation of Euclid prepared in collaboration with my col-
league Özer Öztürk []. The translation is from the original Greek, as
established by Heiberg []. One could just translate Heath’s English
[]; but there are ways that Heath is inaccurate. In translating the first
proposition of the first book of the Elements, Heath begins,

On a given finite straight line to constuct an equilateral triangle.

Let AB be the given finite straight line.
Thus it is required to construct an equilateral triangle on the straight

line AB.
With centre A and distance AB let the circle BCD be described.

But what Euclid says (in Heiberg’s transcription and in my literal trans-
lation) is,

᾿Επὶ τῆς δοθείσης εὐθείας πεπερασμένης τρίγωνον ἰσόπλευρον συς-
τήσασθαι. ῎Εστω ἡ δοθεῖσα εὐθεῖα πεπερασμένη ἡ ΑΒ. ∆εῖ δὴ ἐπὶ
τῆς ΑΒ εὐθείας τρίγωνον ἰσόπλευρον συστήσασθαι. Κέντρῳ μὲν τῷ Α
διαστήματι δὲ τῷ ΑΒ κύκλος γεγράφθω ὁ ΒΓ∆. // [1] On the given
finite straight [line] to construct an equilateral triangle. [2] Let
the given finite straight [line] be ΑΒ. [3] Thus it is required on
the straight [line] ΑΒ to construct an equilateral triangle. [4] With
center Α and distance ΑΒ let a circle have been drawn, ΒΓ∆.

The four sentences here are, respectively, the four parts of a proposition
that Proclus [, p. ] calls () enunciation, () exposition (or “setting
out”), () specification, and () construction. (The fourth sentence is
only part of the construction.) The remaining two parts of a proposition
are the () demonstration and () conclusion. In Proposition i., the
construction continues with the drawing of a second circle as in Figure
., and with the connection of one of the points of intersection of the two
circles with the endpoints of the original finite straight line. Then follows
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the (easy) demonstration that the resulting triangle is indeed equilateral,
and the conclusion that what was to be done has been done. The literal
translation of the Greek above shows five differences from Heath:

. In the enunciation, Euclid refers not to a straight line, but the
straight line. The definite article “the” here can be understood as be-
ing generic, as in Wordsworth’s verse, “The child is the father of the
man.” I discuss this matter in more detail elsewhere []. The straight
line of Euclid’s enunciation can also be understood as the straight line in
Euclid’s diagram, which exists before we start to read the proposition.

. Today if we say that we are going to construct an equilateral triangle
on a straight line, we mean an arbitrary straight line; but then we proceed
to draw our own straight line, assigning to its endpoints, as Heath does,
the letters A and B. This is not what Euclid does, as Reviel Netz explains
in The Shaping of Deduction in Greek Mathematics [, pp. –]:

Nowhere in Greek mathematics do we find a moment of specification
per se, a moment whose purpose is to make sure that the attribution
of letters in the text is fixed. Such moments are very common in mod-
ern mathematics, at least since Descartes. But specifications in Greek
mathematics are done, literally, ambulando. The essence of the ‘im-
perative’ element in Greek mathematics—‘let a line be drawn . . . ’,
etc.—is to do some job upon the geometric space, to get things moving
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there . . . 

What we see, in short, is that while the text is being worked through,
the diagram is assumed to exist. The text takes the diagram for
granted.

Thus, at the start of Euclid’s proposition, we have already been given
a straight line, labelled as ΑΒ. The exposition or “setting out” of the
proposition tells us to understand the straight line of the enunciation as
the straight line ΑΒ. We are not told to let ΑΒ be some straight line that
we proceed to create for ourselves.

. Heath tells us to let a circle be drawn. Using chalk or a pen, we
can then draw a circle. But apparently Euclid had nothing like our
blackboards or whiteboards, with which a diagram could be constructed
during a lecture. Again, his diagrams would already have been drawn,
perhaps on a wax tablet. Referring to the last passage quoted, Netz says,

This, in fact, is the simple explanation for the use of perfect imperatives
in the references to the setting out—‘let the point A have been taken’.
It reflects nothing more than the fact that, by the time one comes to
discuss the diagram, it has already been drawn.

Though seen in the command “Have done with it,” the English imperative
in the perfect aspect is awkward. English does not even have a third-
person imperative in any aspect, except in some formulas like “God bless
you”; otherwise we achieve the same effect periphrastically, by means of
the second-person imperative “let,” as in “Let it be done.” Turkish, like
Greek, does have third-person imperatives, which are commonly used:

let [somebody] draw γραφέτω çizsin
let [it] be drawn γραφέσθω çizilsin

let [it] have been drawn γέγραφθω çizilmiş olsun
This similarity between Turkish and Greek was a particular reason to
translate directly from Euclid’s Greek into Turkish.
The first ellipsis here is Netz’s; the second, mine.
“Periphrasis & civilisation are by many held to be inseparable; these good people

feel that there is an almost indecent nakedness, a reversion to barbarism, in saying
No news is good news instead of The absence of intelligence is an indication of

satisfactory developments. Nevertheless, The year’s penultimate month is not in
truth a good way of saying November.” H. W. Fowler, A Dictionary of Modern

English Usage [, Periphrasis, p. ].
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. For Euclid, a line is what we call a curve; our lines are Euclid’s
straight lines. Heath is faithful to Euclid by writing “straight line” when
this is what is meant. However, Euclid usually abbreviates “straight line”
(εὐθεῖα γραμμή) to “straight” (εὐθεῖα). Heath cannot do this if, as he
does, he wants to maintain good English style. One can do it in Turkish
though: here a line in Euclid’s sense is çizgi, while a straight line is doğru
çizgi or just doğru.

. The foregoing differences between Heath and Euclid are perhaps of
little mathematical importance. A fifth difference brings out a remarkable
feature of Euclid. Heath italicizes the enunciations of Euclid’s proposi-
tions; but Euclid had no such means of emphasizing text. He did not even
have the medieval distinction between minuscule and capital letters.

Like Heath, Heiberg emphasizes Euclid’s enunciations: not however
by a change of font, b u t b y s p a c i n g o u t t h e l e t t e r s l i k e
t h i s . I assume Euclid did not consider doing such a thing, since he
would not even have separated words with spaces, butwrotecontinu-

ouslylikethis. Likewise, though there might have been the possibility
of underlining for emphasis, presumably Euclid did not use it.

In The Mathematics of Plato’s Academy [, §.], David Fowler dis-
cusses what we know about ancient manuscript style. He also [, §.]
looks at what he calls the protasis-style of Euclid. Πρότασις is the term
of Proclus that we translate as “enunciation.” Before Euclid, we have
no evidence of any mathematics written in the Euclidean style, with an
enunciation followed by justification. Aristotle’s Prior Analytics might
be an exception, except that it is not really mathematics, but logic. To-
day the protasis-style is ubiquitous in mathematics; and yet we signal
our protases with rubrics like “Theorem N ,” and our justifications with
the word “Proof” (and a box at the end). Strictly speaking, this is not
Euclid’s style.

At the beginning of the Prior Analytics, Aristotle defines πρότασις as “an affirmative
or negative statement of something about some subject” [, a, p. ]. We then
translate the word as premiss or just proposition. Πρότασις is used in Greek today,
as “proposition” is used in English, for an entire proposition of Euclid []; but I
am not aware of any ancient basis for this usage.
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It is often not students’ style either. In performing the task of demon-
strating something, students will write down various statements, without
being clear about the logical relations between them. Even professional
mathematicians will do this at the board, expecting the attentive listener
to know what is meant (and expecting all listeners to be attentive).

At least Euclid establishes a set pattern for his propositions. Read
a bit, and you see that the Elements is a sequence of assertions, each
followed by a justification, the justification itself following (more or less)
the outline given by Proclus. Actually, some of Euclid’s enunciations are
not assertions, but tasks, as in the very Proposition i. that we have
been looking at. The distinction between an assertion and a task can
be indicated by the labels theorem (θεόρημα) and problem (πρόβλημα).
However, according to Pappus, “among the ancients some described them
all as problems, some as theorems” [, p. ]. Euclid himself did not
use such labels at all.

Heath helps the reader typographically, by italicizing enunciations, by
breaking the text into short paragraphs, and by centering some phrases.
This typography may be misleading, if it causes us to think of Euclid’s
propositions just as if they were modern theorems with proofs. In some
cases at least, Euclid’s propositions are not like that. An example men-
tioned above in §. (p. ), and to be further considered in §§. & .
(pp.  & ), is Proposition vii..

. Equality

Another proposition of Euclid that is not like a modern theorem is Propo-
sition i.. This is where Euclid establishes the principle of triangle con-
gruence that we call “Side Angle Side.” For Hilbert, this principle is an
axiom, the one that he numbers IV, . Euclid proves the principle, but

More precisely, Hilbert’s axiom is that if two sides and the included angle of a
triangle are respectively congruent to two sides and the included angle of another
triangle, then the remaining angles are respectively congruent to the remaining
angles. That the remaining side is congruent to the remaining side is his Theorem
.
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without using any postulate or any previous proposition. Can Euclid’s
proof then be a “real” proof? Given triangles ΑΒΓ and ∆ΕΖ as in Figure
., let us suppose ΑΒ = ∆Ε and ΑΓ = ∆Ζ and ∠ ΒΑΓ = ∠ Ε∆Ζ. If we
apply triangle to triangle so that Α falls on ∆, and ΑΒ falls along ∆Ε,
then Β will fall on Ε, and ΑΓ will fall along ∆Ζ, so that Γ will fall on Ζ;
and then ΒΓ will coincide with ΕΖ. So argues Euclid. Do we accept it?

Students are sometimes disturbed by an expression like ΑΒ = ∆Ε; they
want to make it |ΑΒ| = |∆Ε|. Apparently they think that the sign of
equality in fact denotes identity. Obviously the straight lines ΑΒ and ∆Ε
are not identical; but they may have identical lengths, which can then be
denoted indifferently by |ΑΒ| or |∆Ε|.

Euclid does not use a symbol for equality; he just says ΑΒ is equal
(ἴσος) to ∆Ε. Along with definitions and postulates, the preamble of the
Elements contains so-called Common Notions; and of the five of these
that Heiberg and Heath accept as genuine, four establish what equality
means. According to the assigned numbering, these Common Notions
are that () things congruent to one another are equal to one another,
and () things equal to the same thing are equal to one another; but
moreover, if equals be () added to or () subtracted from equals, the
results are equal. In Common Notion , I use the word congruent for

More precisely ἴση, in agreement with the feminine gender of γραμμή; but the lemma,

or dictionary-form, of the word is ἴσος.
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Euclid’s participle ἐφαρμόζων, to emphasize that the notion of congru-
ence found in Hilbert originates in Euclid’s notion of equality; but Heath
says “things which coincide with” instead of things congruent to. For
Euclid, figures are equal if congruent parts can be added or subtracted
so as to obtain congruent figures. Thus parallelograms on equal bases
and in the same parallels can be shown to be equal to one another by
cutting out and rearranging the parts shown in Figure .. The equality
of these parallelograms is Proposition i.. Actually Euclid derives this
equality from Proposition i., where the bases of the parallelograms are
not equal, but the same (ὁ αὐτός), as in Figure .. Here the proof is
by cutting and pasting; then i. is proved by means of a third parallelo-
gram, which shares a base with either of the first two parallelograms, as
in Figure ..

In the Declaration of Independence of the United States of America,
when Thomas Jefferson wrote the self-evident truth, “that all men are
created equal” [, p. ], he did not mean that all persons were the same
person. However, in mathematics today, we confuse equality and identity.

Equality is thus for Euclid an equivalence relation, with respect to which the class
of a figure is its “motivic measure” as in the account of Hales [].
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Thus when we write the equation (k+ 1)! = k! · (k+ 1) as above (p. ),
we mean that (k + 1)! and k! · (k + 1) are to be considered as the same
element of the set N, although we read the sign = as “equals.”

In the article called “When is one thing equal to some other thing?”
[], the notion of equality that Barry Mazur contemplates is not distinct
from the notion of sameness. Thus the article begins:

One can’t do mathematics for ten minutes without grappling, in some
way or other, with the slippery notion of equality. Slippery, because the
way in which objects are presented to us hardly ever, perhaps never,
immediately tells us—without further commentary—when two of them
are to be considered equal. We even see this, for example, if we try to
define real numbers as decimals, and then have to mention aliases like
20 = 19.999 . . . , a fact not unknown to the merchants who price their
items $19.99.

The heart and soul of much mathematics consists of the fact that
the “same” object can be presented to us in different ways. Even if
we are faced with the simple-seeming task of “giving” a large number,
there is no way of doing this without also, at the same time, giving
a heft amount of extra structure that comes as a result of the way
we pin down—or the way we present—our large number. If we write
our number as 1729 we are, sotto voce, offering a preferred way of
“computing it” (add one thousand to seven hundreds to two tens to
nine). If we present it as 1 + 123 we are recommending another mode
of computation, and if we pin it down—as [Ramanujan] did—as the first
number expressible as a sum of two cubes in two different ways, we are
being less specific about how to compute our number, but we have
underscored a characterizing property of it within a subtle diophantine
arena.
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When we are presented with the angles ΒΑΓ and Ε∆Ζ in the triangles
in Figure ., there is nothing about this presentation itself that tells
us that the two angles are equal, just as there is nothing about the two
expressions 20 and 19.999 . . . that tells us they stand for equal numbers.
However, even when the expressions are understood, the equal angles
ΒΑΓ and Ε∆Ζ are not interchangeable in the way that 20 and 19.999 . . .
are. We say that the numbers 20 and 19.999 . . . are the same number;
but ΒΑΓ and Ε∆Ζ are different angles of different triangles.

In fact they could be the same angle, as they are for example in Euclid’s
Proposition i., whose diagram is in Figure .. Here the sides ΑΒ and
ΑΓ of the triangle ΑΒΓ are given as being equal to one another. By
construction, ΑΖ = ΑΗ. Since also the angle ΖΑΗ is common to the
triangles ΑΖΓ and ΑΗΒ, these two triangles are congruent to one another,
by Proposition i.—but strictly speaking, this conclusion requires us to
recognize that the common angle of the two triangles is equal to itself.
We must also recognize that this angle can be expressed indifferently as
ΖΑΓ or ΗΑΒ. Euclid does not say this explicitly.

Mazur’s concern is more with the question of whether your triangles are
the same as my triangles, or your numbers are the same as my numbers.
He says [, p. ], “Equivalence (of structure) in the above ‘compromise’
is the primary issue, rather than equality of mathematical objects”—
where again I think “equality” can be read as sameness. The “compromise”
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is between the treatment of the number 5 as a particular standard five-
element set, and its treatment as the class of all five-element sets. The
compromise is to let you use your five, and let me use mine, as long as
what each of us does with it can be “translated” into what the other does
with it. Mazur elaborates on how the language of category theory lets
us talk about these things. However, I think there is no question that, in
any instance of actually doing mathematics, there is only one number 5.
There may be different five-element sets, but there is only one five, be it
a particular five-element set reserved as a standard, or be it the unique
class consisting precisely of all five-element sets.

For Euclid, the matter is less clear. But before looking at his treatment
of numbers in particular, I want to answer the question raised at the
beginning of this section. Euclid’s proof of Proposition i. is a real proof,
because it is based on several applications of the principle that equal
straight lines can be made to coincide, and likewise equal angles. This
principle is not explicitly stated; but should it have been? What else can
equality of straight lines or angles mean? (The question of why, in the
proof, ΒΓ should coincide with ΕΖ, once their endpoints coincide, will be
considered in the next section.)

The status of Proposition i., “Side Side Side,” is not so clear. Given
again the triangles ΑΒΓ and ∆ΕΖ as in Figure ., but now letting ΑΒ =
ΑΓ and ΑΓ = ∆Ζ and ΒΓ = ΕΖ, we can apply the base ΒΓ to the base
ΕΖ, since they are equal. Euclid argues that Α must fall on ∆, because
otherwise it falls on a point Η as in Figure ., and then a contradiction to
Proposition i. arises. If Euclid allows such an argument, perhaps he will
allow Hilbert’s proof (discussed in the next section) that all right angles
are equal to one another. Alternatively though, perpendiculars can be
erected and dropped, as in Propositions i. and , but without the
recourse that Euclid in fact has to Proposition i.; then this proposition
can be proved by means of Propositions i., , and , and the equality
of all right angles. There is no reason not to think Euclid was aware of
this, but preferred to leave such a proof as an exercise for the reader.
Euclid does not say he is doing this; but then there is a lot that he does
not spell out, but leaves to the reader, as we shall discuss in §. (p. ).



  Euclid in History

∆

Ε Ζ

Η

Figure .. Proposition i.

. Right angles

We do not know what the preamble of the Elements consisted of when
this collection of thirteen books was first compiled. In The Forgotten
Revolution [, pp. –], Lucio Russo argues that Euclid’s obscure
definition of straight line is only a later addition to the Elements: in origin
it is a truncated sentence from a student’s crib-sheet. The definition in
the Elements is

Εὐθεῖα γραμμή ἐστιν, ἥτις ἐξ ἴσου τοῖς ἐφ᾿ ἑαυτῆς σημείοις κεῖται,

which is practically the same as the first part of

Εὐθεῖα μὲν οὖν γραμμή ἐστιν, ἥτις ἐξ ἴσου τοῖς ἐπ´ αὐτῆς σημείοις κεῖται
ὀρθὴ οὖσα καὶ οἷον ἐπ´ ἄκρον τεταμένη ἐπὶ τὰ πέρατα.

Russo noticed the latter sentence among the Definitions of Terms in
Geometry attributed to Hero [, p. , ll. –]; it means something like

A straight line is one that equally with respect to all points on itself lies
right and maximally taught between its extremities.

The italicized part is what is missing from the Elements, though it is
where the meaning of the definition lies; the reference to “all points on

Russo’s translation, as rendered in English by Silvio Levy, is “A straight (εὐθεῖα)
line is a line that equally with respect to all points on itself lies straight (ὀρθή) and
maximally taught between its extremities.”
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itself” allows for the case of an unbounded straight line, where any two
points must serve as extremities for the purpose of the definition.

Here I just want to assert the plausibility of Russo’s argument. There
is reasonable doubt about the authenticity of the definition of straight
line in the Elements. Some understanding of straightness is needed for
the conclusion in Proposition i. that, when points Β and Γ are made
to coincide with points Ε and Ζ, then straight line ΒΓ will coincide with
straight line ΕΖ. Whether Euclid meant this understanding to be part of
Postulate , or part of the definition of straight line, or even just part of
Proposition i., I do not know.

The definition in the Elements of a right angle (ὀρθὴ γωνία) is given
as,

When a straight line set up on a straight line makes the adjacent angles
equal to one another, each of the equal angles is right, and the straight
line standing on the other is called a perpendicular to that on which it
stands.

This is Heath’s translation, with his italics. As the italics suggest, surely
it is right angles that are being characterized, and not equality of angles.
Equality of angles is implicitly understood; and indeed, what else can it
mean but that one angle can be picked up and placed on another?

Postulate  is that all right angles are equal to one another. I take
this to mean that we have a toolkit containing a carpenter’s square. The
square is not for drawing right angles: this is achieved by Propositions
i. and . But the carpenter’s square reminds us that indeed all right
angles are equal to one another, because they can be made to coincide
with this one standard angle. (I take an actual carpenter’s square to my
own Euclid classes, to serve as such a reminder.)

Euclid’s first three postulates are that we can do things that can be
done with a straightedge and compass, or just with a string or cord.
We can () connect two points with a straight line, () extend a given
straight line, and () draw a circle with given center, passing through
another given point. Finally, Postulate  tells us something else that we
can do: we can find a point of intersection of two straight lines, if we
extend them far enough, provided that a line falling across them makes
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the interior angles on the same side less than two right angles. Here the
angles are together less than two right angles, though one of them might
be greater than a right angle. Implicitly then, we can bring two angles
together, for comparison with two right angles.

I noted in §. (p. ) that Hilbert thought Euclid’s Postulate  was
actually a theorem. In the style of Euclid, Hilbert’s proof would seem to
be as follows. Suppose, as in Figure ., straight line ΑΒ is perpendicular
to Γ∆, and ΕΖ is perpendicular to ΗΘ. If right angles ΑΒΓ and ΕΖΗ are not
equal to another, then one is greater. Suppose the latter is greater. Then
ΑΒΓ will fall inside it as ΚΖΗ. The supplement ΚΖΘ of ΚΖΗmust be equal
to the supplement ΑΒ∆ of ΑΒΓ, though this needs further discussion: it
is Hilbert’s Theorem . Absurdity results, since in short

∠ ΑΒΓ = ∠ ΚΖΗ < ∠ ΕΖΗ = ∠ ΕΖΘ < ∠ ΚΖΘ = ∠ ΑΒ∆ = ∠ ΑΒΓ.

How did we obtain angle ΚΖΗ? Hilbert can use his axiom IV, , which
he summarizes as being

that every angle in a given plane can be laid off upon a given side of a
given half-ray in one and only one way.

For Euclid, this is a theorem, namely Proposition i.. Hilbert’s toolkit
contains a protractor, or else triangles with angles of all posssible sizes;
and these can be used to draw with. But again, the only triangles in
Euclid’s toolkit are right triangles, and they cannot be used to draw with
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(and their acute angles cannot be used in any way). In Euclid’s Proposi-
tion i., we are able to “lay off” one given angle on another, because this
possibility is implicit in the assumption that the two angles are equal to
one another. In Figure ., there is no assumed equality of anything on
the left with anything on the right; so for Euclid, there can be no “laying
off.”

If he had wished to, Hilbert could have assumed ΑΒ = ΕΖ, and likewise
for the other corresponding straight lines, because of his axiom IV, ,
summarized as being

that every segment can be laid off upon a given side of a given point
of a given straight line in one and only one way.

This is Euclid’s Proposition i.. There must have been a great change in
thinking about mathematics, if Hilbert was trying to build up geometry
on a minimal foundation, and yet could treat as axiomatic what for Euclid
needed proof. Hilbert seems not to have been troubled by this change.
Perhaps this is because he was reading Euclid according to a tradition
whose changes to the meaning of Euclid had gone unnoticed.



 Euclid’s Foundations of

Arithmetic

. Unity

Not only is the definition of straight line plausibly held to be a late
addition to the Elements, but Russo says the same of the definition of
unity at the head of Book vii. His reason is that, six centuries after
Euclid, Iamblichus described the same definition as being due to “more
recent authorities.”

Heath discusses the same passage of Iamblichus, both in his edition of
the Elements [, v. ii, p. ] and in his History of Greek Mathematics
[, p. ]. The discussion is more brief in the latter, where the very part
of the passage that is relevant for us now is not considered. In his notes on
the Elements, Heath gives no explicit indication that the authenticity of
the definition of unity is called into question by the words of Iamblichus.
The definition in Euclid is,

Μονάς ἐστιν, καθ᾿ ἣν ἕκαστον τῶν ὄντων ἓν λέγεται.
Unity is that according to which each entity is said to be one thing.

The translation is mine; Heath’s is “A unit is that by virtue of which each
of the things that exist is called one.” I propose to try out unity instead
of Heath’s “unit,” because the latter is a made-up word, albeit made
up precisely to translate Euclid’s μονάς. In his preface to Billingsley’s
English translation of the Elements, published in , John Dee wrote,

Number, we define, to be, a certayne Mathematicall Summe, of Vnits.
And, an Vnit, is that thing Mathematicall, Indiuisible, by participation
of some likenes of whose property, any thing, which is in deede, or is
counted One, may resonably be called One.
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As Billingsley’s was the first English translation of the Elements [, v. ,
p. ], so is the passage from Dee the first of the illustrative quotations in
the Unit article of the Oxford English Dictionary []. In the etymology
section of that article, Dee’s marginal note—apparently on the passage
above—is quoted:

Note the worde, Vnit, to expresse the Greke Monas, and not Vnitie: as
we haue all, commonly, till now, vsed.

However, at Unity, the OED gives Billingsley’s translation of Euclid’s
definition:

Vnitie is that, whereby euery thing that is, is sayd to be on.

Evidently Billingsley did not perceive a need for Dee’s new word “unit.”
Billingsley and Dee could have used “monad” (from the stem μονάδ- of
μονάς): this is now an English word, though its earliest quotation in the
OED is from . The French monade dates to  [, p. ]. Mean-
while, French is content to use the old unité where English puts the new-
fangled “unit”: in the quotation from Bertrand’s Traité d’Arithmétique in
§. (p. ), “unité de longueur” serves where we say “unit of length.”

By the way, it is not clear whether Euclid’s μονάς and ἕν (“one”) are
etymologically related. The Greek cardinal numeral “one” is declined as
an adjective and, as such, has three distinct genders: the masculine, fem-
inine, and neuter are respectively εἷς, μία, ἕν. Despite appearances, these
three forms are related to one another: each comes from σεμ, according to
Smyth’s old Greek Grammar [, ¶] and the more recent Chantraine
[, II, , εἵς]. The same root is seen also in the Latin sources of our
“simple” and “single.” But whether the μ of μία is related to the μ of
μονάς is unclear. The latter word comes from μόνος, -η, -ον, meaning
“only, alone, sole,” as we may see from English words like “monotheism.”
Chantraine just traces μόνος to a conjectural *μονϜός, expressing doubt
that it is related to μανός “thin, scanty.”

As Smyth [, ¶e] describes it, the ending -άς, -άδος creates “ab-
stract and collective numbers,” so that ἑνάς or μονάς is “the number one,
unity, monad.” I think we may usefully consider the suffix as indicating

The word unité is Anglo-French, being traced to the Psautier d’Oxford of  [].
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a set with the number of elements indicated by the main word. Thus a
δεκάς, a decade, is a set of ten years. As far as I can tell though, the
only specific number that Euclid ever uses is δύας, in ix. and later: it
is a pair or double or dyad.

Meanwhile, our question was whether the definition of unity now in
Euclid is authentic, and in particular whether some words of Iamblichus
bear on this question. Those words are from On Nicomachus’s Introduc-
tion to Arithmetic [, p. , l. ]. The relevant paragraph begins as
follows; as there seems to be no full published English translation, I give
my own attempt.

Μονὰς δέ ἐστι ποσοῦ τὸ ἐλάχιστον ἢ ποσοῦ τὸ πρῶτον καὶ κοινὸν
μέρος ἢ ἀρχὴ ποσοῦ· ὡς δὲ Θυμαρίδας περαίνουσα ποσότης, ἐπεὶ
ἑκάστου καὶ ἀρχὴ καὶ τέλος πέρας καλεῖται, ἔστι δὲ ὧν καὶ τὸ μέσον,
ὥσπερ ἀμέλει κύκλου καὶ σφαίρας. ὁι δὲ νεώτεροι καθ´ ἣν ἕκαστον τῶν
ὄντων ἓν λέγεται· ἔλειπε δὲ τῷ ὅρῳ τούτῳ τὸ κἂν συστηματικὸν ᾖ.
συγκεχυμένως δὲ οἱ Χρυσίππειοι λέγοντες ‘μονάς ἐστι πλῆθος ἕν’· μόνη
γὰρ αὕτη ἀντιδιέσταλται τῷ πλήθει. // Unity is the least of an
amount or the first and common part of an amount or the beginning
of an amount: thus Thymaridas [called it] “[the] limiting quantity,”
since the beginning and end of everything is called a limit. (But
there are things of which there is a middle, such as, of course, the
circle and sphere.)5More recent authorities [called unity] “that ac-
cording to which each entity is said to be one thing”; but they left
out the restriction, “even though it be collective.” The Chrysippians,
confusedly, saying, “Unity is multitude one”; for one is opposed to
multitude.

Thymarides was “an ancient Pythagorean, probably not later than Plato’s
time” [, p. ]. Since Euclid was later than Plato’s time, it is not

The Greek text names the work as being of Iamblichus of Chalcis in the valley of
Syria (ΙΑΜΒΛΙΧΟΥ ΧΑΛΚΙ∆ΕΩΣ ΤΗΣ ΚΟΙΛΗΣ ΣΥΡΙΑΣ).

The clause “even though it be collective” is Heath’s [, v. II, p. ].
The three passages italicized here are just printed in spaced-out letters in Pistelli’s

text. There, as in the transcription, only the third of these passages is bounded
by inverted commas.

Pistelli, the editor, marks this passage, “abesse malim,” which seems to mean he
would rather it were not there.



. Unity 

clear whether Iamblichus’s “more recent authorities” (νεώτεροι) included
Euclid or not. As suggested above, Russo [, p. ] thinks Euclid is
not one of these authorities.

Heath [, p. ] apparently thinks he is. At any rate, Heath continues
to refer to the definition of unity in the Elements as “Euclid’s definition,”
even though he has taken note of Iamblichus’s observation of what was
missing from this definition. Apparently, according to Iamblichus, the
full definition should be something like,

Unity is that according to which each entity is said to be one thing,
even though it be collective.

I see no indication by Heath or Russo that such a definition can be found
anywhere else than in Iamblichus’s comment. However, it does bear some
resemblance to a definition that Sextus Empiricus attributes to Plato in
§ of “Against the Arithmeticians” (which is Book IV of Against the
Professors, here from the edition of Bekker [, p. , l. ], with the
translation of Bury [, pp.  f.]):

Τὴν τοῦ ἑνὸς τοίνυν νόησιν διατυπῶν ἡμῖν πυθαγορικώτερον ὁ Πλάτων
φησὶν ‘ἕν ἐστιν οὗ μηδὲν χωρὶς λέγεται ἕν’ ἢ ‘οὗ μετοχῇ ἕκαστον ἕν
τε καὶ πολλὰ λέγεται.’ τὸ γὰρ φυτόν, εἰ τύχοι, καὶ τὸ ζῶον καὶ ὁ
λίθος προσαγορεύεται μὲν ἕν, οὐκ ἔστι δὲ κατὰ τὸν ἴδιον λόγον ἕν, ἀλλ´
ἐν μετοχῇ ἑνὸς νοεῖται, τούτου μηδενὸς τούτων καθεστῶτος. // Now
Plato, in formulating in rather Pythagorean fashion the concept of the
one, declares that “One is that without which nothing is termed one,”
or “by participation in which each thing is termed one or many.” For
the plant, let us say, or the animal, or the stone is called one, yet is not
one according to its own proper description, but is conceived as one by
participation in the One, none of them actually being the One.

This has little to do with mathematics, and neither does Sextus’s entire
essay. (See however page  and its note .) Sextus does not give me the
impression of somebody who knows what Euclid is about. It is plausible
that the definition of unity now in the Elements was a later addition.
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. Proportion

What we refer to as proportion could also be called analogy. The Greek
for proportional is ἀνάλογον, and Euclid defines it for numbers in what
is now listed as the twentieth “definition” at the head of Book vii:

Ἀριθμοὶ ἀνάλογόν εἰσιν, ὅταν ὁ πρῶτος τοῦ δευτέρου καὶ ὁ τρίτος τοῦ
τετάρτου ἰσάκις ᾖ πολλαπλάσιος ἢ τὸ αὐτὸ μέρος ἢ τὰ αὐτὰ μέρη
ὦσιν. // Numbers are proportional when the first is of the second,
and the third is of the fourth, equally multiple, or the same part, or
the same parts.

We saw the third and fourth “definitions,” of part and parts, in §. (p.
). These are followed by:

Πολλαπλάσιος δὲ ὁ μείζων τοῦ ἐλάσσονος, ὅταν καταμετρῆται ὑπὸ τοῦ
ἐλάσσονος. // And the greater [number] is a multiple of the less
when it is measured by the less.

The notions of multiple and part are thus correlative, and we have three
ways to say the same thing:

) B is a multiple of A;
) A is a part of B;
) A measures B.

Measurement is the basic undefined notion.
Proportionality of magnitudes is defined at the head of Book v:

᾿Εν τῷ αὐτῷ λόγῳ μεγέθη λέγεται εἶναι πρῶτον πρὸς δεύτερον καὶ
τρίτον πρὸς τέταρτον, ὅταν τὰ τοῦ πρώτου καί τρίτου ἰσάκις πολ-
λαπλάσια τῶν τοῦ δευτέρου καὶ τετάρτου ἰσάκις πολλαπλασίων καθ᾿
ὁποιονοῦν πολλαπλασιασμὸν ἑκάτερον ἑκατέρου ἢ ἅμα ὑπερέχῃ ἢ ἅμα
ἴσα ᾖ ἢ ἅμα ἐλλείπῇ ληφθέντα κατάλληλα. Τὰ δὲ τὸν αὐτὸν ἔχοντα
λόγον μεγέθη ἀνάλογον καλείσθω. // Magnitudes are said to be in
the same ratio, the first to the second and the third to the fourth,
when equimultiples of the first and third, by whatever multiplica-
tion, are respectively either alike in excess of, or alike equal to, or
alike falling short of, equimultiples of the second and fourth. And
magnitudes having the same ratio are called proportional.
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In the definition of proportionality of numbers, Euclid does not mention
ratios; but he does mention them later, as for example in Proposition 
in Book vii:

᾿Εὰν ἀριθμὸς δύο ἀριθμοὺς πολλαπλασιάσας ποιῇ τινας, οἱ γενόμενοι
ἐξ αὐτῶν τὸν αὐτὸν ἕξουσι λόγον τοῖς πολλαπλασιασθεῖσιν. // If a
number multiply two numbers, the numbers produced will have the
same ratio as the multiplicands.

A third way of referring to numbers in proportion is seen in Proposition
vii.:

᾿Εαν ᾖ ὡς ὅλος πρὸς ὅλον, οὕτως ἀφαιρεθεὶς πρὸς ἀφαιρεθέντα, καὶ ὁ
λοιπὸς πρὸς τὸν λοιπὸν ἔσται, ὡς ὅλος πρὸς ὅλον. // If as whole be
to whole, so subtrahend to subtrahend, also remainder to remainder
will be, as whole to whole.

Thus, whether we are working with arbitrary magnitudes or numbers we
have different ways of expressing what seems to be the same thing. We
can say in words that

) A, B, C, and D are proportional, or
) A is to B as C is to D, or
) A has the same ratio to B that C has to D.

I do not see an important distinction to make between these modes of
expression as such. We might abbreviate any of them by writing

A : B :: C : D. (∗)

However, it is important not to write A : B = C : D. Neither definition
of proportion describes an equation of two things. In a proportion, two
ratios are not equal, but the same. This is related to the fact that a ratio
is not a thing that can be drawn in a diagram; it is a relation between
two things in a diagram—two things that might have the same relation to
one another that two other things have. (See §., p. , for a possible
exception to the rule that a ratio cannot be drawn.)

The notion of equality does however appear in the definitions of propor-
tion. I used the expression equally multiple in translating the Book-vii

definition, and equimultiples in the Book-v definition; but these stand for
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the same Greek phrase ἰσάκις πολλαπλάσιος, which appears in singular
form in Book vii, plural in Book v. Heath uses “same multiple” for my
equally multiple; but I have followed Heath in using the word “equimulti-
ple” in the other case. Like “unit,” the word “equimultiple” seems to have
been coined for translating Euclid: the earliest example in the Oxford
English Dictionary is again from Billingsley’s  translation. In any
case, Euclid’s ἰσάκις is an adverb derived from the adjective ἰσός “equal”;
it is not the adjective itself. The Book-v definition of proportionality
does not describe things that are equal, though both definitions describe
multiplying two things equally. In Greek as in English, it appears there
is no adverb “samely.” (The OED lists an adjective “samely,” meaning
“without variety; monotonous”; the earliest illustrative quotation is from
.)

Instead of (∗), much less should we write A/B = C/D, since A/B
indicates a fraction, and none is suggested by Euclid’s definition. Still,
the important question is what we mean by writing (∗) or something like
it.

. Sets

In addition to distinguishing equality from identity, we should distinguish
measurement from division. Given twelve apples, we can describe the
same operation in two ways: we can measure the twelve apples by three
apples, or we can divide them into four equal parts. Euclid does refer to
dividing, as distinct from measuring, as for example in the sixth definition
of Book vii:

Ἄρτιος ἀριθμός ἐστιν ὁ δίχα διαιρούμενος.
An even number is one that is divided in twain.

I use the archaic “twain” here because it is usually seen only in the phrase
“in twain,” and this translates the single Greek adverb δίχα.

Euclid’s numbers seem to be indistinguishable from our finite sets with
at least two elements. After the definition of unit or unity in the Elements
(quoted in §., p. ), there comes,
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Ἀριθμὸς δὲ τὸ ἐκ μονάδων συγκείμενον πλῆθος.
And a number is a multitude of unities.

In addition to the expression multitude, which Heath uses, other possible
translations of πλῆθος are “mass, throng, crowd” []. We use the word
“number” in this way too, as when we say a number of people are marching
in the street.

In this sense, one is not a number. Thus we have, in the eleventh,
twelfth, and thirteenth definitions at the head of Book vii:

Πρῶτος ἀριθμός ἐστιν ὁ μονάδι μόνῃ μετρούμενος. Πρῶτοι πρὸς
ἀλλήλους ἀριθμοί εἰσιν οἱ μονάδι μόνῃ μετρούμενοι κοινῷ μέτρῳ. Σύν-
θετος ἀριθμός ἐστιν ὁ ἀριθμῷ τινι μετρούμενος. // A prime number is
a number measured only by unity. Numbers prime to one another
are numbers measured only by unity as a common measure. A
composite number is a number measured by some number.

Every number is measured by unity; if this were a number too, then by
definition every number would be composite. Now, we did question the
authenticity of the definition of unity; we may do the same for other
definitions. But consider Proposition  of Book ix:

᾿Εὰν δύο ἀριθμοὶ πρῶτοι πρὸς ἀλλήλους ὦσιν, οὐκ ἔσται ὡς ὁ πρῶτος
πρὸς τὸν δεύτερον, οὕτως ὁ δεύτερος πρὸς ἄλλον τινά. // If two
numbers be prime to one another, it will not be the case that the
first is to the second as the second is to some other number.

Unity is prime to every number, and unity will be to a number as that
number is to its product with itself. Thus unity is not a number in the
sense of Proposition ix..

The definitions of prime and composite numbers are imprecise about
measurement. Here, being measured means being measured by some
other number, and thus being measured a number of times. Elsewhere,
a number is allowed to measure itself. For example, Proposition vii.
is the problem of finding the greatest common measure of two numbers

In Heiberg’s Greek text, they are th, th, and th; but Heiberg brackets Defi-
nition  and omits it from his Latin translation, renumbering the later definitions
accordingly. Heath follows suit.
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that are not prime to one another. If one of the numbers measures the
other, then it is the greatest common measure, since, as Euclid notes, it
also measures itself. In this sense, a prime number is a number measured
only by unity and itself.

Throughout the number-theoretic books of the Elements, numbers are
diagrammed as bounded straight lines, or what are today called line
segments. These are not obviously sets of units. We shall consider this
feature of the Elements in §.; for now I note a curious move that Euclid
makes in proving Proposition vii.. The enunciation is,

᾿Εὰν ἀριθμὸς ἀριθμοῦ μέρη ᾖ, ἅπερ ἀφαιρεθεὶς ἀφαιρεθέντος, καὶ ὁ λοιπὸς
τοῦ λοιποῦ τὰ αὐτὰ μέρη ἔσται, ἅπερ ὁ ὅλος τοῦ ὅλου. // If a number
be the very parts of a number that a subtrahend is of a subtrahend,7

also the remainder will be the very same parts of the remainder that
the whole is of the whole.

In our symbols, if A : B :: C : D, then A−C : B−D :: A : B. In Euclid’s
proof, the four numbers are the four line segments ΑΒ, Γ∆, ΑΕ, and ΓΖ,
with ΑΒ assumed to be the same parts of Γ∆ that the subtrahend ΑΕ is
of the subtrahend ΓΖ. The segments are drawn with Ε lying on ΑΒ, and
Ζ on Γ∆. We want to break up ΑΒ into parts, each equal to the same part
of Γ∆; and we want to break up ΑΕ into the equally numerous parts of
ΓΖ. Doing this directly makes the diagram complicated; so Euclid takes
ΗΘ equal to ΑΒ and divides it instead. Here ΗΘ is different from ΑΒ as
a set of units; but the two sets are equipollent, or as Euclid says, equal.

The above definition of evenness of a number is meaningful for an
arbitrary set, possibly infinite: a set B is even, just in case it can be
divided in two, in the sense of having a subset A for which there is a
bijection f from A to B r A. Then the collection

{

{x, f(x)} : x ∈ A}
partitions B into two-element subsets: this means B is measured by a
two-element set, a dyad.

Conversely, being measurable by a dyad implies being even, but not
in bare Zermelo–Fraenkel set theory; a choice principle is needed, albeit
Heath uses “number subtracted” for my subtrahend; but I remember being taught

the latter word in third grade, along with its correlate, “minuend” (the number to
be diminished). According to the OED, the two words go back three centuries in
English.
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a principle that is weaker than the full Axiom of Choice [, . & .].
Thus there is mathematical reason to distinguish between measuring by
two and dividing in two, as Euclid’s language does.

. Parts

If A, B, C, and D are numbers, or possibly units, and A measures B,
then presumably the proportion A : B :: C : D, which is (∗) on p. ,
holds if and only if C measures D and measures it the same number of
times—a situation we might describe by saying that for some multiplier
n,

nA = B & nC = D.

In this case, also B : A :: D : C.
In Definition vii. then, it remains to understand what being “the

same parts” means. By Definition vii., if A is less than B, but does not
measure B, then A is not part of B, but is “parts” of B. Heath’s entire
comment on the definition of “parts” is the following.

By the expression parts (μέρη, the plural of μέρος) Euclid denotes what
we should call a proper fraction. That is, a part being a submultiple, the
rather inconvenient term parts means any number of such submultiples
making up a fraction less than unity. I have not found the word used
in this special sense elsewhere, e.g. in Nicomachus, Theon of Smyrna
or Iamblichus, except in one place of Theon (p. , ) where it is used
of a proper fraction, of which 2

3
is an illustration.

This note is misguided in two ways. It ignores the fact that “parts” is
defined by simple negation, as when we define an irrational number to be
a real number that is not rational. We might then say that an irrational
number is one whose decimal expansion is neither finite nor repeating;
but this would have to be proved. In commenting on the definition of
“parts,” Heath is probably thinking ahead to Proposition vii., whose
enunciation we saw in §. (p. ): “Every number is of every number,
the less of the greater, either a part or parts.” The demonstration of this
proposition is not a simple appeal to the definition of “parts.” Thus that
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definition at the head of Book vii is not really a definition, but is a kind
of summary of what is to come in the book.

We shall consider the demonstration of Proposition vii. in §. (p.
) below. Meanwhile, let us note that, pace Heath, the proposition is
not likely to be about fractions. According to David Fowler [, §.(b),
pp. –],

We have no evidence for any conception of common fractions p/q and
their manipulations such as, for example, p/q × r/s = pr/qs and
p/q + r/s = (ps + qr)/qs, in Greek mathematical, scientific, financial,
or pedagogical texts before the time of Heron and Diophantus; and
even the fractional notations and manipulations found in the Byzan-
tine manuscripts of these late authors may have been revised and in-
troduced during the medieval modernization of their minuscule script.
Among the thousands, possibly the tens of thousands, of examples of
fractions to be found in contemporary Egyptian (hieroglyphic, hieratic,
and demotic), Greek, and Coptic texts, all but a few isolated examples
in five texts . . . use throughout the following ‘Egyptian[’] system for
expressing fractions . . . 

We take the basic sequence of the arithmoi :

two, three, four, five, . . . ,

represented in Greek by the letters β, γ, δ, ǫ, . . . , and convert it to the
sequence

half, third, quarter, fifth, . . . ,

where, after the exceptional cases of the first few terms, for which
special symbols . . . are assigned, the derived symbol is . . . usually

transcribed as an accent,
′

γ,
′

δ,
′

ǫ, . . . , or a prime, γ′, δ′, ǫ′, . . .

The sequence of parts starts with
′

β, ‘the two parts’, τὰ δύο μέρη,
an expression for ‘two-thirds’. However extraordinary it may seem to
us, it is an incontrovertible fact that the sequence of parts starts with
two-thirds . . . (This is an additional reason for avoiding the name ‘unit

fractions’ for the sequence
′

β,∠,
′

γ,
′

δ, . . . ) . . .

Widely spaced dots “ . . . ” are my ellipses; narrowly spaced dots “. . . ” denoting
continuations of sequences are Fowler’s.
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More complicated fractions than simple parts are expressed as sums
of an integer and different simple parts . . .

Fowler goes on to describe “division tables” [, §.(a), pp.  f.]:

our common fraction 12

17
. . . would be expressed in a division table . . .

as

τῶν ιβ [τὸ
′

ι
′

ζ] ∠
′

ι
′

β
′

ι
′

ζ
′

λ
′

δ
′

ν
′

α
′

ξ
′

η

of the 12 [the 17th is]
′

2
′

1
′

2
′

1
′

7
′

3
′

4
′

5
′

1
′

6
′

8

for what we would write as

12

17
= 1

2
+ 1

12
+ 1

17
+ 1

34
+ 1

51
+ 1

68
.

I think a better “translation” of the Greek ∠
′

ι
′

β
′

ι
′

ζ
′

λ
′

δ
′

ν
′

α
′

ξ
′

η would be some-
thing like

′

2
′

10
′

2
′

10
′

7
′

30
′

4
′

50
′

1
′

60
′

8.

Possibly the definition of “parts” in the Elements serves as a reminder to
the reader that, even though  is not a part of , it is still parts of ,
namely the half, and the twelfth, and the seventeenth, and the thirty-
fourth, and the fifty-first, and the sixty-eighth. In this case, Euclid’s
Proposition vii. will give a new meaning to the notion of “parts.”

. Music

As noted above, in the diagrams of the propositions in Books vii–ix,

numbers are bounded straight lines, or today’s line segments. Heath
remarks on this after Proposition vii.:

the representation in Books vii. to ix. of numbers by straight lines is
adopted by Heiberg from the mss. The method of those editors who
substitute points for lines is open to objection because it practically ne-
cessitates, in many cases, the use of specific numbers, which is contrary
to Euclid’s manner.

I note the oddity of English in using the exceptional form “first” here, rather than
“oneth.”
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Heath is right that points should not be used, but if I understand him
correctly, he is wrong about the reason. I think he means that Euclid’s
propositions are general, but that this would be belied by diagrams that
indicated specific numbers. However, as they are, Euclid’s proofs are of-
ten not general in form, regardless of the diagram. For example, in the
proof of Proposition vii., showing one use of what we call the Euclidean
algorithm, there are three alternations of subtractions, not some unspec-
ified number of them. One must simply understand that there is nothing
special about three alternations as being three. Likewise, throughout
Book i of the Elements, specific triangles in the diagrams are to be un-
derstood as general. Specific numbers of dots in a diagram could be
understood as general.

However, if unities could always be thought of as points, then it would
be obvious that multiplication was commutative. Four rows of dots, of
three dots each, obviously have as many dots as three rows, of four dots
each (Figure .). With diagrams of dots, there would be no need to

b b b

b b b

b b b

b b b

b b b b

b b b b

b b b b

Figure .. Multiplication of points

prove commutativity of multiplication, which is Proposition vii.. But
it is not obvious that four straight lines, of  units each, will have together
the same length as three straight lines, of  units each (Figure .).

b b b b b| | | | | | | |

b b b b| | | | | | | | |

Figure .. Multiplication of straight lines

Another possible reason why Euclid’s numbers are straight lines is that
lyre strings are like straight lines, and Euclid’s study of numbers is in-
spired by music. According to Andrew Barker in Greek Musical Writings
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[, p. ], the ancient work called Sectio Canonis (Κατατομὴ κανόνος)
is

attributed to Euclid in the manuscripts, and by Porphyry, who quotes
from it at length . . . Parts of the treatise are also quoted by Boethius . . .
[T]he attribution has been debated . . . There are no good reasons, how-
ever, for denying Euclid’s authorship of the main part of the treatise,
at least as much as Porphyry quotes . . .

Fowler is more skeptical. He discusses the Sectio Canonis thoroughly [,
pp. –]; I would just note that the chief burden of the treatise seems
to be the following. An interval of musical notes somehow corresponds
to a ratio of numbers, and those ratios are of three possible kinds, as in
the Elements. In the Elements, those kinds are multiple, part, and parts.
According to the Sectio Canonis [, p. ],

πάντα δὲ τὰ ἐκ μορίων συγκείμενα ἀριθμοῦ λόγῳ λέγεται πρὸς ἄλληλα,
ὥστε καὶ τοὺς φθόγγους ἀναγκαῖον ἐν ἀριθμοῦ λόγῳ λέγεσθαι πρὸς
ἀλλήλους· τῶν δὲ ἀριθμῶν οἱ μὲν ἐν πολλαπλασίῳ λόγῳ λέγονται, οἱ
δὲ ἐν ἐπιμορίῳ, οἱ δὲ ἐν ἐπιμερεῖ, ὥστε καὶ τοὺς φθόγγους ἀναγκαῖον ἐν
τοῖς τοιούτοις λόγοις λέγεσθαι πρὸς ἀλλήλους. // All things composed
of parts are said to be to one another in the ratio of a number [to
a number]; so notes too must be said to be to one another in the
ratio of a number. Some numbers are said to be in multiple ratio,
others in part-again, still others in parts-again [ratio]; so notes too
must be said to be in in these ratios to one another.

Numbers A and B are in
) multiple ratio, if A is a multiple of B;
) part-again ratio, if A−B measures B, so that A is the whole of B

with a part added;
) parts-again ratio, otherwise.

The latter two kinds of ratio—ἐπιμόριος and ἐπιμερής—are also called in
English “superparticular” and “superpartient,” as in D’Ooge’s translation
of Nicomachus [, pp. –, , & ]; but Barker uses the words
“epimoric” and “epimeric” [, p. , p.  n. ]. The quoted passage
from the Sectio Canonis is given in the big Liddell–Scott–Jones lexicon
[] as an example of the use of ἐπιμόριος. This word is derived from
μόριον rather than μέρος; but either of these means “part.”
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A

B

C

D

E

F

G

H

Figure .. Lyre strings as numbers

The passage continues somewhat obscurely.

τούτων δὲ οἱ μὲν πολλαπλάσιοι καὶ ἐπιμόριοι ἑνὶ ὀμόματι λέγονται
πρὸς ἀλλήλους. // Of these, the multiple [ratios] and the part-again
[ratios] to one another are said with a single name.

Barker’s translation is, “of these, the multiple and the epimoric are spoken
of in relation to one another under a single name”; Fowler changes “in
relation” to “with respect.” Barker suggests that “single name” refers to
the single words like τριπλάσιος (“triple”) and ἐπίτριτος (“third-again”)
that name specific multiple and part-again ratios. Fowler goes further,
suggesting that “single name” alludes to the single number that specifies
one of these ratios, as the number three specifies the triple and third-again
ratios. Fowler’s suggestion would seem to be partially corroborated by
the last three propositions of Book vii of the Elements, which we shall
consider at the end, in §. (p. ).

Meanwhile, suppose the strings of an eight-stringed lyre are repre-
sented by the numbers A through H, as in Figure .. As I understand
Barker in The Science of Harmonics in Classical Greece [, p. ], we can
consider A, D, E, and H as fixed, while the other strings can vary ac-
cording to the chosen musical mode. The interval AD or EH is a fourth
Apparently such lyres existed, although the traditional lyre had seven strings [,

pp.  & ].
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or diatesseron (διὰ τεσσάρων), spanning, as it does, four strings; AE or
EH is a fifth or diapente (διὰ πέντε); AH, an octave or diapason (διὰ
πασῶν). These intervals are all concords, and the octave is composed of
a fourth and a fifth. The double octave is also a concord, but the double
fourth and the double fifth are not.

So much is observed or at least assumed. Then we propose the axiom
that a concord corresponds to a ratio of numbers that is either multi-
ple or part-again. As the commentators point out, this axiom does not
correspond exactly to the observed reality. Nonetheless, be he Euclid
or somebody else, the author of the Sectio Canonis uses the axiom to
argue as follows. Since the double octave has a mean (namely the oc-
tave), it cannot be part-again; so it must be multiple, and therefore the
octave itself must be multiple. Similarly, the fifth and the fourth cannot
be multiple, so they are part-again. The least multiple ratio, namely the
double, is composed of the two greatest part-again ratios, namely the half-
again (ἡμιόλιος, half-whole or “hemiolic”) and the third-again (ἐπίτριτος,
“epitritic”). Therefore these three ratios must correspond respectively to
the octave, the fifth, and the fourth.

Again, it may be questioned whether there is a purely mathematical
proof of this correspondence between musical intervals and numerical ra-
tios. The point for now is the importance given to two kinds of numerical
ratios: the ratio that obtains between the greater A and the less B when
B measures A, or when B is almost equal to A, but the difference mea-
sures B. These are situations when the Euclidean Algorithm concludes
in one or two steps.

. The Euclidean Algorithm

The first proposition of Book vii of the Elements is a theorem in the
sense of Pappus (p. ); the next two are problems. All three involve the
so-called Euclidean Algorithm. The enunciation of the theorem is,

∆ύο ἀριθμῶν ἀνίσων ἐκκειμένων, ἀνθυφαιρουμένου δὲ ἀεὶ τοῦ ἐλάσσονος
ἀπὸ τοῦ μείζονος, ἐὰν ὁ λειπόμενος μηδέποτε καταμετρῇ τὸν πρὸ
ἑαυτοῦ, ἕως οὗ λειφθῇ μονάς, οἱ ἐξ ἀρχῆς ἀριθμοὶ πρῶτοι πρὸς ἀλλὴλους
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Α

Θ

Ζ Β

Γ Η ∆

Ε

Figure .. Proposition vii.

ἔσονται. // Two numbers being given, and the less being alternately
subtracted from the greater continually, if the remainder never mea-
sures the previous number until unity is left, the original numbers will
be prime to one another.

In the Greek, the phrase being alternately subtracted is one word, which
is a passive participle of the verb ἀνθυφαιρέ-ω. This is the source of the
feminine noun ἀνθυφαίρεσις, which I shall render as anthyphaeresis.

In the exposition of the proposition, unequal numbers ΑΒ and Γ∆ are
given, as in Figure ., which is Heiberg’s diagram rotated counterclock-
wise through a right angle. In the demonstration, which depends on the
diagram,

ὁ μὲν Γ∆ τὸν ΒΖ μετρῶν λειπέτω ἑαυτοῦ ἐλάσσονα τὸν ΖΑ, ὁ δὲ ΑΖ
τὸν ∆Η μετρῶν λειπέτω ἑαυτοῦ ἐλάσσονα τὸν ΗΓ, ὁ δὲ ΗΓ τὸν ΖΘ
μετρῶν λειπέτω μονάδα τὴν ΘΑ. // Let Γ∆, measuring ΒΖ, leave less
than itself, ΖΑ; then let ΑΖ, measuring ∆Η, leave less than itself, ΗΓ;
then let ΗΓ, measuring ΖΘ, leave a unit, ΘΑ.

It is not mentioned how many times Γ∆ measures ΒΖ; or ΑΖ, ∆Η; or ΗΓ,
ΖΘ; but the unit ΘΑ measures the number ΗΓ that number of times. The
four numbers of times here form a sequence, [n0, n1, n2, n3], which we we
may call the anthyphaeretic sequence of ΑΒ and Γ∆.

Fowler calls the anthyphaeretic sequence a “ratio,” or more precisely
“anthyphairetic ratio” [, §., p. , & §., p. ]. He does this,

Other writers use the transliteration “anthyphairesis,” but I follow the tradition of
writing the Latin diphthong ae for the Greek diphthong αι. Presumably one will
pronounce the word as something like “An thigh FEAR iss iss.”
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because by one possible definition, A, B, C, and D are proportional
just in case the pairs (A,B) and (C,D) have the same anthyphaeretic
sequence. It does not matter whether A, B, C, and D are numbers or
arbitary magnitudes. In modern terms, if we compute

n0 +
1

n1 +
1

n2 +
1

n3

=
a

b
,

then the ratio of ΑΒ to Γ∆ above is that of a to b. Moreover, a and
b will automatically be relatively prime (assuming we compute them in
the obvious way, replacing n2 + 1/n3 with (n2n3 + 1)/n3 and so forth).
For arbitary magnitudes, the anthyphaeretic sequence might be infinite;
however, if the magnitudes are lengths constructible with straightedge
and compass, then the anthyphaeretic sequence will be periodic.

The historical situation is laid out by Thomas at the end of the first
of the two Loeb Classical Library volumes, Selections Illustrating the
History of Greek Mathematics [, pp. –]. According to the first
proposition of Book vi of the Elements,

Τὰ τρίγωνα καὶ τὰ παραλληλόγραμμα τὰ ὑπὸ τὸ αὐτὸ ὕψος ὄντα
πρὸς ἄλληλά ἐστιν ὡς αἱ βάσεις. // Triangles and parallelograms that
are under the same height are to one another as their bases.

In the Topics, Aristotle uses this result (or at least the part about par-
allelograms) as an example of something that is immediately clear, once
one has the correct definition; and the definition of “same ratio” is “hav-
ing the same antanaeresis (ἀνταναίρεσις).” In a comment on the pas-
sage, Alexander of Aphrodisias observes that Aristotle uses the word
“antanaeresis” for anthyphaeresis. In , Oskar Becker observed that
Aristotle and Alexander could be alluding to the anthyphaeretic defi-
nition of proportion described above. It is thus reasonable to suppose
that Euclid was aware of the possibility of an anthyphaeretic theory of
proportion.

Proposition vii. is a problem:
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∆ύο ἀριθμῶν δοθέντων μὴ πρώτων πρὸς ἀλλήλους τὸ μέγιστον αὐτῶν
κοινὸν μέτρον εὑρεῖν. // Two numbers not prime to one another
being given, to find their greatest common measure.

We may ask why this proposition is separated from Proposition , since
each of these propositions involves an application of the Euclidean Al-
gorithm, that is, anthyphaeresis. But Proposition  itself considers two
cases: when the the less of given numbers measures the greater, and
when it does not. We see here the practice of using language as precisely
as possible—a practice often abjured today in mathematics, in favor of
simplicity. If a straight line is erected on another straight line, forming
two angles, today we say that the sum of the angles is two right angles;
for Euclid, in Proposition i., either this is so, or each of the angles is
already a right angle. Today we have an algorithm, the Euclidean Al-
gorithm, for finding greatest common divisors; Euclid has an algorithm
for verifying that two numbers are relatively prime, and for finding their
greatest common measure when they are not.

There is now a break in the usual pattern of exposition. Proposition
vii. has a πορίσμα, a porism: in the words of Proclus, “a kind of windfall
or bonus in the investigation” [, p. ], namely:

᾿Εκ δὴ τούτου φανερόν, ὅτι ἐὰν ἀριθμὸς δύο ἀριθμοὺς μετρῇ, καὶ τὸ
μέγιστον αὐτῶν κοινὸν μέτρον μετρήσει. // From this then it is clear
that, if a number measure two numbers, it will also measure their
greatest common measure.

As a corollary follows from the enunciation of a theorem, a porism follows
from the proof. The term could be used more widely today, as for example
to label a generalization of a theorem, when it turns out that the same
proof yields the generalization.

Proposition vii. is to find the greatest common measure of three given
numbers. There seems to be no reason to look further at this before
moving on to Proposition .
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. Part or Parts

We have seen the enunciation of Proposition vii. in §§. & . (pp. 
& ); it is that the less number is part or parts of the greater number. If
being parts of a number just meant not being part of the number, that is,
not measuring the number, then Proposition  would be immediate. Eu-
clid does not treat it as immediate, and so the real meaning of parts must
be more subtle. We should consider what Euclid actually says. After the
enunciation of Proposition  come the exposition and specification:

῎Εστωσαν δύο ἀριθμοὶ οἱ Α, ΒΓ, καὶ ἔστω ἐλάσσων ὁ ΒΓ· λέγω, ὅτι
ὁ ΒΓ τοῦ Α ἤτοι μέρος ἐστὶν ἢ μέρη. // Let the two numbers be Α
and ΒΓ, and let the less be ΒΓ. I say that ΒΓ is, of Α, either part or
parts.

The demonstration then considers two cases:

Οἱ Α, ΒΓ γὰρ ἤτοι πρῶτοι πρὸς ἀλλήλους εἰσὶν ἢ οὔ. // For Α and
ΒΓ are either prime to one another, or not.

The two cases thus correspond to Propositions vii. and vii.. Here is
the first case:

ἔστωσαν πρότερον οἱ Α, ΒΓ πρῶτοι πρὸς ἀλλήλους. διαιρεθέντος δὴ
τοῦ ΒΓ εἰς τὰς ἐν αὐτῷ μονάδας ἔσται ἑκάστη μονὰς τῶν ἐν τῷ ΒΓ
μέρος τι τοῦ Α· ὥστε μέρη ἐστὶν ὁ ΒΓ τοῦ Α. // First suppose Α and
ΒΓ are prime to one another. ΒΓ being divided into the units in
itself, each unit of those that are in ΒΓ will be some part of Α. Thus
ΒΓ is parts of Α.

The word thus here translates Euclid’s ὥστε. As “thus” can mean either
therefore or in this way, so can ὥστε. I propose that in the present
instance it has the latter meaning. That is, since Α and ΒΓ are coprime,
ΒΓ is parts of Α, in the sense that each of its units is a part of Α.

Sometimes, indeed, ὥστε simply means therefore, only less emphati-
cally; Heath translates it as “so that.” Euclid’s usual word to indicate
a logical conclusion is ἄρα, used postpositively—not at the beginning of
a clause; but occasionally ὥστε is used in place of this, only preposi-
tively—at the beginning. For example, Proposition vii. is to find the
least common multiple of two numbers, and Proposition vii. is that
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this least common multiple measures every common multiple. Proposi-
tion vii. is to find the least common multiple of three numbers, given
as Α, Β, and Γ. One lets ∆ be the least common multiple of Α and Β. In
case Γ does not measure this, one lets Ε be the least common multiple of
Γ and ∆, so that Ε is a common multiple of Α, Β, and Γ. If it is not the
least such, one lets Ζ be less. Euclid’s argument continues as follows.

ἐπεὶ οἱ Α, Β, Γ τὸν Ζ μετροῦσιν, καὶ οἱ Α, Β ἄρα τὸν Ζ μετροῦσιν· καὶ
ὁ ἐλάχιστος ἄρα ὑπὸ τῶν Α, Β μετρούμενος τὸν Ζ μετρήσει. ἐλάχιστος
δὲ ὑπὸ τῶν Α, Β μετρούμενός ἐστιν ὁ ∆· ὁ ∆ ἄρα τὸν Ζ μετρεῖ. μετρεῖ
δὲ καὶ ὁ Γ τὸν Ζ· οἱ ∆, Γ ἄρα τὸν Ζ μετροῦσιν· ὥστε καὶ ὁ ἐλάχιστος
ὑπὸ τῶν ∆, Γ μετρούμενος τὸν Ζ μετρήσει. // Since Α, Β, and Γ
measure Ζ, therefore also Α and Β measure Ζ; therefore also the
least [number] measured by Α and Β will measure Ζ. But the least
[number] measured by Α and Β is ∆. Therefore ∆ measures Ζ. But
also Γ measures Ζ; therefore ∆ and Γ measure Ζ; thus also the least
[number] measured by ∆ and Γ will measure Ζ.

The last ὥστε replaces ἄρα, perhaps because the indicated kind of infer-
ence (that a least common multiple measures every common multiple) has
already been seen in the proof. Then ὥστε indicates an easy result. This
is seen also in Book i, where ὥστε is used three times, in Propositions ,
, and , to indicate a result of the form

A = C and B = C, thus A = B;

and ὥστε is used in Propositions , , and , for similarly easy results.
But in Proposition i., which we looked at in §. (p. ), ὥστε is used

to indicate the conclusions that Γ falls on Ζ, and ΒΓ on ΕΖ, and triangle
ΑΒΓ on ∆ΕΖ; and in Proposition i., ὥστε indicates again that ΑΒΓ
coincides with ∆ΕΖ. In short, ὥστε indicates that something happens,
thus.

We see ὥστε again in the second case of Proposition vii., or at least
in its second subcase (corresponding to the second case of Proposition
vii.):

Μὴ ἔστωσαν δὴ οἱ Α, ΒΓ πρῶτοι πρὸς ἀλλήλους· ὁ δὴ ΒΓ τὸν Α ἤτοι
μετρεῖ ἢ οὐ μετρεῖ. // Now suppose Α and ΒΓ are not prime to one
another. Then ΒΓ either measures Α or does not measure.
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Figure .. Proposition vii.

εἰ μὲν οὖν ὁ ΒΓ τὸν Α μετρεῖ, μέρος ἐστὶν ὁ ΒΓ τοῦ Α. // If ΒΓ measures
Α, ΒΓ is a part of Α.

The second subcase is diagrammed in Figure ..

εἰ δὲ οὔ, εἰλήφθω τῶν Α, ΒΓ μέγιστον κοινὸν μέτρον ὁ ∆, καὶ διῃρήσθω
ὁ ΒΓ εἰς τοὺς τῷ ∆ ἴσους τοὺς ΒΕ, ΕΖ, ΖΓ. καὶ ἐπεὶ ὁ ∆ τὸν Α μετρεῖ,
μέρος ἐστὶν ὁ ∆ τοῦ Α· ἴσος δὲ ὁ ∆ ἑκάστῳ τῶν ΒΕ, ΕΖ, ΖΓ· καὶ
ἕκαστος ἄρα τῶν ΒΕ, ΕΖ, ΖΓ τοῦ Α μέρος ἐστίν· ὥστε μέρη ἐστὶν ὁ ΒΓ
τοῦ Α. // If not, let the greatest common measure ∆ of Α and ΒΓ
be taken, and let ΒΓ be divided into ΒΕ, ΕΖ, and ΖΓ, equal to ∆.
Since ∆ measures Α, ∆ is a part of Α. And ∆ is equal to each of
ΒΕ, ΕΖ, and ΖΓ. Therefore each of ΒΕ, ΕΖ, and ΖΓ is a part of Α;
thus ΒΓ is parts of Α.

The conclusion of the proposition repeats the enunciation, with—as is
usual—the addition of ἄρα and a qed:

Ἅπας ἄρα ἀριθμὸς παντὸς ἀριθμοῦ ὁ ἐλάσσων τοῦ μείζονος ἤτοι μέρος
ἐστὶν ἢ μέρη· ὅπερ ἔδει δεῖξαι. // Therefore every number is of every
number, the less of the greater, either a part or parts; which is just
what was to be shown.

The last verb, δεῖξαι “to be shown,” is the normal ending for a theorem,
as opposed to a problem, which would end with ποιῆσαι “to be done.”
Nonetheless, strictly speaking, Proposition vii. is neither a theorem nor
a problem in the usual sense, because its enunciation alone gives us noth-
ing that we can either contemplate or use. The whole proposition is an
explanation of the definition of proportion. It tacitly explains how to tell
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Figure .. Proposition i., with the missing case

when a number A is the same parts of B that C is of D. Assuming that
A is not in fact part of B, and C is not part of D, we may conclude that
A is the same parts of B that C is of D, just in case A and B are,
respectively, the same multiples of their greatest common measure that
C and D are of their greatest common measure.

If Euclid spelled out this definition, he might distinguish the case
where, say, A and B are prime to one another. In this case, since the only
common measure of A and B is unity, A is the same parts of B that C
is of D, just in case C = A×E and D = B ×E, where E is the greatest
common measure of C and D. (We shall look at the multiplications here
symbolized in §..)

Euclid does not spell out the details of the definition of having the
same parts. This need not be considered unusual. In Book i of the
Elements, there are several propositions where a thorough account of all
possible cases is lacking. Euclid does not even bother to mention that
there are other cases than the one he considers. We have no reason to
think that he is not aware of the other cases. We looked earlier (p. )
at Proposition i., which is that, in an isosceles triangle, not only () the
base angles, but also () the exterior angles at the base, are equal to
one another. A consequence of this is Proposition , which, as suggested
earlier (p. ), is that two different points on the same side of a straight
line cannot have the same respective distances from its endpoints. In
his proof by contradiction, Euclid considers only the case shown on the
left of Figure ., where neither of the two points Γ and ∆ lies inside the
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triangle determined by the other point and the given straight line ΑΒ.
The proof of this case needs only the first conclusion of Proposition : if
ΑΓ = Α∆, then

∠ΒΓ∆ < ∠ΑΓ∆ = ∠Α∆Γ < ∠Β∆Γ, ΒΓ 6= Β∆.

The other case goes unmentioned, but is proved by means of the second
conclusion of Proposition .

As discussed in §. (p. ), by definition, a number A is to B as C is
to D, provided A is () the same multiple or () part or () parts of B
that C is of D. Symbolically, this means,

) for some multiplier n, both A = nB and C = nD, or
) for some multiplier n, both nA = B and nC = D, or
) for some multipliers k and ℓ, and some numbers E and F ,

A = kE, B = ℓE, C = kF, D = ℓF,

where

E = gcm(A,B), F = gcm(C,D) (†)

(where gcm means greatest common measure). Condition (†) is made as
explicit as need be by Proposition .

Pengelley and Richman [, p. ] leave out Condition (†) when they
formulate Euclid’s definition of proportion. (The omission is repeated
in [, p. ].) Then they observe that later proofs make use of the
transitivity of “equality” of ratios without having proved it. However, the
transitivity of this “equality” is immediate from the definition of propor-
tion, properly understood. By definition, A is to B as C is to D, provided
that something about pairs (X,Y ) of numbers is the same, whether the
pair be (A,B) or (C,D). The “something” that is the same cannot be
mere existence of a number Z and multipliers k and ℓ such that

X = kZ, Y = ℓZ. (‡)

Such Z, k, and ℓ exist for all pairs of numbers X and Y . The desired
“something” could be the set of all pairs (k, ℓ) of multipliers such that,
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for some number Z, (‡) holds. That is, if we introduce the notation

[X : Y ] = {(k, ℓ) : ∃Z (X = kZ & Y = ℓZ)},

then we could define

A : B :: C : D ⇐⇒ [A : B] = [C : D].

But this happens not to be Euclid’s definition. By the account of Pen-
gelley and Richman, the definition is

A : B :: C : D ⇐⇒ [A : B] ∩ [C : D] 6= ∅.

With a bit less symbolism, this is that A : B :: C : D if and only if
[A : B] and [C : D] contain the same element. This formulation does
preserve the reference to sameness found in Euclid’s original definition
(p. ). However, it does not specify which element is the same element.
As Euclid shows implicitly in Proposition vii., that same element must
be the one pair (k, ℓ) such that

X = k · gcm(X,Y ), Y = ℓ · gcm(X,Y ),

whether (X,Y ) be (A,B) or (C,D).
To the modern reader accustomed to manipulating and reducing frac-

tions, Euclid’s meaning may not be entirely clear. But I think it is clear
enough to his intended audience.

Euclid is aware that proportionality—sameness of ratio—can be de-
fined by anthyphaeresis. He prefers to avoid this, perhaps in order to
make proofs easier. For the arbitrary magnitudes considered in Book v,
he uses the definition quoted in §.. Looking at arbitrary equimultiples
is conceptually easier than looking at the potentially infinite sequences
of numbers generated by anthyphaeresis. For one thing, even if we say A
measures B, k times, with remainder C, Euclid has no notation for the
multiplier k. Indeed, k here is not a thing. It is not, strictly speaking, a
number, but a numeral ; not a noun, but an adjective. It can be turned
into a noun, as it will be in Book vii, when multiplication of numbers is
defined; but there is no need to do this in Book v.
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When anthyphaeresis is applied to numbers, finite sequences are gen-
erated. We apply anthyphaeresis to numbers A and B, we get a greatest
common measure C. Then A = kC and B = ℓC for some k and ℓ, as
Euclid knows. He does not say much about k and ℓ directly though. He
does not say, for example, that they are relatively prime. He does not
have good notation for them. We can write multipliers as we are doing,
with minuscules; Euclid cannot.

Now, good notation is not like house-building supplies. You cannot will
bricks and mortar into existence; but if you find your notation inadequate,
you just improve it. If Euclid was inhibited by a lack of good notation,
it would seem the fault was his own.

On the other hand, Euclid’s concern was not written expression as
such. Writing supplies are like house-building supplies. Even if Euclid
had as much scratch paper (or papyrus) to write on as we do, he could not
easily have distributed a copy of his lectures to everybody who attended.
I think of Phaedrus, in the eponymous dialogue of Plato, borrowing the
text of a speech of Lysias, not so that he can copy it, but so that he can
memorize it [, b, p. ]. Evidently Euclid wrote things out, and
that is why we have his work; but his aim was not to come up with good
written expressions as such. See however §..

. Multiplication

In the Elements, addition of numbers is implicitly understood to be what
we call a commutative, associative operation. Thus numbers compose an
additive semigroup. Each number is a sum or combination of units, all
of these units being equal to one another.

By contrast, multiplication is explicitly defined. The fifteenth of the
definitions at the head of Book vii reads,

Ἀριθμὸς ἀριθμὸν πολλαπλασιάζειν λέγεται, ὅταν, ὅσαι εἰσὶν ἐν αὐτῷ
μονάδες, τοσαυτάκις συντεθῇ ὁ πολλαπλασιαζόμενος, καὶ γένηταί τις.
// A number is said to multiply a number when, however many
units are in it, so many times is the multiplied number composed,
and some number comes to be.
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I use the verb to be composed here for Euclid’s συντίθημι, because
from this verb is derived the adjective σύνθετος, and we translate this (as
in Definition vii.) as composite. Heath uses “to be added to itself” for
Euclid’s συντίθημι; but taken literally, this is misleading. To multiply B
by A means to lay down a copy of B for each unit in A; it does not mean
to add all of those copies to the B that already exists. If we multiply B
by A—or as Euclid says, if A multiplies B—, we can describe the result
as “B, A times,” or “A times B.” We can write the result as

A×B,

although Euclid has no such notation. As we noted in §. (p. ), it is
not obvious that A× B = B × A, and this will actually be the result of
Proposition . Nonetheless, the definition of multiplication is followed
by:

῞Οταν δὲ δύο ἀριθμοὶ πολλαπλασιάσαντες ἀλλήλους ποιῶσί τινα, ὁ
γενόμενος ἐπίπεδος καλεῖται, πλευραὶ δὲ αὐτοῦ οἱ πολλαπλασιάσαντες
ἀλλήλους ἀριθμοί. // And whenever two numbers, multiplying one
another, make some [number], the [number] produced is called
plane, and its sides are the numbers multiplying one another.

This suggests an understanding that multiplication is indeed commuta-
tive. This contributes to the feeling that the “definitions” at the head of
Book vii are more of a summary or introduction than a list of formal
definitions.

Given numbers A and B, we can write

A×B = nB, (§)

where n is the number or rather numeral of units in A. Here A is a noun,
but n is an adjective. We can draw A in a diagram, but not n itself.
Rather, n would be a feature of the diagram. Instead of (§), but less

The form συντεθῇ appears to be an aorist subjunctive, like the next verb γένηται.
I have sometimes used the English subjunctive to translate Euclid’s subjunctives,
but not here.

This observation is reminiscent of the passage of Sextus Empiricus quoted above
(§., p. ).
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precisely, we could write

A×B = B + · · ·+B.

Another way to say this is that A×B belongs to the semigroup generated
by B.

Euclid distinguishes between products A×B and multiples nB in his
propositions. The enunciation of Proposition  is:

᾿Εὰν ἀριθμὸς ἀριθμοῦ μέρος ᾖ, καὶ ἕτερος ἑτέρου τὸ αὐτὸ μέρος ᾖ, καὶ
συναμφότερος συναμφοτέρου τὸ αὐτὸ μέρος ἔσται, ὅπερ ὁ εἷς τοῦ ἑνός.
// If a number be part of a number, and another be the same part
of another, then the combination will be the very same part of the
combination that the one is of the one.

Heath has “sum” instead of my combination; but the latter seems closer to
Euclid’s συναμφότερος, both in meaning and etymology: the Latin com-
(for con-) corresponds to συν-, while the B of bin- seems to be related
to the Φ in αμφ-. If the numbers in question are respectively A, B, C,
and D, we assume that, for some n, both nA = B and nC = D; the
conclusion is that n(A+ C) = B +D. In one line then,

n(A+ C) = nA+ nC;

this can be understood as a consequence of the commutativity of addition.
Proposition  is the same as , but with “part” replaced by “parts.” If

A = kE, B = nE, C = kF , and D = nF , then A+C = k(E + F ), while
B +D = n(E + F ). There is no need here to assume that k and n are
relatively prime, or equivalently that E is the greatest common measure
of A and B. Nonetheless, from Propositions  and , Euclid immediately
obtains Proposition :

A : B :: C : D =⇒ A : B :: A+ C : B +D,

or more generally

A1 : B1 :: · · · :: An : Bn =⇒ A1 : B1 :: A1 + · · ·+An : B1 + · · ·+Bn.
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Note that this hardly needs proof, if one understands and accepts the
anthyphaeretic definition of proportion. Meanwhile, Euclid has already
used the idea of the general form of Proposition  in proving Proposition
. The enunciation of this proposition is:

᾿Εὰν ἀριθμὸς ἀριθμοῦ μέρος ᾖ, καὶ ἕτερος ἑτέρου τὸ αὐτὸ μέρος ᾖ, καὶ
ἐναλλάξ, ὃ μέρος ἐστὶν ἢ μέρη ὁ πρῶτος τοῦ τρίτου, τὸ αὐτὸ μέρος
ἔσται ἢ τὰ αὐτὰ μέρη καὶ ὁ δεύτερος τοῦ τετάρτου. // If a number
be a part of a number, and another be the same part of another,
also alternately, what part or parts the first is of the third, the same
part or parts will also the second be of the fourth.

Thus if the four numbers are A, B, C, and D, and nA = B and nC = D,
then whatever part or parts A is of C, the combination B will be the
same part or parts of the combination D, that is,

A : C :: B : D. (¶)

Without specifying any hypotheses on B and D, we could write this as
A : C :: nA : nC, or simply as

A : C :: A+ · · ·+A : C + · · ·+ C. (‖)

Thus  is a more general form of . In , A is contemplated as being
part or parts of C, but not as being a multiple of C, presumably because,
without loss of generality, we may assume A < C (the case A = C being
trivial).

Proposition  is the same as , but again with the first two instances of
“part” in the enunciation replaced with “parts.” Thus if the four numbers
again are A, B, C, and D, but now kE = A and B = nE for some E,
while kF = C and D = nF for some F , then (¶) still holds, that is,

kE : nF :: nE : nF.

Then Proposition  expresses  and  in the language of proportion:

᾿Εὰν τέσσαρες ἀριθμοὶ ἀνάλογον ὦσιν, καὶ ἐναλλὰξ ἀνάλογον ἔσονται.
If four numbers be proportional, they will also be proportional

alternately.
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That is, if A : B :: C : D, then, both possible relations of A to C having
been covered in  and , we conclude (¶). Thus

A : B :: C : D =⇒ A : C :: B : D.

Unlike Proposition , this is not immediate from the anthyphaeretic
definition of proportion. But we shall need it to establish commutativity
of multiplication. To this end, there is Proposition , which is nearly
the same as a special case of , but in the language of proportion and
products, instead of parts:

1 : B :: A : A×B.

Then also 1 : A : B : B × A, so by alternation 1 : B : A : B × A; and
therefore

A×B = B ×A.

This is Proposition , whose enunciation is

Εὰν δύο ἀριθμοὶ πολλαπλασιάσαντες ἀλλήλους ποιῶσί τινας,
οἱ γενόμενοι ἐξ αὐτῶν ἴσοι ἀλλήλοις ἔσονται.

If two numbers, multiplying one another, make some [number],
the products will be equal to ane another.

This would indeed appear to be a “real” theorem.
We can understand Euclid’s situation as follows. His numbers compose

a set S that is equipped with () a commutative, associative operation
of addition, which we denote by +; () an associative multiplication, ×,
which distributes over addition; () a multiplicative identity, 1; () a
linear ordering, <, such that

A < B ⇐⇒ ∃X A+X = B.

We may define
R = S ⊔ {0} ⊔ {−X : X ∈ S },

a disjoint union, where X 7→ −X is just some injection on S . Then
we can turn R into an ordered ring, just as, in school, one obtains the
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integers from the natural numbers. However, not every ordered ring
is commutative like the ring of integers. For example, the free group
F2 on two letters can be made into an ordered group, and then the
noncommutative group-ring ZF2 can be ordered.

To apply the Euclidean Algorithm, Euclid tacitly assumes what we call
the Well Ordering Property of S . I think Euclid also tacitly assumes
that A × B always belongs to the semigroup generated by B. Either of
these assumptions implies the other, although Euclid does not prove this
or perhaps even contemplate a proof.

Nonetheless, Euclid does not assume commutativity of multiplication.
He proves it. This would seem to be more than number-theory text-
books do today. Landau [] and Hardy & Wright [] do not discuss
foundations, but start right in, proving theorems about divisibility. I
suppose they expect the reader to understand the natural numbers and
all of the integers as lying among the so-called real numbers, whose alge-
braic properties, at least, are familiar. As far as the integers themselves
are concerned, the authors evidently take for granted the axioms that
LeVeque [, pp. –] makes explicit: in effect, the integers compose
an ordered commutative ring whose positive elements are well-ordered.
LeVeque has an additional axiom, that c 6= 0 and ca = cb imply a = b,
but this is true in every ordered ring.

Leveque observes that the well-ordering axiom can be replaced with
the induction axiom, once the axioms of a commutative ordered ring are
assumed. Burton [, pp. –] proves the “Archimedean property” and the
“First Principle of Finite Induction,” using the “Well-Ordering Principle”
as the only explicit property of the natural numbers; otherwise, he says,

We shall make no attempt to construct the integers axiomatically, as-
suming instead that they are already given and that any reader of this
book is familiar with many elementary facts about them.

It is presently asserted [, p. ] that “Mathematical induction is often
used as a method of definition as well as a method of proof.” This sug-
gests that recursive definitions are justified by induction alone. They are

Textbook references are Lam [, Exercise ., p. ] and Botto Mura and Rhem-
tulla [, Thm .., pp.  f.]. Every free product of ordered groups is orderable.
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not, and clarifying this point is of value to number theory itself, as we
discussed above (p. ).

Again, in our terms, Euclid proves that every ordered ring whose posi-
tive elements are well-ordered is commutative. Thus he would appear to
be more sensitive to rigor and logical economy than are the corresponding
texts of today.

. Euclid’s Lemma

“Euclid’s Lemma” now follows from some straightforward manipulations.
Thus Proposition vii. is

C : D :: A× C : A×D, (∗∗)

which looks like a restatement of Proposition , when this is written as
(‖); but Euclid derives the result afresh, using that, by definition,

1 : A :: C : A× C, 1 : A :: D : A×D,

so that C : A × C :: D : A × D (since sameness of ratio is immediately
transitive), and therefore, alternately, (∗∗). By applying Proposition 
to this, we obtain Proposition ,

A : B :: A× C : B × C. (††)

From (∗∗) and (††), along with the rule

E : F :: E : F ′ =⇒ F = F ′,

we obtain
A : B :: C : D ⇐⇒ A×D = B × C, (‡‡)

which is Proposition . Euclid’s argument is as we have put it. How-
ever, as we have already noted (p. ), Euclid is not concerned with
how mathematics appears when written on a page. When he writes out
Propositions  and , he does not do as we have done, choosing the
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letters in (∗∗) and (††) so that Proposition  follows almost visually in
the form of (‡‡).

In Proposition , we suppose C and D are the least X and Y such
that X : Y :: A : B. If C is parts of A, then for some part E of A and F
of B, we have C = kE and D = kF ; but then by Proposition ,

E : F :: C : D :: A : B,

contrary to the minimality of C and D. Thus C is not parts, but is a
part of A, and D is the same part of B; or as Euclid says, C measures A
and D measures B equally (ἰσάκις).

There is no claim in Proposition  that numbers that are minimal as
described must exist. Proposition  establishes a sufficient condition for
their existence. If Α and Β are prime to one another, then they must be
the least Ξ and Υ such that Ξ : Υ :: Α : Β. For, suppose not, but Γ and ∆
are least.

ἰσάκις ἄρα ὁ Γ τὸν Α μετρεῖ καὶ ὁ ∆ τὸν Β. ὁσάκις δὴ ὁ Γ τὸν Α μετρεῖ,
τοσαῦται μονάδες ἔστωσαν ἐν τῷ Ε. καὶ ὁ ∆ ἄρα τὸν Β μετρεῖ κατὰ
τὰς ἐν τῷ Ε μονάδας. καὶ ἐπεὶ ὁ Γ τὸν Α μετρεῖ κατὰ τὰς ἐν τῷ Ε
μονάδας, καί ὁ Ε ἄρα τὸν Α μετρεῖ κατὰ τὰς ἐν τῷ Γ μονάδας. //
Therefore Γ measures Α and ∆ measures Β equally. Then as many
times as Γ measures Α, so many units let there be in Ε. Therefore
also ∆ measures Β according to the units in Ε. And since Γ measures
Α according to the units in Ε, also therefore Ε measures Α according
to the units in Γ.

This is not the language of the enunciation of Proposition , but is the
language of its demonstration. At present, for some Ε we have Ε×Γ = Α,
and therefore Γ× Ε = Α, that is, Ε measures Α; and similarly the same Ε
measures Β, which is absurd, since Α and Β are coprime.

We jump ahead to Proposition , which is immediate from the defi-
nitions:

Ἅπας πρῶτος ἀριθμὸς πρὸς ἅπαντα ἀριθμόν, ὃν μὴ μετρεῖ, πρῶτός
ἐστιν. // Every prime number, to every number that it does not
measure, is prime.
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Finally then, in Proposition , we suppose P is prime and measures
A×B, but does not measure A, so that P is prime to A by Proposition
. By hypothesis, for some C, C × P = A×B, so by Proposition ,

P : A :: B : C.

By Proposition , P and A are minimal; then by Proposition , P
measures B.

. Symbolic mathematics

The last three propositions of Book vii of the Elements are hints of a
symbolic mathematics, a mathematics of manipulating symbols that do
not have definite meaning, at least at the beginning. Such mathematics
might be called analytic, as Descartes’s geometry is called; but it certainly
did not originate with Descartes. Pappus describes it [, pp. –]:

ἐν μὲν γὰρ τῇ ἀναλύσει τὸ ζητούμενον ὡς γεγονὸς ὑποθέμενοι τὸ ἐξ
οὗ τοῦτο συμβαίνει σκοπούμεθα. // For in analysis we suppose that
which is sought to be already done, and we inquire what it is from
which this comes about.

Pappus attributes the work of analysis that he describes to “Euclid the
writer of the Elements, Apollonius of Perga and Aristaeus the elder.”

Proposition vii. of the Elements has the enunciation,

᾿Εὰν ἀριθμος ὑπό τινος ἀριθμοῦ μετρῆται, ὁ μετρούμενος ὁμώνυμον μέρος
ἕξει τῷ μετροῦντι. // If a number be measured by some number,
the measured number has a part having the same name with the
measuring number.

Instead of having the same name, we could use “homonymous” for Eu-
clid’s ὁμώνυμος. If A is measured by the number three, that is, by a triad
B, then A = C×B for some number C; but then also, by commutativity
of multiplication, A = B × C, or A = 3C, so C is the third part of A.
Here the triad and the third are said to have the same name, or to be
homonymous.

Proposition vii. is the converse of :
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᾿Εὰν ἀριθμος μέρος ἔχῃ ὁτιοῦν, ὑπὸ ὁμωνύμου ἀριθμοῦ μετρηθήσεται τῷ
μέρει. // If a number have any part whatever, it will be measured
by a [number] having the same name with the part.

Proposition vii. is then a complement to , which is to find the least
common multiple of given numbers: so  is to find the least number
having given parts. The argument is thus:

῎Εστω τὰ δοθέντα μέρη τὰ Α, Β, Γ· δεῖ δὴ ἀριθμὸν εὑρεῖν, ὃς ἐλάχιστος
ὢν ἕξει τὰ Α, Β, Γ μέρη. ῎Εστωσαν γὰρ τοῖς Α, Β, Γ μέρεσιν ὁμώνυμοι
ἀριθμοὶ οἱ ∆, Ε, Ζ, καὶ εἰλήφθω ὑπὸ τῶν ∆, Ε, Ζ ἐλάχιστος μετρούμενος
ἀριθμὸς ὁ Η. ῾Ο Η ἄρα ὁμώνυμα μέρη ἔχει τοῖς ∆, Ε, Ζ. τοῖς δὲ ∆, Ε,
Ζ ὁμώνυμα μέρη ἐστὶ τὰ Α, Β, Γ· ὁ Η ἄρα ἔχει τὰ Α, Β, Γ μέρη. //
Let the given parts be Α, Β, and Γ. We must find a number that
will minimally have parts Α, Β, and Γ. So let the numbers having
the same names as Α, Β, and Γ be ∆, Ε, and Ζ; and let the least
number measured by ∆, Ε, and Ζ have been taken, namely Η. Then
Η has parts having the same names as ∆, Ε, and Ζ. But the parts
having the same names as ∆, Ε, and Ζ are Α, Β, and Γ. Therefore
Η has the parts Α, Β, and Γ.

Moreover, Η must be the least number having these parts; for, if Θ has
these parts and is less, then it also is measured by ∆, Ε, and Ζ, which is
absurd. Such is the argument of the last proposition of Book vii.

The diagram for this proposition consists of eight separate line seg-
ments, labelled Α through Θ. What can the first three of these be—the
ones that are called the given parts? At the beginning, they are not
known to be parts of anything; they are just parts, simply, like a half or
a third or a fourth. Or are they parts of some definite, though unspeci-
fied, segment, so that the task is to find the largest part of that segment
that measures Α, Β, and Γ? This would put Α, Β, and Γ close to being
ratios as such, rendered concrete for the moment so that they can be
talked about, but not intended for comparison with particular numbers.
This would be the only instance I know of where a ratio can actually
be pointed to in a diagram; elsewhere, a ratio is a relation between two
things in a diagram.

Thus I have to wonder whether Proposition  is not a later addition
to Book vii, put there by somebody thinking there should be a formal
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correlate to Proposition . Compare the exposition of Proposition :

Ἀριθμὸς γὰρ ὁ Α μέρος ἐχέτω ὁτιοῦν τὸν Β, καὶ τῷ Β μέρει ὁμώνυμος
ἔστω [ἀριθμὸς] ὁ Γ. // For let Α have whatsoever part, Β; and let
the number having the same name as Β be Γ.

Here Β is not a ratio; it is a part of a given number, namely Α. At the
beginning of Proposition , again, nothing is specified for Α, Β, and Γ to
be part of: they are just “parts,” or rather each of them is just a “part.”
What then can it mean to speak of numbers ∆, Ε, and Ζ having the same
name with Α, Β, and Γ?

One might understand Α, Β, and Γ as divisors, so that the point of
Proposition vii. is to find the least number divided by Α, Β, and Γ. But
in that case, ∆, Ε, and Ζ would be respectively equal to Α, Β, and Γ; and
they are not said to be equal. Neither do they appear equal in Heiberg’s
diagram, though we do not know how well Heiberg’s diagrams conform
with those of the manuscripts.

The position of Proposition  at the end of Book vii may contribute
to the plausibility of its being a later addition to the Elements. Per-
haps  and  are also later additions. All three propositions follow
easily by means of the commutativity of multiplication, and this com-
mutativity is relied on implicitly throughout the ensuing Books viii and
ix. Again, Proposition vii. in particular seems to be due to somebody
who is thinking “formally”: since measuring is correlated with dividing by
means of Proposition vii., for every proposition like  about measur-
ing, a proposition like  about dividing can be written. Similar additions
to Wikipedia are inserted today by people who want to make their con-
tribution: these contributions do not always reflect a full understanding
of the surrounding text.
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