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Abstract. The theory of fields that are equipped with a countably
infinite family of commuting derivations is not companionable; but if

the axiom is added whereby the characteristic of the fields is zero, then

the resulting theory is companionable. Each of these two theories is
the union of a chain of companionable theories. In the case of charac-

teristic zero, the model-companions of the theories in the chain form

another chain, whose union is therefore the model-companion of the
union of the original chain. However, in a signature with predicates, in

all finite numbers of arguments, for linear dependence of vectors, the

two-sorted theory of vector-spaces with their scalar-fields is compan-
ionable, and it is the union of a chain of companionable theories, but

the model-companions of the theories in the chain are mutually incon-
sistent. Finally, the union of a chain of non-companionable theories

may be companionable.

A theory in a given signature is a set of sentences, in the first-order logic
of that signature, that is closed under logical implication. We shall consider
chains (Tm : m ∈ ω) of theories: this means

T0 ⊆ T1 ⊆ T2 ⊆ · · · (∗)

The signature of Tm will be Sm, so automatically S0 ⊆ S1 ⊆ S2 ⊆ · · ·
In one motivating example, Sm is {0, 1,−,+, · , ∂0, . . . , ∂m−1}, the sig-

nature of fields with m additional singulary operation-symbols; and Tm is
m-DF, the theory of fields (of any characteristic) with m commuting deriva-
tions. In this example, each Tm+1 is a conservative extension of Tm, that
is, Tm+1 ⊇ Tm and every sentence in Tm+1 of signature Sm is already in Tm.
We establish this by showing that every model of Tm expands to a model
of Tm+1. (This condition is sufficient, but not necessary [3, §2.6, exer. 8,
p. 66].) If (K, ∂0, . . . , ∂m−1) |= m-DF, then (K, ∂0, . . . , ∂m) |= (m+ 1)-DF,
where ∂m is the 0-derivation.
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The union of the theories m-DF can be denoted by ω-DF: it is the
theory of fields with ω-many commuting derivations. Each of the theories
m-DF has a model-companion, called m-DCF [11]; but we shall show (as
Theorem 3 below) that ω-DF has no model-companion. Let us recall that a
model-companion of a theory T is a theory T ∗ in the same signature such
that (1) T∀ = T ∗∀, that is, every model of one of the theories embeds in a
model of the other, and (2) T ∗ is model-complete, that is, T ∗ ∪ diag(M)
axiomatizes a complete theory for all models M of T ∗. Here diag(M) is
the quantifier-free theory of M with parameters: equivalently, diag(M) is
the theory of all structures in which MM embeds. (These notions, with
historical references, are reviewed further in [11].) A theory has at most one
model-companion, by an argument with interwoven elementary chains.

Let m-DF0 be m-DF with the additional requirement that the field have
characteristic 0. Then m-DF0 has a model-companion, called m-DCF0 [6].
We shall show (as Theorem 6 below) that m-DCF0 ⊆ (m+ 1)-DCF0. It will
follow then that the union ω-DF0 of the m-DF0 has a model-companion,
which is the union of the m-DCF0. This is by the following general result,
which has been observed also by Alice Medvedev [7, 8]. Again, the theories
Tk are as in (∗) above.

Theorem 1. Suppose each theory Tk has a model-companion Tk
∗, and

T0
∗ ⊆ T1∗ ⊆ T2∗ ⊆ · · · (†)

Then the theory
⋃
k∈ω Tk has a model-companion, namely

⋃
k∈ω Tk

∗.

Proof. Write U for
⋃
k∈ω Tk, and U∗ for

⋃
k∈ω Tk

∗. Suppose A |= U , and Γ
is a finite subset of U∗ ∪ diag(A). Then Γ is a subset of Tk

∗ ∪ diag(A �Sk)
for some k in ω, and also A �Sk |= Tk. Since (Tk

∗)∀ ⊆ Tk, the structure
A �Sk must embed in a model of Tk

∗; and this model will be a model of
Γ. We conclude that Γ is consistent. Therefore U∗ ∪ diag(A) is consistent.
Thus U∗∀ ⊆ U . By symmetry U∀ ⊆ U∗.

Similarly, if B |= U∗, then Tk
∗ ∪ diag(B � Sk) axiomatizes a complete

theory in each case, and therefore U∗ ∪ diag(B) is complete. �

The foregoing proof does not require that the signatures Sk form a chain,
but needs only that every finite subset of

⋃
k∈ω Sk be included in some Sk.

This is the setting for Medvedev’s [8, Prop. 2.4, p. 6], which then has the
same proof as the foregoing. Also in Medvedev’s setting, each Tk+1

∗ is a
conservative extension of Tk

∗; but only the weaker assumption Tk
∗ ⊆ Tk+1

∗

is needed in the proof.
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Medvedev notes that many properties that the theories Tk might have are
‘local’ and are therefore preserved in

⋃
k∈ω Tk: examples are completeness,

elimination of quantifiers, stability, and simplicity. In her main application,
Sn is the signature of fields with singulary operation-symbols σm/n!, where
m ∈ Z; and Tn is the theory of fields on which the σm/n! are automorphisms
such that

σk/n! ◦ σm/n! = σ(k+m)/n!.

Then Tn includes the theory Sn of fields with the single automorphism σ1/n!.
Using [12, §1] (which is based on [3, ch. 5]), we may observe at this point
that reduction of models of Tn to models of Sn is actually an equivalence of
the categories Mod⊆(Tn) and Mod⊆(Sn), whose objects are models of the
indicated theories, and whose morphisms are embeddings. We thus have at
hand a (rather simple) instance of the hypothesis of the following theorem.

Theorem 2. Suppose (I, J) is a bi-interpretation of theories S and T such

that I is an equivalence of the categories Mod⊆(S) and Mod⊆(T ). If S has
the model-companion S∗, and S ⊆ S∗, then T also has a model-companion,
which is the theory of those models B of T such that J(B) |= S∗.

Proof. The class of models B of T such that J(B) |= S∗ is elementary. Let
T ∗ be its theory. Then T ⊆ T ∗. Suppose B |= T . Then J(B) |= S, so J(B)
embeds in a model A of S∗. Consequently I(J(B)) embeds in I(A). Also
I(A) |= T ∗, since A ∼= J(I(A)). Since also B ∼= I(J(B)), we conclude that
B embeds in a model of T ∗. Finally, T ∗ is model-complete. Indeed, suppose
now B and C are models of T ∗ such that B ⊆ C. An embedding of J(B) in
J(C) is induced, and these structures are models of S∗, so the embedding is
elementary. Therefore the induced embedding of I(J(B)) in I(J(C)) is also
elementary. By the equivalence of the categories, B 4 C. �

In the present situation, the theory Sn has a model-companion [5, 1]; let
us denote this by ACFAn. By the theorem then, Tn has a model-companion
Tn
∗, which is axiomatized by Tn ∪ACFAn. We have ACFAn ⊆ Tn+1

∗ by [1,
1.12, Cor. 1, p. 3013]. By Theorem 1 then,

⋃
n∈ω Tn has a model-companion,

which is the union of the Tn
∗. Medvedev calls this union QACFA; she shows

for example that it preserves the simplicity of the ACFAn, as noted above,
though it does not preserve their supersimplicity.

The following is similar to the result that the theory of fields with a
derivation and an automorphism (of the field-structure only) has no model-
companion [10]. The obstruction lies in positive characteristics p, where all
derivatives of elements with p-th roots must be 0.
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Theorem 3. The theory ω-DF has no model-companion.

Proof. We use that an ∀∃ theory T has a model-companion if and only if
the class of its existentially closed models is elementary, and in this case
the model-companion is the theory of this class [2]. (A model A of T is
an existentially closed model, provided that if B |= T and A ⊆ B, then
A 41 B, that is, all quantifier-free formulas over A that are soluble in B are
soluble in A.) For each n in ω, the theory ω-DF has an existentially closed
model An, whose underlying field includes Fp(α), where α is transcendental;
and in this model,

∂kα =

{
1, if k = n,

0, otherwise.

Then α has no p-th root in An. Therefore, in a non-principal ultraproduct
of the An, α has no p-th root, although ∂nα = 0 for all n in ω, so that
α does have a p-th root in some extension. Thus the ultraproduct is not
an existentially closed model of ω-DF. Therefore the class of existentially
closed models of ω-DF is not elementary. �

It follows then by Theorem 1 that m-DCF * (m+ 1)-DCF for at least
one m. In fact this is so for all m, since

m-DCF ` p = 0→ ∀x
(∧
i<m

∂ix = 0→ ∃y yp = x
)
,

but (m+ 1)-DCF does not entail this sentence, since

(m+ 1)-DCF ` ∃x
( ∧
i<m

∂ix = 0 ∧ ∂mx 6= 0
)
.

However, this observation by itself is not enough to establish the last the-
orem. For, by the results of [12], it is possible for each Tk to have a
model-companion Tk

∗, while
⋃
k∈ω Tk has a model-companion that is not⋃

k∈ω Tk
∗. We may even require Tk+1 to be a conservative extension of Tk.

Indeed, if k > 0, then in the notation of [12], VSk is the theory of vector-
spaces with their scalar-fields in the signature {+,−,0, ◦, 0, 1, ∗, P k}, where
◦ is multiplication of scalars, and ∗ is the action of the scalar-field on the
vector-space, and P k is k-ary linear dependence. In particular, P 2 may writ-
ten also as ‖. Then VSk has a model-companion, VSk

∗, which is the theory
of k-dimensional vector-spaces over algebraically closed fields [12, Thm 2.3].
Let VSω =

⋃
16k<ω VSk. (This was called VS∞ in [12].) This theory

has the model-companion VSω
∗, which is the theory of infinite-dimensional

vector-spaces over algebraically closed fields [12, Thm 2.4]. In particular
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VSω
∗ is not the union of the VSk

∗, because these are mutually inconsistent.
We now turn this into a result about chains:

Theorem 4. If 1 6 n < ω, let Tn be the theory axiomatized by VS1 ∪ · · · ∪
VSn. Then Tn has a model-companion Tn

∗, which is axiomatized by Tn ∪
VSn

∗. Also Tn+1 is a conservative extension of Tn. However, the model-
companion VSω

∗ of the union VSω of the chain (Tn : 1 6 n < ω) is not the
union of the Tn

∗.

Proof. Every vector-space can be considered as a model of every VSk and
hence of every Tk. In particular, Tn+1 is a conservative extension of Tn. If
the theories Tn

∗ are as claimed, then they are mutually inconsistent, and
so VSω

∗ is not their union. It remains to show that there are theories Tn
∗

as claimed. We already know this when n = 1. For the other cases, if
1 6 k < n, we define the relations P k in models of VSn of dimension at
least n.

Let VSm
n the theory of such models: that is, VSm

n is axiomatized by
VSn and the requirement that the space have dimension at least n. The
relation P 1 is defined in models of VSm

n (and indeed in models of VSn)
by the quantifier-free formula x = 0. If n > 2, then there are existential
formulas that, in each model of VSm

n , define the relation ‖ and its com-
plement [12, §2, p. 431]. More generally, if 1 6 k < n − 1, then, using
existential formulas, we can define P k+1 and its complement in models
of Tk ∪ VSm

n or just VSk ∪VSm
n . Indeed, ¬P k+1x0 · · ·xk is equivalent to

∃(xk+1, . . . ,xn−1) ¬Pnx0 · · ·xn−1, and P k+1x0 · · ·xk is equivalent to

∃(xk+1, . . . ,xn)

(
P kx1 · · ·xk∨

(
¬Pnx1 · · ·xn∧

n∧
j=k+1

Pnx0 · · ·xj−1xj+1 · · ·xn
))

.

For, in a space of dimension at least n, if (a0, . . . ,ak) is linearly depen-
dent, but (a1, . . . ,ak) is not, this means precisely that (a1, . . . ,an) is in-
dependent for some (ak+1, . . . ,an), but a0 is a unique linear combina-
tion of (a1, . . . ,an), and in fact of (a1, . . . ,aj−1,aj+1, . . .an) whenever
k + 1 6 j 6 n, and (therefore) of (a1, . . . ,ak).

By [12, Lem 1.1, 1.2], if 1 6 k < n − 1, we now have that reduction
from models of Tk+1 ∪ VSm

n to models of Tk ∪ VSm
n is an equivalence of

the categories Mod⊆(Tk+1 ∪VSm
n ) and Mod⊆(Tk ∪VSm

n ). Combining these
results for all k, we have that reduction from models of Tn−1 ∪ VSm

n to

models of VSm
n is an equivalence of the categories Mod⊆(Tn−1 ∪ VSm

n ) and

Mod⊆(VSm
n ). Since VSn ⊆ VSm

n and every model of VSn embeds in a model
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of VSm
n , the two theories have the same model-companion, namely VSn

∗.
Similarly, Tn and Tn−1 ∪ VSm

n have the same model-companion; and by
Theorem 2, this is axiomatized by Tn ∪VSn

∗. �

A one-sorted version of the last theorem can be developed as follows. Let
VSr

n comprise the sentences of VSm
n having one-sorted signature {0,−,+, Pn}

of the sort of vectors alone. It is not obvious that all models of VSm
n can be

furnished with scalar-fields to make them models of VSr
n again; but this will

be the case. By [12, Thm 1.1], it is the case when n = 2: reduction of models

of VSm
2 to models of VSr

2 is an equivalence of the categories Mod⊆(VSm
2 )

and Mod⊆(VSr
2). This reduction is therefore conservative, by the defini-

tion of [12, p. 426]. It is said further at [12, p. 431] that reduction from
VSm

n to VSr
n is conservative when n > 2; but the details are not spelled out.

However, the claim can be established as follows. Immediately, reduction
from VS2 ∪VSm

n to VSr
2 ∪VSr

n is conservative. In particular, models of the
latter set of sentences really are vector-spaces without their scalar-fields. It
is noted in effect in the proof of Theorem 4 that reduction from VS2 ∪VSm

n

to VSm
n is conservative. Furthermore, in models of the latter theory, the

defining of parallelism and its complement is done with existential formulas
in the signature of vectors alone. Therefore reduction from VSr

2 ∪VSr
n to

VSr
n is conservative. We now have the following commutative diagram of

reduction-functors, three of them being conservative, that is, being equiva-
lences of categories.

Mod⊆(VS2 ∪VSm
n ) //

��

Mod⊆(VSm
n )

��
Mod⊆(VSr

2 ∪VSr
n) // Mod⊆(VSr

n)

Therefore the remaining reduction, from VSm
n to VSr

n, must be conservative.
Now there is a version of Theorem 4 where Tn is axiomatized by VSr

2 ∪ · · ·∪
VSr

n. Indeed, by Theorem 2, Tn has a model-companion, which is the the-
ory (in the same signature) of n-dimensional vector-spaces over algebraically
closed fields; and the union of the Tn has a model-companion, which is the
theory of infinite-dimensional vector-spaces over algebraically closed fields;
but this theory is not the union of the model-companions of the Tn.

The implication A ⇒ B in the following is used implicitly at [1, 1.12,
p. 3013] to establish the result used above, that if (K,σ) is a model of
ACFA, then so is (K,σm), assuming m > 1.
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Theorem 5. Assuming as usual T0 ⊆ T1, where each Tk has signature Sk,
we consider the following conditions.

A. For every model A of T1 and model B of T0 such that

A �S0 ⊆ B, (‡)

there is a model C of T1 such that

A ⊆ C, B ⊆ C �S0. (§)

B. The reduct to S0 of every existentially closed model of T1 is an
existentially closed model of T0.

C. T0 has the Amalgamation Property: if one model embeds in two
others, then those two in turn embed in a fourth model, compatibly
with the original embeddings.

D. T1 is ∀∃ (so that every model embeds in an existentially closed
model).

We have the two implications

A =⇒ B, B & C & D =⇒ A,

but there is no implication among the four conditions that does not follow
from these. This is true, even if T1 is required to be a conservative extension
of T0.

Proof. Suppose A holds. Let A be an existentially closed model of T1, and
let B be an arbitrary model of T0 such that (‡) holds. By hypothesis,
there is a model C of T1 such that (§) holds. Then A 41 C, and therefore
A �S0 41 C �S0, and a fortiori A �S0 41 B. Therefore A �S0 must be an
existentially closed model of T0. Thus B holds.

Suppose conversely B holds, along with C and D. Let A |= T1 and B |=
T0 such that (‡) holds. We establish the consistency of T1∪diag(A)∪diag(B).
It is enough to show the consistency of

T1 ∪ diag(A) ∪ {∃x ϕ(x)}, (¶)

where ϕ is an arbitrary quantifier-free formula of S0(A) that is soluble in
B. By D, there is an existentially closed model C of T1 that extends A. By
B then, C�S0 is an existentially closed model of T0 that extends A�S0. By
C, both B and C �S0 embed over A �S0 in a model of T0. In particular, ϕ
will be soluble in this model. Therefore ϕ is already soluble in C �S0 itself.
Thus C is a model of (¶). Therefore A holds.

The foregoing arguments eliminate the five possibilities marked X on the
table below, where 0 means false, and 1, true. We give examples of each
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1 X 2 3 4 X 5 6 7 X 8 9 10 X X 11
A 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
B 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
C 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
D 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

of the remaining cases, numbered according to the table. In each example,
T0 will be the reduct of T1 to S0. We shall denote by Sf the signature
{+, ·,−, 0, 1} of fields; and by Svs, the signature {+,−,0, ◦, 0, 1, ∗} of vector-
spaces as two-sorted structures.

1. We first give an example in which none of the four lettered conditions
hold. Let S0 = Sf∪{a, b} and S1 = S0∪{c}. Let T1 be the theory of fields
of characteristic p with distinguished elements a, b, and c such that {a, c}
or {b, c} is p-independent, and if {b, c} is p-independent, then so is {b, c, d}
for some d. Then T0 is the theory of fields of characteristic p in which,
for some c, {a, c} or {b, c} is p-independent, and if {b, c} is p-independent,
then so is {b, c, d} for some d. The negations of the four lettered conditions
are established as follows. Throughout, a, b, c, and d will be algebraically
independent over Fp.
¬A. We have

(Fp(a, b1/p, c), a, b, c) |= T1, (Fp(a, b1/p, c1/p), a, b) |= T0,

but if (Fp(a, b1/p, c), a, b, c) is a substructure of a model (K, a, b, c) of

T1, then K cannot contain c1/p.
¬B. T0 has no existentially closed models, since an element of a model

that is p-independent from a or b will always have a p-th root in some
extension. Similarly, no model of T1 in which {a, c} is not p-independent
is existentially closed. But T1 does have existentially closed models,
which are just the separably closed fields of characteristic p with p-
basis {a, c} and with an additional element b.

¬C. T0 does not have the Amalgamation Property, since (Fp(a, b1/p, c), a, b)
and (Fp(a1/p, b, c, d), a, b) are models that do not embed in the same
model over the common substructure (Fp(a, b, c), a, b), which is a model
of T0.

¬D. T1 is not ∀∃, since, as we have already noted, models in which {a, c}
is not p-independent do not embed in existentially closed models.
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2. For an example of the column headed by 2 in the table, we let S0

and S1 be as in 1; but now T1 is the theory of fields of characteristic p
with distinguished elements a, b, and c such that {a, c, d} or {b, c, d} is p-
independent for some d. This ensures that T1 has no existentially closed
models, so B holds vacuously; but the other three conditions still fail.

3. T0 and T1 are the same theory, so A and B hold trivially; and this
theory is the theory of vector-spaces of dimension at least 2, in the signature
Svs, so the theory neither has the Amalgamation Property, nor is ∀∃.

4. T1 is DFp with the additional requirement that the field have p-
dimension at least 2; and S0 = Sf , so T0 is the theory of fields of char-
acteristic p with p-dimension at least 2. The latter theory has the Amal-
gamation Property; but the other conditions fail. Indeed, let (Fp(a, b), D)
be the model of T1 in which Da = 1 and Db = 0: then the field Fp(a, b)
embeds in Fp(a1/p, b), which is a model of T0, but D does not extend to this
field. Also, T0 has no existentially closed models; but T1 does, and indeed it
has a model-companion, namely DCFp. Also T1 is not ∀∃, since T0 is not:
there is a chain of models of the latter, whose union is not a model, and we
can make the structures in the chain into models of T1 by adding the zero
derivation.

5. S0 = Sf , and S1 = S0 ∪ {a}. T1 is the theory of fields of character-
istic p with distinguished element a, which is p-independent from another
element; so T0 is (as in 4) the theory of fields of characteristic p with p-
dimension at least 2. Then we already have that C holds. But A fails: just
let A be (Fp(a, b), a), and let B be Fp(a1/p, b). Also T1 has no existentially
closed models, so B holds trivially, but T1 is not ∀∃.

6. T0 and T1 are the same, namely the theory of fields of characteristic
p of positive p-dimension, in the signature of fields, so this theory has the
Amalgamation Property, but is not ∀∃.

7. S0 = Svs, S1 = S0∪{‖,a, b}, and T1 is axiomatized by VS2 ∪{a ∦ b},
so it is ∀∃. Then T0 is the theory of vector-spaces of dimension at least 2.
As in Theorem 4 above, T1 has a model-companion, namely the theory of
vector-spaces over algebraically closed fields with basis {a, b}. But T0 has
no existentially closed models, since for all independent vectors a and b in
some model, the equation

x ∗ a + y ∗ b = 0 (‖)

is always soluble in some extension. Thus B fails. Then T0 also does not
have the Amalgamation Property, since the solutions of (‖) may satisfy
2x2 = y2 in one extension, but 3x2 = y2 in another. Similarly, A fails, since
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the reduct to S0 of a model of T1 may embed in a model of T0 in which a
and b are parallel.

8. S0 = Svs ∪ {‖}, S1 = S0 ∪ {a, b}, and T1 is axiomatized by VS2

together with

∀x ∀y (x ∗ a + y ∗ b = 0→ 2x2 = y2). (∗∗)
Then T0 is the theory of vector-spaces such that either the dimension is
at least 2, or the scalar field contains

√
2. As in 7, T0 does not have the

Amalgamation Property. The theory T1 is ∀∃. It also has the model (Q ∗
a ⊕ Q ∗ b,a, b), and Q ∗ a ⊕ Q ∗ b embeds in the model Q(

√
2,
√

3) ∗ a of
T0 when we let b =

√
3 ∗ a; but then the latter space embeds in no space

in which a and b are as required by (∗∗). So A fails. Finally, T1 has a
model-companion, axiomatized by VS2

∗ together with

∃x ∃y (x ∗ a + y ∗ b = 0 ∧ 2x2 = y2 ∧ x 6= 0);

and T0 has a model-companion, which is just VS2
∗; so B holds.

9. T0 and T1 are both VS1.
10. T1 = DFp, and T0 is the reduct to Sf , namely field-theory in charac-

teristic p.
11. T0 and T1 are both field-theory. �

Now let ω-DCF0 =
⋃
m∈ωm-DCF0. We obtain a positive application of

Theorem 1.

Theorem 6. For all m in ω,

m-DCF0 ⊆ (m+ 1)-DCF0.

Therefore ω-DF0 has a model-companion, which is ω-DCF0. This theory
admits full elimination of quantifiers, is complete, and is properly stable.

Proof. Suppose (L, ∂0, . . . , ∂m−1) is a model of m-DF0, and L has a subfield
K that is closed under the ∂i (where i < m), and there is also a derivation ∂m
on K such that (K, ∂0 �K, . . . , ∂m−1 �K, ∂m) is a model of (m+ 1)-DF0. We
shall include (L, ∂0, . . . , ∂m−1) in another model of m-DF0, namely a model
that expands to a model of (m+ 1)-DF0 that includes (K, ∂0, . . . , ∂m). Thus
condition A of Theorem 5 will hold, and therefore condition B will hold:
this means m-DCF0 ⊆ (m+ 1)-DCF0. Since m is arbitrary, it will follow
by Theorem 1 that ω-DCF0 is the model-companion of ω-DF0.

If K = L, we are done. Suppose a ∈ LrK. We shall define a differential
field (K〈a〉, ∂̃0, . . . , ∂̃m), where a ∈ K〈a〉, and for each i in m,

∂̃i �K〈a〉 ∩ L = ∂i �K〈a〉 ∩ L, (††)
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and ∂̃m � K = ∂m. Then we shall be able to repeat the process, in case
L * K〈a〉: we can work with an element of L r K〈a〉 as we did with a.
Ultimately we shall obtain the desired model of (m+ 1)-DF0 with reduct
that includes (L, ∂0, . . . , ∂m−1).

Considering ωm+1 as the set of (m + 1)-tuples of natural numbers, we
shall have

K〈a〉 = K(aσ : σ ∈ ωm+1),

where
aσ = ∂̃0

σ(0) · · · ∂̃mσ(m)a. (‡‡)
In particular then, by (††), we must have

σ(m) = 0 =⇒ aσ = ∂0
σ(0) · · · ∂m−1σ(m−1)a.

Using this rule, we make the definition

K1 = K(aσ : σ(m) = 0).

We may assume that the derivations ∂̃i have been defined so far that

i < m =⇒ ∂̃i �K1 = ∂i �K1, ∂̃m �K = ∂m �K. (§§)

Then (‡‡) holds when σ(m) < 1.
Now suppose that, for some positive j in ω, we have been able to define

the field K(aσ : σ(m) < j), and for each i in m, we have been able to define

∂̃i as a derivation on this field, and we have been able to define ∂̃m as a
derivation from K(aσ : σ(m) < j − 1) to K(aσ : σ(m) < j), so that (§§)
holds, and (‡‡) holds when σ(m) < j. We want to define the aσ such that

σ(m) = j, and we want to be able to extend the derivations ∂̃i appropriately.
If i < m + 1, then, as in [11, §4.1], we let i denote the characteristic

function of {i} on m+ 1: that is, i will be the element of ωm+1 that takes
the value 1 at i and 0 elsewhere. Considered as a product structure, ωm+1

inherits from ω the binary operations − and +. For each i in m + 1, we
have a derivation ∂̃i from K(aσ : (σ + i)(m) < j) to K(aσ : σ(m) < j) such
that (§§) holds, and also, if σ(m) < j, then

σ(i) > 0 =⇒ ∂̃ia
σ−i = aσ. (¶¶)

We now define the aσ, where σ(m) = j, so that, first of all, we can extend

∂̃m so that (¶¶) holds when σ(m) = j and i = m; but we must also ensure
that (¶¶) can hold also when σ(m) = j and i < m. To do this, we shall have
to make an inductive hypothesis, which is vacuously satisfied when j = 1.
We shall also proceed recursively again. More precisely, we shall refine the
recursion that we are already engaged in.
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We well-order the elements σ of ωm+1 by the linear ordering C deter-
mined by the left-lexicographic ordering of the (m+ 1)-tuples(

σ(m), σ(0) + · · ·+ σ(m− 1), σ(0), σ(1), . . . , σ(m− 2)
)
.

Then (ωm+1,C) has the order-type of the ordinal ω2. This is a difference
from the linear ordering defined in [11, §4.1] and elsewhere. However, for all
σ and τ in ωm+1, and all i in m+ 1, we still have

σ C τ =⇒ σ + i C τ + i.

We have assumed that, when τ = (0, . . . , 0, j), we have the field K(aσ : σ C
τ), together with, for each i in m+ 1, a derivation ∂̃i from K(aξ : ξ+ i C τ)
to K(aξ : ξ C τ) such that (§§) holds, and also, if σ C τ , then (¶¶) holds.
We have noted that we can have all of this when τ = (0, . . . , 0, 1). Suppose
we have all of this for some τ in ωm+1 such that (0, . . . , 0, 1) P τ , that is,
τ(m) > 0. We want to define the extension K(aσ : σ P τ) of K(aσ : σ C τ)

so that we can extend the ∂̃i appropriately. For defining aτ , there are two
cases to consider. We use the rules for derivations gathered, for example, in
[10, Fact 1.1].

1. If aτ−m is algebraic over K(aξ : ξ C τ −m), then the derivative

∂̃ma
τ−m is determined as an element of K(aξ : ξ C τ); we let aτ be

this element.
2. If aτ−m is not algebraic over K(aξ : ξ C τ −m), then we let aτ

be transcendental over L(aξ : ξ C τ). We are then free to define

∂̃ma
τ−m as aτ . (We require aτ to be transcendental over L(aξ : ξ C

τ), and not just over K(aξ : ξ C τ), so that we can establish (††)
later.)

We now check that, when i < m and τ(i) > 0, we can define ∂̃ia
τ−i as aτ .

Here we make the inductive hypothesis mentioned above, namely that the
foregoing two-part definition of aτ was already used to define aτ−i. Again
we consider two cases.

1. Suppose aτ−i is algebraic over K(aξ : ξ C τ − i). Then ∂̃ia
τ−i is

determined as an element of K(aξ : ξ C τ). Thus the value of the

bracket [∂̃i, ∂̃m] at aτ−i−m is determined: indeed, we have

[∂̃i, ∂̃m]aτ−i−m = ∂̃i∂̃ma
τ−i−m − ∂̃m∂̃iaτ−i−m = ∂̃ia

τ−i − aτ .
By inductive hypothesis, since aτ−i is algebraic over K(aξ : ξ C
τ − i), also aτ−i−m must be algebraic over K(aξ : ξ C τ − i −m).
Since the bracket is 0 on this field, it must be 0 at aτ−i−m as well
[11, Lem. 4.2].
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2. If aτ−i is transcendental over K(aξ : ξ C τ − i), then, since we are

given ∂̃i as a derivation whose domain is this field, we are free to
define ∂̃ia

τ−i as aτ .
Thus we have obtained K(aξ : ξ P τ) as desired. By induction, we obtain

the differential field (K(aσ : σ ∈ ωm+1), ∂̃0, . . . , ∂̃m) such that (‡‡) and (§§)
hold.

It remains to check that (††) holds. It is enough to show

K〈a〉 ∩ L ⊆ K1. (∗∗∗)

(We have the reverse inclusion.) Suppose τ ∈ ωm+1 and τ(m) > 0. By the
definition of aτ ,

aτ ∈ K(aσ : σ C τ)alg =⇒ aτ ∈ K(aσ : σ C τ), (†††)

aτ /∈ K(aσ : σ C τ)alg =⇒ aτ /∈ L(aσ : σ C τ)alg. (‡‡‡)

Suppose b ∈ K〈a〉 ∩ L. Since b ∈ K〈a〉, we have, for some τ in ωm+1, that
b is a rational function over K1 of those aσ such that m P σ P τ . But
then, by (†††), we do not need any aσ that is algebraic over K(aξ : ξ C σ),
since it actually belongs to this field. When we throw out all such aσ, then,
by (‡‡‡), those that remain are algebraically independent over L. Thus we
have

b ∈ K1(aσ0 , . . . , aσn−1) ∩ L
for some σj in ωm+1 such that (aσ0 , . . . , aσn−1) is algebraically independent
over L. Therefore we may assume n = 0, and b ∈ K1. Thus (∗∗∗) holds,

and we have the differential field (K〈a〉, ∂̃0, . . . , ∂̃m) fully as desired.
We have to be able to repeat this contruction, in case L * K〈a〉. If

b ∈ LrK〈a〉, we have to be able to construct K〈a, b〉, and so on. Let L〈a〉
be the compositum of K〈a〉 and L. Since m-DF0 has the Amalgamation

Property, we can extend the ∂̃i, where i < m, to commutating derivations
on the field L〈a〉 that extend the original ∂i on L. Thus we have a model

(L〈a〉, ∂̃0, . . . , ∂̃m−1) of m-DF0 and a model (K〈a〉, ∂̃0 � K〈a〉, . . . , ∂̃m−1 �
K〈a〉, ∂̃m) of (m+ 1)-DF0 that include, respectively, the models that we
started with. Now we can continue as before, ultimately extending the
domain of ∂̃m to include all of L. At limit stages of this process, we take
unions, which is no problem, since m-DF0 and (m+ 1)-DF0 are ∀∃.

Therefore ω-DF0 has the model-companion ω-DCF0. Since the m-DCF0

have the properties of quantifier-elimination, completeness, and stability
[6], the observations of Medvedev noted earlier allow us to conclude that
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ω-DCF0 also has these properties. Although each m-DCF0 is actually ω-
stable, ω-DCF0 is not even superstable, since if A is a set of constants (in
the sense that all of their derivatives are 0), then as σ ranges over Aω, the
sets {∂mx = σ(m) : m ∈ ω} belong to distinct complete types. �

In the foregoing proof, we cannot use Condition A of Theorem 5 in the
stronger form in which the structure C is required to be a mere expansion
to S1 of B:

Theorem 7. If m > 0, there is a model K of (m+ 1)-DF0 with a reduct
that is included in a model L of m-DF0, while L does not expand to a model
of (m+ 1)-DF0 that includes K.

Proof. We generalize the example of [4] repeated in [9, Ex. 1.2, p. 927].
Suppose K is a pure transcendental extension Q(aσ : σ ∈ ωm+1) of Q. We
make this into a model of (m+ 1)-DF0 by requiring ∂ia

σ = aσ+i in each
case. Let L be the pure transcendental extension K(bτ : τ ∈ ωm−1) of K.
We make this into a model of m-DF0 by extending the ∂i so that, if i < m−1,
we have ∂ib

τ = bτ+i, while ∂m−1b
τ is the element a(τ,0,0) of K. Note that

indeed if i < m− 1, then

[∂i, ∂m−1]bτ = ∂ia
(τ,0,0) − ∂m−1bτ+i = 0.

Suppose, if possible, ∂m extends to L as well so as to commute with the
other ∂i. Then for any τ in ωm−1 we have ∂mb

τ = f(bξ : ξ ∈ ωm−1) for
some polynomial f over K. But then, writing ∂ηf for the derivative of f
with respect to the variable indexed by η, we have, as by [10, Fact 1.1(0)],

a(τ,0,1) = ∂m∂m−1b
τ

= ∂m−1∂mb
τ

= ∂m−1(f(bξ : ξ ∈ ωm−1))

=
∑

η∈ωm−1

∂ηf(bξ : ξ ∈ ωm−1) · a(η,0,0) + f∂m−1(bξ : ξ ∈ ωm−1),

where the sum has only finitely many nonzero terms. The polynomial ex-
pression f∂m−1(bξ : ξ ∈ ωm−1) cannot have a(τ,0,1) as a constant term, since
this is not ∂m−1x for any x in K. Thus we have obtained an algebraic
relation among the bσ and aτ ; but there can be no such relation. �

Finally, the union of a chain of non-companionable theories may be com-
panionable:
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Theorem 8. In the signature {f} ∪ {ck : k ∈ ω}, where f is a singulary
operation-symbol and the ck are constant-symbols, let T0 be axiomatized by
the sentences

∀x ∀y (fx = fy → x = y)

and, for each k in ω,

∀x (fk+1x 6= x), ∀x (fx = ck → x = ck+1), fck+2 = ck+1 → fck+1 = ck.

For each n in ω, let Tn+1 be axiomatized by

Tn ∪ {fcn+1 = cn}.
Then

(1) each Tn is universally axiomatized, and a fortiori ∀∃, so it does have
existentially closed models;

(2) each Tn has the Amalgamation Property;
(3) every existentially closed model of Tn+1 is an existentially closed

model of Tn;
(4) no Tn is companionable;
(5)

⋃
n∈ω Tn is companionable.

Proof. Let Am be the model of T0 with universe ω×ω such that

fAm(k, `) = (k, `+ 1), ck
Am =

{
(k −m, 0), if k > m,

(0,m− k), if k 6 m.

Let Aω be the model of T0 with universe Z such that

fAωk = k + 1, ck
Aω = −k.

Then Am is a model of each Tk such that k 6 m; and Aω is a model of
each Tk. Moreover, each model of Tk consists of a copy of some Aβ such
that k 6 β 6 ω, along with some (or no) disjoint copies of ω and Z in
which f is interpreted as x 7→ x + 1. Conversely, every structure of this
form is a model of Tk. The β such that Aβ embeds in a given model of Tk is
uniquely determined by that model. Consequently Tk has the Amalgamation
Property. Also, a model of Tk is an existentially closed model if and only if
includes no copies of ω (outside the embedded Aβ): This establishes that
every existentially closed model of Tk+1 is an existentially closed model of
Tk.

The existentially closed models of Tk are those models that omit the type
{∀y fy 6= x} ∪ {x 6= cj : j ∈ ω}. In particular, Am is an existentially closed
model of Tk, if k 6 m; but Am is elementarily equivalent to a structure that
realizes the given type. Thus Tk is not companionable.
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Finally, the model-companion of
⋃
k∈ω Tk is axiomatized by this theory,

together with ∀x ∃y fy = x. �
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