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The set N of natural numbers is postulated to be such that

(i) 1 ∈ N;

(ii) x 7→ x′ : N→ N (where x′ is called the successor of x);

(iii) proof by induction is possible: If A ⊆ N, and

• 1 ∈ A,
• for all n in N, if n ∈ A, then n′ ∈ A,

then by induction A = N.

Theorem. The binary operations + and · can be defined on N by

x + 1 = x′, x + y′ = (x + y)′,

x · 1 = x, x · y′ = x · y + x,

(Proof not required.)

Theorem. + and · are commutative and associative, and · distributes
over +.

We postulate now

(iv) 1 is not a successor (∀x 1 6= x′),





(v) x 7→ x′ is injective (∀x ∀y (x′ = y′ ⇒ x = y)).

Recursion Theorem. If A is a set, and

b ∈ A, f : A× N→ A,

then there is a unique function g from N to A such that

• g(1) = b,
• for all n in N, g(n + 1) = f(g(n), n).

(Proof not required.) We now obtain some new operations by the recur-
sive definitions

x1 = x, xn+1 = xn · x,
1! = 1, (n + 1)! = n! · (n + 1),

1∑
k=1

ak = a1,

n+1∑
k=1

ak =

n∑
k=1

ak + an+1,

1∏
k=1

ak = a1,

n+1∏
k=1

ak =

n∏
k=1

ak · an+1,

(F1,F2) = (1, 1), (Fn+1,Fn+2) = (Fn+1,Fn + Fn+1).

We introduce 0 such that 0 /∈ N, but 0′ = 1; and we let

N ∪ {0} = ω.

Then the structure (ω, 0, ′), like (N, 1, ′), satisfies Postulates (i–v), which
are called the Peano Axioms. We define

x + 0 = x, x · 0 = 0, x0 = 1, 0! = 1,

0∑
k=1

ak = 0,

0∏
k=1

ak = 1.

By a double recursion, we define(
0

0

)
= 1,

(
0

k + 1

)
= 0,

(
n + 1

0

)
= 1,

(
n + 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
.

By induction, we can prove results like





)
∑n

k=1 1 = n,

) 2 ·
∑n

k=1 k = n · (n + 1),

) 6 ·
∑n

k=1 k
2 = n · (n + 1) · (2n + 1),

)
∑n

k=0(2k + 1) = (n + 1)2,

) 1 +
∑n

k=1 Fk = Fn+2,

) if k + ` = n, then(
n

k

)
=

(
n

`

)
,

(
n

k

)
· k! · `! = n!.

On N, we write x < y and say x is less than y if for some z in N,
x + z = y. We prove that < is an irreflexive and transitive relation
on N; thus it is an ordering of N. It respects also the trichotomy law,
so it is a linear ordering of N. We write x 6 y to mean x < y or x = y.
Then by definition 0 6 x for all x in ω. Now can prove by induction
that, for example, for all n in ω,

2n > 2n, 2n + 1 > n2.

If x 6 y, then the z in ω such that x + z = y is unique and is denoted
by y − x. Now we can state and prove the Binomial Theorem:

(x + y)n =

n∑
k=0

(
n

k

)
xkyn−k.

We use the notation {x ∈ N : x < n} = {1, . . . , n− 1}.

Strong Induction Theorem. if A ⊆ N and

• for all n in N, if {1, . . . , n− 1} ⊆ A, then n ∈ A,

then A = N.

In ω, the notation k | n means that, for some `, k · ` = n. In this case,
k is a divisor or factor of n. If p > 1, and the only factors of p are
1 and p, then p is called prime. If n > 1, but n is not prime, then it
is composite. By strong induction, every natural number greater than





1 has a prime factor. Similarly, every natural number n has a prime
factorization: there is m in ω and a function k 7→ pk on {1, . . . ,m}
such that each pk is prime and n =

∏m
k=1 pk.

Well Ordering Theorem. Each nonempty subset of ω has a least
element.

Division Theorem. For all m in N and n in ω, there are unique q and
r in ω such that

n = m · q + r & 0 6 r < m.

Here r is the remainder when n is divided by m. Given a0 and a1
in N, where a0 > a1, we find their greatest common divisor by the
Euclidean Algorithm: if ak+1 > 0, let ak+2 be the remainder when an
is divided by ak+1. For some least n, an+1 will be 0; and then an is the
greatest common divisor of a0 and a1.

If n ∈ N, and n | a−b or n | b−a, we say a and b are congruent modulo
n, writing

a ≡ b (mod n),

or a ≡ b if n is understood. Congruence modulo n is an equivalence
relation (it is reflexive, symmetric, and transitive). The congruence
class of a modulo n can be denoted by ā; the set of all congruence classes,
by Zn. Then Zn = {1̄, . . . , n̄}. Also, if x ≡ y, then x′ ≡ y′. Thus we
can define (x̄)′ = x′. The structure (Zn, 1̄,

′) allows proofs by induction.
Therefore

a ≡ b & c ≡ d =⇒ a + c ≡ b + d & a · c ≡ b · d.

However, 1 ≡ 4 & 21 6≡ 24 (mod 3). This shows that recursive defini-
tions may require more than induction.




