Number theory summary MAT 221, fall 2014

David Pierce

November 3, 2014 http://mat.msgsu.edu.tr/~dpierce/Dersler/

The set \mathbb{N} of **natural numbers** is postulated to be such that

- (i) $1 \in \mathbb{N};$
- (ii) $x \mapsto x' \colon \mathbb{N} \to \mathbb{N}$ (where x' is called the **successor** of x);

(iii) **proof by induction** is possible: If $A \subseteq \mathbb{N}$, and

- $1 \in A$,
- for all n in \mathbb{N} , if $n \in A$, then $n' \in A$,

then by induction $A = \mathbb{N}$.

Theorem. The binary operations + and \cdot can be defined on \mathbb{N} by

$$x + 1 = x',$$
 $x + y' = (x + y)',$
 $x \cdot 1 = x,$ $x \cdot y' = x \cdot y + x,$

(Proof not required.)

Theorem. + and \cdot are commutative and associative, and \cdot distributes over +.

We postulate now

(iv) 1 is not a successor $(\forall x \ 1 \neq x')$,

(v) $x \mapsto x'$ is injective $(\forall x \forall y \ (x' = y' \Rightarrow x = y))$.

Recursion Theorem. If A is a set, and

$$b \in A, \qquad f: A \times \mathbb{N} \to A,$$

then there is a unique function g from \mathbb{N} to A such that

- g(1) = b,
- for all n in \mathbb{N} , g(n+1) = f(g(n), n).

(Proof not required.) We now obtain some new operations by the **recursive definitions**

$$\begin{aligned} x^{1} &= x, & x^{n+1} &= x^{n} \cdot x, \\ 1! &= 1, & (n+1)! &= n! \cdot (n+1), \\ \sum_{k=1}^{1} a_{k} &= a_{1}, & \sum_{k=1}^{n+1} a_{k} &= \sum_{k=1}^{n} a_{k} + a_{n+1}, \\ \prod_{k=1}^{1} a_{k} &= a_{1}, & \prod_{k=1}^{n+1} a_{k} &= \prod_{k=1}^{n} a_{k} \cdot a_{n+1}, \\ (F_{1}, F_{2}) &= (1, 1), & (F_{n+1}, F_{n+2}) &= (F_{n+1}, F_{n} + F_{n+1}). \end{aligned}$$

We introduce 0 such that $0 \notin \mathbb{N}$, but 0' = 1; and we let

$$\mathbb{N} \cup \{0\} = \omega.$$

Then the structure $(\omega, 0, ')$, like $(\mathbb{N}, 1, ')$, satisfies Postulates (i–v), which are called the **Peano Axioms.** We define

$$x + 0 = x$$
, $x \cdot 0 = 0$, $x^0 = 1$, $0! = 1$, $\sum_{k=1}^{0} a_k = 0$, $\prod_{k=1}^{0} a_k = 1$.

By a double recursion, we define

$$\begin{pmatrix} 0\\0 \end{pmatrix} = 1, \quad \begin{pmatrix} 0\\k+1 \end{pmatrix} = 0, \quad \begin{pmatrix} n+1\\0 \end{pmatrix} = 1, \quad \begin{pmatrix} n+1\\k+1 \end{pmatrix} = \begin{pmatrix} n\\k \end{pmatrix} + \begin{pmatrix} n\\k+1 \end{pmatrix}.$$

By induction, we can prove results like

1)
$$\sum_{k=1}^{n} 1 = n$$
,
2) $2 \cdot \sum_{k=1}^{n} k = n \cdot (n+1)$,
3) $6 \cdot \sum_{k=1}^{n} k^2 = n \cdot (n+1) \cdot (2n+1)$,
4) $\sum_{k=0}^{n} (2k+1) = (n+1)^2$,
5) $1 + \sum_{k=1}^{n} F_k = F_{n+2}$,
6) if $k + \ell = n$, then
 $\binom{n}{2} - \binom{n}{2}$

$$\binom{n}{k} = \binom{n}{\ell}, \qquad \qquad \binom{n}{k} \cdot k! \cdot \ell! = n!.$$

On \mathbb{N} , we write x < y and say x is less than y if for some z in \mathbb{N} , x + z = y. We prove that < is an **irreflexive** and **transitive** relation on \mathbb{N} ; thus it is an **ordering** of \mathbb{N} . It respects also the **trichotomy** law, so it is a **linear** ordering of \mathbb{N} . We write $x \leq y$ to mean x < y or x = y. Then by definition $0 \leq x$ for all x in ω . Now can prove by induction that, for example, for all n in ω ,

$$2^n \ge 2n, \qquad \qquad 2^n + 1 \ge n^2.$$

If $x \leq y$, then the z in ω such that x + z = y is unique and is denoted by y - x. Now we can state and prove the **Binomial Theorem:**

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

We use the notation $\{x \in \mathbb{N} \colon x < n\} = \{1, \dots, n-1\}.$

Strong Induction Theorem. *if* $A \subseteq \mathbb{N}$ *and*

• for all n in \mathbb{N} , if $\{1, \ldots, n-1\} \subseteq A$, then $n \in A$,

then $A = \mathbb{N}$.

In ω , the notation $k \mid n$ means that, for some ℓ , $k \cdot \ell = n$. In this case, k is a **divisor** or **factor** of n. If p > 1, and the only factors of p are 1 and p, then p is called **prime.** If n > 1, but n is not prime, then it is **composite.** By strong induction, every natural number greater than

1 has a prime factor. Similarly, every natural number n has a **prime factorization:** there is m in ω and a function $k \mapsto p_k$ on $\{1, \ldots, m\}$ such that each p_k is prime and $n = \prod_{k=1}^m p_k$.

Well Ordering Theorem. Each nonempty subset of ω has a least element.

Division Theorem. For all m in \mathbb{N} and n in ω , there are unique q and r in ω such that

 $n = m \cdot q + r \And 0 \leqslant r < m.$

Here r is the **remainder** when n is divided by m. Given a_0 and a_1 in \mathbb{N} , where $a_0 > a_1$, we find their **greatest common divisor** by the **Euclidean Algorithm:** if $a_{k+1} > 0$, let a_{k+2} be the remainder when a_n is divided by a_{k+1} . For some least n, a_{n+1} will be 0; and then a_n is the greatest common divisor of a_0 and a_1 .

If $n \in \mathbb{N}$, and $n \mid a-b$ or $n \mid b-a$, we say a and b are **congruent** *modulo* n, writing

$$a \equiv b \pmod{n}$$
,

or $a \equiv b$ if *n* is understood. Congruence *modulo n* is an **equivalence** relation (it is reflexive, symmetric, and transitive). The congruence class of *a modulo n* can be denoted by \bar{a} ; the set of all congruence classes, by \mathbb{Z}_n . Then $\mathbb{Z}_n = \{\bar{1}, \ldots, \bar{n}\}$. Also, if $x \equiv y$, then $x' \equiv y'$. Thus we can define $(\bar{x})' = \overline{x'}$. The structure $(\mathbb{Z}_n, \bar{1}, ')$ allows proofs by induction. Therefore

$$a \equiv b \& c \equiv d \implies a + c \equiv b + d \& a \cdot c \equiv b \cdot d.$$

However, $1 \equiv 4 \& 2^1 \not\equiv 2^4 \pmod{3}$. This shows that recursive definitions may require more than induction.