Number theory summary MAT 221, fall 2014

David Pierce

November 3, 2014
http://mat.msgsu.edu.tr/~dpierce/Dersler/

The set \mathbb{N} of natural numbers is postulated to be such that
(i) $1 \in \mathbb{N}$;
(ii) $x \mapsto x^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$ (where x^{\prime} is called the successor of x);
(iii) proof by induction is possible: If $A \subseteq \mathbb{N}$, and

- $1 \in A$,
- for all n in \mathbb{N}, if $n \in A$, then $n^{\prime} \in A$,
then by induction $A=\mathbb{N}$.
Theorem. The binary operations + and \cdot can be defined on \mathbb{N} by

$$
\begin{aligned}
x+1 & =x^{\prime}, & x+y^{\prime} & =(x+y)^{\prime} \\
x \cdot 1 & =x, & x \cdot y^{\prime} & =x \cdot y+x
\end{aligned}
$$

(Proof not required.)
Theorem. + and \cdot are commutative and associative, and \cdot distributes over + .

We postulate now
(iv) 1 is not a successor $\left(\forall x 1 \neq x^{\prime}\right)$,
(v) $x \mapsto x^{\prime}$ is injective $\left(\forall x \forall y\left(x^{\prime}=y^{\prime} \Rightarrow x=y\right)\right)$.

Recursion Theorem. If A is a set, and

$$
b \in A, \quad f: A \times \mathbb{N} \rightarrow A
$$

then there is a unique function g from \mathbb{N} to A such that

- $g(1)=b$,
- for all n in $\mathbb{N}, g(n+1)=f(g(n), n)$.
(Proof not required.) We now obtain some new operations by the recursive definitions

$$
\begin{aligned}
x^{1} & =x, & x^{n+1} & =x^{n} \cdot x \\
1! & =1, & (n+1)! & =n!\cdot(n+1) \\
\sum_{k=1}^{1} a_{k} & =a_{1}, & \sum_{k=1}^{n+1} a_{k} & =\sum_{k=1}^{n} a_{k}+a_{n+1} \\
\prod_{k=1}^{1} a_{k} & =a_{1}, & \prod_{k=1}^{n+1} a_{k} & =\prod_{k=1}^{n} a_{k} \cdot a_{n+1} \\
\left(\mathrm{~F}_{1}, \mathrm{~F}_{2}\right) & =(1,1), & \left(\mathrm{F}_{n+1}, \mathrm{~F}_{n+2}\right) & =\left(\mathrm{F}_{n+1}, \mathrm{~F}_{n}+\mathrm{F}_{n+1}\right)
\end{aligned}
$$

We introduce 0 such that $0 \notin \mathbb{N}$, but $0^{\prime}=1$; and we let

$$
\mathbb{N} \cup\{0\}=\omega
$$

Then the structure $\left(\omega, 0,^{\prime}\right)$, like $\left(\mathbb{N}, 1,{ }^{\prime}\right)$, satisfies Postulates $(\mathrm{i}-\mathrm{v})$, which are called the Peano Axioms. We define

$$
x+0=x, \quad x \cdot 0=0, \quad x^{0}=1, \quad 0!=1, \quad \sum_{k=1}^{0} a_{k}=0, \quad \prod_{k=1}^{0} a_{k}=1
$$

By a double recursion, we define

$$
\binom{0}{0}=1, \quad\binom{0}{k+1}=0, \quad\binom{n+1}{0}=1, \quad\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1}
$$

By induction, we can prove results like

1) $\sum_{k=1}^{n} 1=n$,
2) $2 \cdot \sum_{k=1}^{n} k=n \cdot(n+1)$,
3) $6 \cdot \sum_{k=1}^{n} k^{2}=n \cdot(n+1) \cdot(2 n+1)$,
4) $\sum_{k=0}^{n}(2 k+1)=(n+1)^{2}$,
5) $1+\sum_{k=1}^{n} \mathrm{~F}_{k}=\mathrm{F}_{n+2}$,
6) if $k+\ell=n$, then

$$
\binom{n}{k}=\binom{n}{\ell}, \quad\binom{n}{k} \cdot k!\cdot \ell!=n!
$$

On \mathbb{N}, we write $x<y$ and say x is less than y if for some z in \mathbb{N}, $x+z=y$. We prove that $<$ is an irreflexive and transitive relation on \mathbb{N}; thus it is an ordering of \mathbb{N}. It respects also the trichotomy law, so it is a linear ordering of \mathbb{N}. We write $x \leqslant y$ to mean $x<y$ or $x=y$. Then by definition $0 \leqslant x$ for all x in ω. Now can prove by induction that, for example, for all n in ω,

$$
2^{n} \geqslant 2 n, \quad 2^{n}+1 \geqslant n^{2}
$$

If $x \leqslant y$, then the z in ω such that $x+z=y$ is unique and is denoted by $y-x$. Now we can state and prove the Binomial Theorem:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

We use the notation $\{x \in \mathbb{N}: x<n\}=\{1, \ldots, n-1\}$.
Strong Induction Theorem. if $A \subseteq \mathbb{N}$ and

- for all n in \mathbb{N}, if $\{1, \ldots, n-1\} \subseteq A$, then $n \in A$,
then $A=\mathbb{N}$.
In ω, the notation $k \mid n$ means that, for some $\ell, k \cdot \ell=n$. In this case, k is a divisor or factor of n. If $p>1$, and the only factors of p are 1 and p, then p is called prime. If $n>1$, but n is not prime, then it is composite. By strong induction, every natural number greater than

1 has a prime factor. Similarly, every natural number n has a prime factorization: there is m in ω and a function $k \mapsto p_{k}$ on $\{1, \ldots, m\}$ such that each p_{k} is prime and $n=\prod_{k=1}^{m} p_{k}$.

Well Ordering Theorem. Each nonempty subset of ω has a least element.

Division Theorem. For all m in \mathbb{N} and n in ω, there are unique q and r in ω such that

$$
n=m \cdot q+r \& 0 \leqslant r<m .
$$

Here r is the remainder when n is divided by m. Given a_{0} and a_{1} in \mathbb{N}, where $a_{0}>a_{1}$, we find their greatest common divisor by the Euclidean Algorithm: if $a_{k+1}>0$, let a_{k+2} be the remainder when a_{n} is divided by a_{k+1}. For some least n, a_{n+1} will be 0 ; and then a_{n} is the greatest common divisor of a_{0} and a_{1}.

If $n \in \mathbb{N}$, and $n \mid a-b$ or $n \mid b-a$, we say a and b are congruent modulo n, writing

$$
a \equiv b \quad(\bmod n),
$$

or $a \equiv b$ if n is understood. Congruence modulo n is an equivalence relation (it is reflexive, symmetric, and transitive). The congruence class of a modulo n can be denoted by \bar{a}; the set of all congruence classes, by \mathbb{Z}_{n}. Then $\mathbb{Z}_{n}=\{\overline{1}, \ldots, \bar{n}\}$. Also, if $x \equiv y$, then $x^{\prime} \equiv y^{\prime}$. Thus we can define $(\bar{x})^{\prime}=\overline{x^{\prime}}$. The structure $\left(\mathbb{Z}_{n}, \overline{1},{ }^{\prime}\right)$ allows proofs by induction. Therefore

$$
a \equiv b \quad \& c \equiv d \Longrightarrow a+c \equiv b+d \& a \cdot c \equiv b \cdot d .
$$

However, $1 \equiv 4 \& 2^{1} \not \equiv 2^{4}(\bmod 3)$. This shows that recursive definitions may require more than induction.

