Number theory summary II MAT 221, fall 2014

David Pierce

December 22, 2014 http:
//mat.msgsu.edu.tr/~dpierce/Dersler/
$\mathbb{N}=\{1,2,3, \ldots\}$, the set of natural numbers, and letters will range over this set or else the set \mathbb{Z} of integers. In \mathbb{N} or \mathbb{Z}, the expression

$$
a \mid b
$$

means a divides b, and b is a multiple of a, that is, for some q, $a q=b$. In this case, in $\mathbb{N}, a \leqslant b$.

Division Theorem. If $a \nmid b$, then for some unique q and r,

$$
b=a q+r \quad \& \quad r<a .
$$

Since a and b have a common multiple (namely $a b$), they have a least common multiple (by the Well Ordering Theorem), denoted by

$$
\operatorname{lcm}(a, b) .
$$

Since they have a common divisor (namely 1), and all common divisors are less than or equal to $\min \{a, b\}$, the numbers a and b have a greatest common divisor, denoted by

$$
\operatorname{gcd}(a, b) ;
$$

this can be found by the Euclidean Algorithm.
Theorem. 1. $a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)$.
2. Every common divisor of a and b divides $\operatorname{gcd}(a, b)$.
3. $\operatorname{lcm}(a, b)$ divides every common multiple of a and b.

Euclid's Lemma. If $a \mid b c$, but $\operatorname{gcd}(a, b)=1$, then $a \mid c$.

Proof. By the Euclidean Algorithm, in \mathbb{Z} we can solve

$$
a x+b y=\operatorname{gcd}(a, b)
$$

If $a x+b y=1$ and $a \mid b c$, then $a c x+b c y=c$ and so $a \mid c$.

The letter p always denotes a prime number. If $p \mid a$, we may define

$$
a(p)=\max \left\{n: p^{n} \mid a\right\}
$$

(The existence of this maximum can be proved by contradiction and the Well Ordering Theorem.) If $p \nmid a$, we may let $a(p)=0$. If always $a(p) \leqslant 1$, then a is squarefree.

Fundamental Theorem of Arithmetic. Every natural number is a product of primes in only one way:

$$
a=\prod_{p} p^{a(p)}
$$

Proof. By the Strong Induction Theorem, every natural number is a product of primes; by Euclid's Lemma, it is so in only one way.

Thus

$$
\operatorname{gcd}(a, b)=\prod_{p} p^{\min \{a(p), b(p)\}}, \quad \operatorname{lcm}(a, b)=\prod_{p} p^{\max \{a(p), b(p)\}}
$$

A number-theoretic function or arithmetic function is a function with domain \mathbb{N}. We define four of them:

- $\tau(a)=\sum_{d \mid a} 1$, the number of divisors of a;
- $\sigma(a)=\sum_{d \mid a} d$, the sum of the divisors of a;
- $\phi(a)=|\{x \in \mathbb{N}: x \leqslant n \& \operatorname{gcd}(x, n)=1\}| ;$
- $\mu(a)=\prod_{p \mid a}(-1)$, if a is squarefree; otherwise $\mu(a)=0$.

An arithmetic function F is multiplicative if

$$
\operatorname{gcd}(a, b)=1 \Longrightarrow F(a b)=F(a) \cdot F(b) .
$$

Theorem. τ and σ are multiplicative, and

$$
\tau(a)=\prod_{p \mid a}(a(p)+1), \quad \sigma(a)=\prod_{p \mid a} \sum_{k=0}^{a(p)} p^{k}=\prod_{p \mid a} \frac{p^{a(p)+1}-1}{p-1}
$$

A number a is perfect if $\sigma(a)=2 a$. Examples include 6, 28, 496, and 8128. A Mersenne prime is a prime of the form $2^{n}-1$, which is $\sum_{k=0}^{n-1} 2^{k}$. Examples include 3, 7, 31, and 127 .

Theorem. The even perfect numbers are just the numbers $p \cdot(p+$ 1)/2, where p is a Mersenne prime.

Möbius Inversion Theorem. For arithmetic functions F and G,

$$
G(a)=\sum_{d \mid a} F(d) \Longrightarrow F(a)=\sum_{d \mid a} \mu(d) \cdot G\left(\frac{a}{d}\right) .
$$

Proof. First prove the special case where $F(a)= \begin{cases}1, & \text { if } a=1, \\ 0, & \text { if } a>1 .\end{cases}$
Theorem. ϕ is multiplicative, and

$$
\phi(a)=a \cdot \prod_{p \mid a}\left(1-\frac{1}{p}\right)=\prod_{p \mid a}\left(p^{a(p)}-p^{a(p)-1}\right) .
$$

In particular, $\phi\left(p^{r}\right)=p^{r}-p^{r-1}$.

Proof. First show $\sum_{d \mid a} \phi(d)=a$. Then by Möbius Inversion,

$$
\phi(a)=a \cdot \sum_{d \mid a} \frac{\mu(d)}{d}=a \cdot \sum_{d \mid p_{1} \cdots p_{r}} \frac{\mu(d)}{d},
$$

where $p_{1} \cdots p_{r}=\prod_{p \mid a} p$. By induction on r,

$$
\sum_{d \mid p_{1} \cdots p_{r}} \frac{\mu(d)}{d}=\prod_{n=1}^{r}\left(1-\frac{1}{p_{n}}\right) .
$$

For arbitrary integers a and b, if $m \in \mathbb{N}$ and $m \mid a-b$, we say a and b are congruent to one another, writing

$$
a \equiv b \quad(\bmod m) .
$$

Fermat's Theorem. $a^{p} \equiv a(\bmod p)$, and if $p \nmid a$, then

$$
a^{p-1} \equiv 1 \quad(\bmod p) .
$$

Proof. By induction on a, or as a special case of the following.
Euler's Theorem. If $\operatorname{gcd}(a, m)=1$, then

$$
a^{\phi(m)} \equiv 1 \quad(\bmod m) .
$$

Proof. If $\{x \in \mathbb{N}: x \leqslant m \& \operatorname{gcd}(x, m)=1\}=\left\{b_{1}, \ldots, b_{\phi(m)}\right\}$, then $\prod_{k=1}^{\phi(m)}\left(a b_{k}\right) \equiv \prod_{k=1}^{\phi(m)} b_{k}(\bmod m)$.

Chinese Remainder Theorem. If $\operatorname{gcd}(m, n)=1$, then every system

$$
x \equiv a \quad(\bmod m), \quad x \equiv b \quad(\bmod n)
$$

is uniquely soluble modulo mn, every solution being congruent to

$$
a n c+b m d,
$$

where $n c \equiv 1(\bmod m)$ and $m d \equiv 1(\bmod n)$.

