Öğrenci Numarası:

MSGSÜ, MAT 221, Sinav

10 Kasım 2014, Saat 13:00
Öğretmen: David Pierce
Yönergeler: Sinavda 4 sayfada 5 soru var. Sadece 4 soruyu cevaplayın. Lütfen dikkat ederek yazın. İngilizceyi veya Türkçeyi

1	
2	
3	
4	
5	
Σ	

As in class, \mathbb{N} is the set $\{1,2,3, \ldots\}$ of natural numbers, and x^{\prime} is the successor of x, so $1^{\prime}=2,2^{\prime}=3$, and so on. We also let $\omega=\{0\} \cup \mathbb{N}$ and $0^{\prime}=1$.

Problem 1. For a given value of n in \mathbb{N}, let \bar{x} denote the congruence-class of x modulo n, and let $\mathbb{Z}_{n}=\{\bar{x}: x \in \mathbb{N}\}=\{\overline{1}, \ldots, \bar{n}\}$. If $\overline{x^{\prime}}=\overline{y^{\prime}}$, then $\bar{x}=\bar{y}$. Therefore we can define $\bar{x}^{\prime}=\overline{x^{\prime}}$. The structure $\left(\mathbb{Z}_{n}, \overline{1},{ }^{\prime}\right)$ allows proofs by induction. We have shown that addition and multiplication on \mathbb{Z}_{n} can be defined recursively by

$$
\begin{aligned}
\bar{x}+\overline{1} & =\bar{x}^{\prime}, & \bar{x}+\bar{y}^{\prime} & =(\bar{x}+\bar{y})^{\prime}, \\
\bar{x} \cdot \overline{1} & =\bar{x}, & \bar{x} \cdot \bar{y}^{\prime} & =\bar{x} \cdot \bar{y}+\bar{x} .
\end{aligned}
$$

(a) If $n=6$, show that there is an operation on \mathbb{Z}_{n} given by

$$
\begin{equation*}
\bar{x}^{\overline{1}}=\bar{x}, \quad \bar{x}^{\bar{y}^{\prime}}=\bar{x}^{\bar{y}} \cdot \bar{x} \tag{*}
\end{equation*}
$$

It is enough to fill out the table

$\bar{x}^{\bar{y}}$		y						
	1	2	3	4	5	6		
	1							
2								
	3							
	4							
	5							
6								

(b) If $n=3$, show that there is no operation on \mathbb{Z}_{n} as in (*).

Problem 2. Using only the recursive definition of addition on \mathbb{N} and induction, prove that addition is associative.

Problem 3. We know $2 \cdot \sum_{k=1}^{n} k=n \cdot(n+1)$. For all n in \mathbb{N}, prove $\left(\sum_{k=1}^{n} k\right)^{2}=\sum_{k=1}^{n} k^{3}$.

Problem 4. We can define the so-called binomial coefficients recursively by

$$
\binom{0}{0}=1, \quad\binom{0}{k+1}=0, \quad\binom{n+1}{0}=1, \quad\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1} .
$$

Using only this definition, and induction, show that, for all n in $\omega, \sum_{k=0}^{n}\binom{n}{k}=2^{n}$.

Problem 5. Let d be the greatest common divisor of 385 and 168.
(a) Find d.
(b) Find a solution from \mathbb{N} of one of the equations

$$
385 x=168 y+d, \quad 168 x=365 y+d .
$$

