MSGSÜ, MAT 221, Sinav, 10 Kasım 2014, Saat 13:00, David Pierce. Sadece 4 soruyu cevaplayin.

As in class, \mathbb{N} is the set $\{1,2,3, \ldots\}$ of natural numbers, and x^{\prime} is the successor of x, so $1^{\prime}=2,2^{\prime}=3$, and so on. We also let $\omega=\{0\} \cup \mathbb{N}$ and $0^{\prime}=1$.

Problem 1. For a given value of n in \mathbb{N}, let \bar{x} denote the congruenceclass of x modulo n, and let $\mathbb{Z}_{n}=\{\bar{x}: x \in \mathbb{N}\}=\{\overline{1}, \ldots, \bar{n}\}$. If $\overline{x^{\prime}}=\overline{y^{\prime}}$, then $\bar{x}=\bar{y}$. Therefore we can define $\bar{x}^{\prime}=\overline{x^{\prime}}$. The structure $\left(\mathbb{Z}_{n}, \overline{1},{ }^{\prime}\right)$ allows proofs by induction. We have shown that addition and multiplication on \mathbb{Z}_{n} can be defined recursively by

$$
\begin{aligned}
\bar{x}+\overline{1} & =\bar{x}^{\prime}, & \bar{x}+\bar{y}^{\prime} & =(\bar{x}+\bar{y})^{\prime}, \\
\bar{x} \cdot \overline{1} & =\bar{x}, & \bar{x} \cdot \bar{y}^{\prime} & =\bar{x} \cdot \bar{y}+\bar{x} .
\end{aligned}
$$

(a) If $n=6$, show that there is an operation on \mathbb{Z}_{n} given by

$$
\begin{equation*}
\bar{x}^{\overline{1}}=\bar{x}, \quad \quad \bar{x}^{\bar{y}^{\prime}}=\bar{x}^{\bar{y}} \cdot \bar{x} . \tag{*}
\end{equation*}
$$

It is enough to fill out the table [in the solution].
(b) If $n=3$, show that there is no operation on \mathbb{Z}_{n} as in (*).

Solution.

(a)

$\bar{x}^{\bar{y}}$		y						
	1	2	3	4	5	6		
x	1	1	1	1	1	1	1	
	2	2	4	2	4	2	4	
	3	3	3	3	3	3	3	
	4	4	4	4	4	4	4	
	5	5	2	5	2	5	2	
	6	6	6	6	6	6	6	

From the table it should be clear that, modulo 6,

$$
a \equiv b \Longrightarrow x^{a} \equiv x^{b} .
$$

(b) Using (*), we obtain $\overline{2}^{\overline{1}}=\overline{2}, \overline{2}^{\overline{2}}=\overline{4}=\overline{1}, \overline{2}^{\overline{3}}=\overline{2}$, so $\overline{2}^{\overline{4}}=\overline{1}$, so $\overline{2}^{\overline{1}} \neq \overline{2}^{\overline{4}}$, although $\overline{1}=\overline{4}$.

Problem 2. Using only the recursive definition of addition on \mathbb{N} and induction, prove that addition is associative.

Solution. We want to show $x+(y+z)=(x+y)+z$.

1. By the recursive definition of addition (namely $x+1=x^{\prime}$ and $\left.x+y^{\prime}=(x+y)^{\prime}\right)$, we have

$$
x+(y+1)=x+y^{\prime}=(x+y)^{\prime}=(x+y)+1,
$$

so the claim is true when $z=1$.
2. Suppose the claim is true when $z=t$. Then

$$
\begin{aligned}
x+\left(y+t^{\prime}\right) & =x+(y+t)^{\prime} & & \text { [def'n of }+] \\
& =(x+(y+t))^{\prime} & & \text { [def'n of }+] \\
& =((x+y)+t)^{\prime} & & \text { [inductive hypothesis] } \\
& =(x+y)+t^{\prime}, & & {[\text { def'n of }+] }
\end{aligned}
$$

so the claim is true when $z=t^{\prime}$.
By induction, the claim holds for all z in \mathbb{N} (for all x and y in \mathbb{N}).
Problem 3. We know $2 \cdot \sum_{k=1}^{n} k=n \cdot(n+1)$. For all n in \mathbb{N}, prove

$$
\left(\sum_{k=1}^{n} k\right)^{2}=\sum_{k=1}^{n} k^{3} .
$$

Solution. The claim is obvious when $n=1$. Suppose it is true when $n=m$. Then

$$
\begin{aligned}
& \left(\sum_{k=1}^{m+1} k\right)^{2}=\left(\sum_{k=1}^{m} k\right)^{2}+2 \cdot \sum_{k=1}^{m} k \cdot(n+1)+(n+1)^{2} \\
& =\sum_{k=1}^{n} k^{3}+n \cdot(n+1)^{2}+(n+1)^{2}=\sum_{k=1}^{n} k^{3}+(n+1)^{3}=\sum_{k=1}^{n+1} k^{3} .
\end{aligned}
$$

Problem 4. We can define the so-called binomial coefficients recursively by

$$
\begin{aligned}
\binom{0}{0} & =1, & \binom{0}{k+1} & =0, \\
\binom{n+1}{0} & =1, & \binom{n+1}{k+1} & =\binom{n}{k}+\binom{n}{k+1} .
\end{aligned}
$$

Using only this definition, and induction, show that, for all n in ω,

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Solution. The claim is obvious when $n=0$. Suppose it is true when $n=m$. Then

$$
\begin{aligned}
& \sum_{k=0}^{m+1}\binom{m+1}{k}=\binom{m+1}{0}+\sum_{k=0}^{m}\binom{m+1}{k+1} \\
& =1+\sum_{k=0}^{m}\left(\binom{m}{k}+\binom{m}{k+1}\right) \\
& =\sum_{k=0}^{m}\binom{m}{k}+\sum_{k=0}^{m+1}\binom{m}{k} \\
& \quad=\sum_{k=0}^{m}\binom{m}{k}+\sum_{k=0}^{m}\binom{m}{k}=2 \cdot 2^{m}=2^{m+1}
\end{aligned}
$$

(since $\binom{m+1}{0}=1=\binom{m}{0}$ and $\left.\binom{m}{m+1}=0\right)$. Therefore, by induction, the claim is true for all n in ω. (We do not have $\binom{m}{m+1}=0$ immediately from the definition, but can prove by induction that $\binom{m}{n}=0$ when $n>m$.)

Problem 5. Let d be the greatest common divisor of 385 and 168.
(a) Find d.
(b) Find a solution from \mathbb{N} of one of the equations

$$
385 x=168 y+d, \quad \quad 168 x=365 y+d
$$

Solution.
(a) Since

$$
\begin{aligned}
385 & =168 \cdot 2+49 \\
168 & =49 \cdot 3+21 \\
49 & =21 \cdot 2+7
\end{aligned}
$$

and $7 \mid 21$, we conclude $\operatorname{gcd}(385,168)=7$.
(b) From the previous computations,

$$
\begin{aligned}
7 & =49-21 \cdot 2 \\
& =49-(168-49 \cdot 3) \cdot 2 \\
& =49 \cdot 7-168 \cdot 2 \\
& =(385-168 \cdot 2) \cdot 7-168 \cdot 2 \\
& =385 \cdot 7-168 \cdot 16
\end{aligned}
$$

Thus $385 \cdot 7=168 \cdot 16+7$.

