MSGSÜ, MAT 221, Sınav, 10 Kasım 2014, Saat 13:00, David Pierce. Sadece 4 soruyu cevaplayın.

As in class, \mathbb{N} is the set $\{1, 2, 3, ...\}$ of **natural numbers**, and x' is the **successor** of x, so 1' = 2, 2' = 3, and so on. We also let $\omega = \{0\} \cup \mathbb{N}$ and 0' = 1.

Problem 1. For a given value of n in \mathbb{N} , let \bar{x} denote the congruenceclass of x modulo n, and let $\mathbb{Z}_n = \{\bar{x} \colon x \in \mathbb{N}\} = \{\bar{1}, \ldots, \bar{n}\}$. If $\overline{x'} = \overline{y'}$, then $\bar{x} = \bar{y}$. Therefore we can define $\bar{x}' = \overline{x'}$. The structure $(\mathbb{Z}_n, \bar{1}, ')$ allows proofs by induction. We have shown that addition and multiplication on \mathbb{Z}_n can be defined recursively by

$$\bar{x} + \bar{1} = \bar{x}', \qquad \bar{x} + \bar{y}' = (\bar{x} + \bar{y})', \\ \bar{x} \cdot \bar{1} = \bar{x}, \qquad \bar{x} \cdot \bar{y}' = \bar{x} \cdot \bar{y} + \bar{x}.$$

(a) If n = 6, show that there is an operation on \mathbb{Z}_n given by

$$\bar{x}^{\bar{1}} = \bar{x}, \qquad \qquad \bar{x}^{\bar{y}'} = \bar{x}^{\bar{y}} \cdot \bar{x}. \qquad (*)$$

It is enough to fill out the table [in the solution].

(b) If n = 3, show that there is no operation on \mathbb{Z}_n as in (*). Solution.

	$\bar{x}^{\bar{y}}$		y					
(a)			1	2	3	4	5	6
	x	1	1	1	1	1	1	1
		2	2	4	2	4	2	4
		3	3	3	3	3	3	3
		4	4	4	4	4	4	4
		5	5	2	5	2	5	2
		6	6	6	6	6	6	6

From the table it should be clear that, *modulo* 6,

 $a \equiv b \implies x^a \equiv x^b.$

(b) Using (*), we obtain $\bar{2}^{\bar{1}} = \bar{2}, \, \bar{2}^{\bar{2}} = \bar{4} = \bar{1}, \, \bar{2}^{\bar{3}} = \bar{2}, \, \text{so} \, \bar{2}^{\bar{4}} = \bar{1}, \, \text{so} \, \bar{2}^{\bar{1}} \neq \bar{2}^{\bar{4}}, \, \text{although } \bar{1} = \bar{4}.$

Problem 2. Using only the recursive definition of addition on \mathbb{N} and induction, prove that addition is associative.

Solution. We want to show x + (y + z) = (x + y) + z.

1. By the recursive definition of addition (namely x + 1 = x' and x + y' = (x + y)'), we have

$$x + (y + 1) = x + y' = (x + y)' = (x + y) + 1$$

so the claim is true when z = 1.

2. Suppose the claim is true when z = t. Then

$$\begin{aligned} x + (y + t') &= x + (y + t)' & [\text{def'n of } +] \\ &= (x + (y + t))' & [\text{def'n of } +] \\ &= ((x + y) + t)' & [\text{inductive hypothesis}] \\ &= (x + y) + t', & [\text{def'n of } +] \end{aligned}$$

so the claim is true when z = t'.

By induction, the claim holds for all z in \mathbb{N} (for all x and y in \mathbb{N}).

Problem 3. We know $2 \cdot \sum_{k=1}^{n} k = n \cdot (n+1)$. For all n in \mathbb{N} , prove $\left(\sum_{k=1}^{n} k\right)^2 = \sum_{k=1}^{n} k^3.$

Solution. The claim is obvious when n = 1. Suppose it is true when n = m. Then

$$\left(\sum_{k=1}^{m+1} k\right)^2 = \left(\sum_{k=1}^m k\right)^2 + 2 \cdot \sum_{k=1}^m k \cdot (n+1) + (n+1)^2$$
$$= \sum_{k=1}^n k^3 + n \cdot (n+1)^2 + (n+1)^2 = \sum_{k=1}^n k^3 + (n+1)^3 = \sum_{k=1}^{n+1} k^3.$$

Problem 4. We can define the so-called binomial coefficients recursively by

$$\begin{pmatrix} 0\\0 \end{pmatrix} = 1, \qquad \begin{pmatrix} 0\\k+1 \end{pmatrix} = 0, \\ \begin{pmatrix} n+1\\0 \end{pmatrix} = 1, \qquad \begin{pmatrix} n+1\\k+1 \end{pmatrix} = \begin{pmatrix} n\\k \end{pmatrix} + \begin{pmatrix} n\\k+1 \end{pmatrix}.$$

Using only this definition, and induction, show that, for all n in ω ,

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

Solution. The claim is obvious when n = 0. Suppose it is true when n = m. Then

$$\sum_{k=0}^{m+1} \binom{m+1}{k} = \binom{m+1}{0} + \sum_{k=0}^{m} \binom{m+1}{k+1}$$
$$= 1 + \sum_{k=0}^{m} \binom{m}{k} + \binom{m}{k+1}$$
$$= \sum_{k=0}^{m} \binom{m}{k} + \sum_{k=0}^{m+1} \binom{m}{k}$$
$$= \sum_{k=0}^{m} \binom{m}{k} + \sum_{k=0}^{m} \binom{m}{k} = 2 \cdot 2^{m} = 2^{m+1}$$

(since $\binom{m+1}{0} = 1 = \binom{m}{0}$ and $\binom{m}{m+1} = 0$). Therefore, by induction, the claim is true for all n in ω . (We do not have $\binom{m}{m+1} = 0$ immediately from the definition, but can prove by induction that $\binom{m}{n} = 0$ when n > m.)

Problem 5. Let *d* be the greatest common divisor of 385 and 168.

- (a) Find d.
- (b) Find a solution from \mathbb{N} of one of the equations

$$385x = 168y + d, \qquad 168x = 365y + d.$$

Solution.

(a) Since

$$385 = 168 \cdot 2 + 49$$
$$168 = 49 \cdot 3 + 21$$
$$49 = 21 \cdot 2 + 7$$

and $7 \mid 21$, we conclude gcd(385, 168) = 7.

(b) From the previous computations,

$$7 = 49 - 21 \cdot 2$$

= 49 - (168 - 49 \cdot 3) \cdot 2
= 49 \cdot 7 - 168 \cdot 2
= (385 - 168 \cdot 2) \cdot 7 - 168 \cdot 2
= 385 \cdot 7 - 168 \cdot 16.

Thus $385 \cdot 7 = 168 \cdot 16 + 7$.