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CHAPTER 1

THE GREATEST COMMON DIVISOR OF TWO NUMBERS

Until further notice, lower case italic letters will always represent in-
tegers, i.e.

1, 2, 3,... (positive integers or natural numbers),
0] (zero),
—1,—2,—3, ... (negative integers).

The following facts will be used constantly: If a is an integer, then so
are —a and |¢|; if ¢ and b are integers, then so are a+b, a—b, and ab; if
a>b, then a=b-4-1; and if a<b, then a==b—1.

DerFINITION 1: Let a==0;let b be arbitrary. Then b is said to be divisible
by a if there exists a number q such that

b=qa.
This g, namely g= %—, is then uniquely determined.

We also say that: b is a multiple of g, a is a divisor of b, a divides b, or
a goes into b. In symbols,

alb
If a==0 and & is not divisible by a, then we write
atb.
Examples: 26, 446, 314, 2|—4,

af0 for every a==0,

1)a and —1/a for every a,

ala and a]—a for every a=}0.
TureoreM 1: If alb, then

a/—b, —a/b, —a/—b, la]/]o].
Proof: By hypothesis we have b=ga; furthermore a==0, and there-
fore —a==0 and |a|=4=0. It follows that
—b=(—g)a, b=(—g)(—a), —b=g(—a), [b|=]g]|al
11



12 Part ONE. I. THE GrEATEST CoMMON Divisor oF Two NUMBERS

TueoreM 2: If afb and blc, then ac.
This is also expressed as follows: Divisibility is transitive.

Proof: By hypothesis a==0, and there exist two numbers g1, g for which
b=gq,a, c=g¢,b.
From this it follows that
=42, * A

TreoreM 3: 1) If aclbe, then afb.

2) If afb and c¢5=0, then aclbc.

Proof: 1) Since ac#=0, we have a==0 and ¢<-0. Moreover, bc=gqac;
hence b=qa.

2) Since a==0, we have ac==0. Moreover b=gqa; hence bc=qac.

TurEoreM 4: If afb, then albx for every x.

Proof: b=qa, bx=qx - a.

THEOREM 5: If afb and afc, then a|(b-+c) and af(b—c).

Proof: b=g,a, ¢=¢,0, bXc=(g;¢,)a.

THEOREM 6: If alb and alc, then af (bx+-cy) for any x and y.

Proof: By Theorem 4,

albz, alcy;
therefore, by Theorem 5,
a/bx+cy.

TrEOREM 7: If a>0 and b is arbitrary, then there is exactly one pair
of numbers q and r such that

(1) b=qa+r, 0=r<a.

(r=0 corresponds to the case afb.)
“Dividend = (incomplete) quotient times the divisor 4 remainder,
0 =< remainder < divisor.”
Proof: 1) I first show that (1) has at least one solution.

Among all the numbers of the form b—ua there occur negative and posi-
tive ones (namely, for sufficiently large positive # and for negative » having
sufficiently large absolute value, respectively). The smallest non-negative
number b—ua occurs for u=q. If I set

b—qa=r,
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then
r=b—qa=0, r—a=b—(g+1)a<0,
so that (1) is satisfied.

2) The proof of uniqueness goes as follows: If (1) holds and if u<g,
then
usq—1, b—ua=b—(¢g— 1) a=r+a=aq;

if (1) holds and if u>g, then
u=q+1, b—uasb—(¢+1) a=r—a<0.

The desired relations
)<b—ua<a

thus hold only when u=—g.

TreoreM 8 (for g=10 this is the familiar representation of g in the
decimal system): Let g>1. Then any number a>0 can be expressed in
one and only one way in the form:

a=cy+c g+ -+ cng® n=0, ¢,>0, 0=c,<<g for O=m=n.

Proof: 1) I first prove the existence of such a representation (using
mathematical induction).

For a=1, the existence is obvious (=0, c,=1, 0<co<<g).

Let a>1, and assume the assertion true for 1, 2, ..., e—1. a belongs to
one of the intervals 1sa<g, g=a<g? ¢’=a<¢’ ... (ad infinitum).
Hence there is some n=0 for which g*==a<<g*t+!. By Theorem 7, we have

a=c,g"+r, 0=r<gn

¢, must be >0, since C,g*=a—r>g"—¢g"=0; in addition, ¢,<lg, since
Chgr=a<grti

If =0, we are finished (@=040.g+ ... +0.g"~14-c. g% 0<ca<g).
If »>0, then, since r<<g"=a, we have

r=by+bg+ - +bgt, t=0, b,>0, 0<b,<<g for 0=<m=t.
t must be <, since g">r=b,g'=g’; therefore
a=by+b,g+ - +bgi4+0-gt+ 4. - +0-g" " 4-cag™.
2) The proof of unigueness goes as follows: Let
a=cytcg+ - Fengt=dy+dig+ - +drg", 120, ¢, >0, 0=cn<g
(for 0=m=n), r=0, d,>0, 0=dn<g (for O=m=<r).
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The assertion is that n—=r and that c,=d, for 0=m=n. If this were not so,
then, by subtraction, we would have

0=¢,+ - -+ €% s>0, 40, —g<en<<g for 0=m=s;
hence

g'<|eg’|=|e+ - +e—1g Y =@@—1) A+ +g~)=¢"—L

TuroreM 9: Let a>0 and b>0. Of all the common multiples of a and
b (there are such multiples, and even positive ones: for example, ab and 3ab),

let m be the smallest positive one and let n be any of them (n% 0). Then
wmn.

In words: Every common multiple is divisible by the smallest positive

one.
Proof: By Theorem 7, the numbers ¢ and r can be chosen such that

n=gm-+r, 0=r<m.
From
r=n—gm=mn-14m(—q)
and
a/n, a/m, b/n, b/m,

it follows by Theorem 6 that
afr, bfr.
Hence, by the definition of m, » cannot be >0. Therefore
r=0, n=qm, m/n.

TueoreMm 10: If a==0 end bla, then
lbl=lal,
so that every a==0 has only a finite number of divisors.

Proof: a=qb and q==0;
therefore
lg|=1, [a|=|q]|b|=]b].

TueoreM 11: Let a and b not both be 0. Let d be the greatest common
divisor of @ end b. (d exists and is >0; for at least one of the numbers q,
b is ==0 and hence, according to Theorem 10, has only finitely many divisors ;
and the number 1 is certainly a common divisor of a and b.)

1) If f is any common divisor of a and b, then

fld.

Inwords: Every common divisor goes into the greatest common divisor.
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2) If >0, b>0, and m is the smallest positive common multiple of a
and b, then

md=—ab.

In particular, then: If a0, 5>0, and d=1, then m=ab.

Proof: Casel: Leta>0and 5#>0. Since ab is a common multiple of
a and b, then by Theorem 9,

m/ab,

ab . .
—— 1s an integer.
m

Setting

ab

P A

we shall prove the following :
a) thatif fla and f/b, then
flg,
b) that
g=d

(which will prove all our assertions in Case I).
In fact,

a) If fla and f/b, then

b a
aja —, bjb .
/ ]( ) / f
GTb is thus a common multiple of a and b ; hence by Theorem 9,
ab
m/-T,
‘Z_’i/ ab
gl f’
so that the quotient
abab_g
g f
is an integer, and consequently
: fl9.
b) Since
a_m b _m
g b'g a

are integers, we have

gla, g/b;
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g is thus a common divisor of ¢ and b. Since, by a), every common divisor
f of @ and b goes into g, and ¢>0, we have by Theorem 10,

=9,
so that g is the greatest common divisor of ¢ and .

Case II: Suppose that the assumption >0, >0 is not satisfied but
that a and b are still both §=0. Then 1) follows from Case I, since a has the
same divisors as |a| and b the same divisors as |5|. In fact, d is the greatest
common divisor not only of @ and b but of |a| and || as well.

Case III: Let one of the two numbers be 0, say a=0, so that b==0.
Then obviously d=|?|, and from {0 and f/b it follows that f/d.

NortarioN: For any e¢ and b which do not both vanish, the greatest
common divisor of a and b is denoted by (a,b).

Examples: (4,6)=2; (0,—3)=3; (—4, —6)=2; (1,0)=1.
THEOREM 12: If @ and b are not both 0, then

(a,0)=(b,0)
Proof: The definition of (a, b) is obviously symmetrical in ¢ and .

DerIntTION 2: If (0,b)=1, that is, if 1 is the only positive common
divisor of a and b, then a and b are called relatively prime.

We also say: a is relatively prime to . 1 and —1 are then the only
common divisors of @ and b.

Examples: 1) (6,35)=1, since 6 has 1, 2, 3, and 6 as its only positive
divisors, and none of the numbers 2, 3, and 6 goes into 35.

2) (a,0)=1 for a=1 and for a=—1, but for no other a.

Trgorem 13: If (a, b)=d, then (%, %):1.

Proof: If >0, f / g-, f / dﬁ, then by Theorem 3, 2) we have

fdla, fdjb,
and therefore by Theorem 11
fdjd,
so that by Theorem 3, 1) #1, f=L1

Tueorem 14: If ¢>0, c/a, ¢/b, (%, -bc—>=1,then c=(a,b).

Proof: Since %— and g do not both vanish, ¢ and & are not both 0.

If we set (a, b)=d, then c/d by Theorem 11, so that -‘i— is an integer. From
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17

it follows that

and therefore, since (%, %)_—.. 1 d>0, ¢>0,

i:: 1, G—_::d.
¢
TueoreM 15: If afbc and (a, b) =1, then ajc.

In words: If a number divides the product of two numbers and is rela-
tively prime to one of them, then it divides the other.

Proof: By assumption, a==0.

1) If =0, then a==+1, since (a,0)=1; and hence afc.

2) If =0, let m be the smallest positive common multiple of the rela-
tively prime positive numbers |¢| and |5|. By Theorem 11,

m=|a||b|

Since, by hypothesis, bc is a common multiple of |a| and |b]|, we have, by
Theorem 9,

la] |b]lbe,
ab|bc (Theorem 1),
alc (Theorem 3,1)).

TuEOREM 16: If a/ll apn, v=2, (@, @n)=1 for 1=n<v, then
n=1
aja,.

Proof: For v=2, this is shown by Theorem 15. For v>2, Theorem
15 yields, successively,

v v 34
a/ll a,, alllay, ..., a| II a, a|a,.
n=2 n=3 N=9—1



CHAPTER II

PRIME NUMBERS AND FACTORIZATION
INTO PRIME FACTORS

The number 1 has only one positive divisor, namely 1; every number
a>1 has at least two positive divisors, namely 1 and a.

DerFiNiTION 3: A number a>1 is called a prime number (or simply a
prime) if it has only two positive divisors (namely 1 and a).

Examples: The first few primes are 2, 3, 5, 7, 11.

The letter p will be reserved for prime numbers only; likewise, symbols
such as py, pa, ..., p’, p”, ... will always represent primes.

Our next aim will be to prove that every number a>>1 can be represented
as a product of primes (this will be easy) and that this representation is unique
apart from the order of the factors (this is somewhat deeper).

TrEOREM 17: Ewvery a>1 can be represented as a product of prime
numbers:

2 a=ﬁpm r=1.
n=1

. 1
(For primes a=jp, this is obvious, and the product reduces to p=1IIp,.)
n=1

Proof (by mathematical induction): 1) For a=2 the assertion is true,
since 2 is a prime.

2) Let ¢>2 and assume the theorem true for 2, 3, ..., a—1.

21) If ais prime, the assertion is true.

22) Otherwise, by Definition 3, there exists a factorization

a=a,0, 1<a,<aq, 1<a,<a.

Thus a; and a,, and therefore a also, are representable as products of primes.
Theorem 17 justifies the following definition :

DerinNitioN 4: Every number >1 which is not a prime is called a
composite number.

The natural numbers thus fall into three classes :

18



[DEFs. 3-4] Tueorems 17-18 19

1) The number 1;
2) The primes;
3) The composite numbers.

There are, of course, infinitely many composite numbers ; for example,
all numbers of the form 27, n=2.

TuEeOREM 18: There are infinitely many primes.

Proof: We must show that to any finite set of primes there can be
adjoined yet another prime.
Let py, ..., po be distinct prime numbers. Then

= 1+ﬁpn
n=1

is, to begin with, >1 and, in addition, is not divisible by any of the prime
numbers py, ..., py, S0 that by Theorem 17 it is divisible by a prime number
different from p4, ..., po.

Theorem 18 can be expressed as follows: For any £>0, let #(&) repre-
sent the number of primes =&. Then as & approaches infinity, so does n(£) ;
i.e., given w>0 there exists n=7(w) such that

a(é)>w if E>n=n)

The question as to whether, and with what degree of accuracy, (&) can be
approximated by the functions of analysis, can be answered only later on.
In Part 7, Chapter 2, § 3 of my Vorlesungen iiber Zahlentheorie, the reader
will find a very accurate result, the methods used being those of complex
function theory. This result contains as a special case the “Prime Number

Theorem”
lim —2&
feco &
log &

this theorem can be found in Part 7, Chapter 1, § 2 of the work cited.

Let us also note here that the question, for example, of whether there
exist infinitely many primes whose decimal representations end in the digit
7 will be answered (in the affirmative) in Part Two, Chapter I11; specifically,
the answer will appear as a special case of Dirichlet’s well-known Theorem
on Arithmetic Progressions (Theorem 155).

None of this will be made use of, however, until it has first been proved.
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TueoreM 19: If pta, then (p, a)=L1.
Proof: p has as positive divisors only 1 and p. Hence (p,a)=1or p
and, since p+a, the latter is impossible.

Tueorem 20: If v
p/H ay,
n=1L

then for at least one n we have

P/ .

Proof: 1If, for all n, p4a,, then by Theorem 19 we would always have
(p, a,)=1, so that, by Theorem 16,

P %ﬂ l:l1 Gn.
TueoreM 21: If .
»/p,,
then for at least one n we have
P="Dn
Proof: By Theorem 20,
pltn

for at least one »; but since the prime p, has 1 and p, as its only positive
divisors, and since p==1, it follows that p—p,.

THEOREM 22: The representation (2) of any number a>1 is unique
up to the order of iis factors.

Inwords: Every prime number appearing in a decomposition into “prime
factors” of a given number appears equally often in every such decomposition.

Every ¢>1 is therefore of the form

a=IT pl?
vlo

where p runs through the various primes that divide o; and where every
I=Ils,,>0 and is uniquely determined by a and p. (This is the so-called
canonical decomposition of a.)

Example: 12=2.2.83=2.3.2=3.2.2=22.8=38.22

Proof: 1t is obviously sufficient to prove the following: If
v v
“=Upn=ﬂ2°1’v DISEPE - SPy PIEPS - = Py

n=1 n= -

then

v=1, p,=p, for 1=n=<wv.
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1) For a=2 the assertion is true, since we merely have
v=v'=1, py=p/=2.
2) Let a>2 and suppose that the assertion has been proved for 2, 3,
4', ceey a——l
21) If aisa prime, then
v=y'=1, p,=p/=a.

22) Otherwise, we have >>1 and ¢/>1. Since
v v
oo [T pu py [ 1 i,
it follows by Theorem 21 that
DPi=Dn P,=Dm
for at least one »n and at least one m. Since
D= Pn=Pi=Pn=0D1

we have
Pr="D;-

Now (since 1 <p;<a, p1]a) we have

a v v
1<—=10I Pn= I P,';<w,
1 n=2 n=2
and hence (by the induction hypothesis)
v—1=v'—1, v=2
and
Pn="ps for 2<n=<.

THEOREM 23: Let a>1, let T(a) be the number of positive divisors

of a, and let T
a= II pﬂn
n=1
be the canonical decomposition of a (ie., p1, ..., pr are distinct and every

1s>0). Then a has for its positive divisors the numbers

r
(3 p;n.”, Osmu<l, for 1<n<r
1

n=

and no others. Hence

7 (@)= 1T (a+1).

(That the numbers (3) are distinct follows from Theorem 22.)
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Proof: 1) Each number of the form (3) obviously divides a.

2) If d>0 and dfa, then a=qd, so that d cannot contain any prime
factor that does not divide ¢, nor can d contain any prime factor of @ a greater
number of times than that factor appears in o itself.

DerFINITION 5: For any real number &, let [£] denote the largest integer
=, that is, the integer g for which

g=é<g+1.
Obviously
F—1<[§]=4,
and if
a=£
then
e=[§],
and if
a>§
then
a=[£]+1>[£].

THEOREM 24: The number q of Theorem 7 is equal to [2]

Proof: gas=b=qa-+r<(g+1)a,

b
9§E‘<9+1-

TueoreM 25: If k>0 and >0, then the number of positive multiples
of k which are =n is .
-

Proof: Since h>0and hk =y, it follows that

1
0<hs-

and conversely; but the number of natural numbers <& is [&] for every

§>0.
TrEorEM 26: If k>0 and =0, then

-7
k kL

(For >0 this also follows from Theorem 25, for there are just as many
positive multiples of & up to # as there are up to [7].)
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Proof: From

Ui
I=5<g+1
it follows that K9
kg=n<k(g+1),
kg<l<k(g-+1),
9= [kl]<y+ 1,
TuEoREM 27: Let n>0, and let p be any prime. Then p divides n!
exactly
£ |3
m==1 pm
times.

(This infinite series converges, since the general term vanishes for suffi-
ciently large m, and in particular for m >%§ , since we then have p">wn,
0< ﬁm<1 . The series can therefore also be written as X . [i],

1sms 22 Lp™

3 logp
where, in case p>n, the sum stands for zero—as shdll every empty sum

henceforth.)
In other words: We have

(where, in case n=1, the product represents the number 1—as shall every
empty product henceforth) ; for the primes p >#» do not divide n!. We can
equally well write oo [n ]

nl =T pm="7"
?

where the product is taken over all primes arranged in increasing order of
magnitude, for every factor is 1 for p>n.

Proof: 1In preparation for later on, I present two proofs.
1) The number of positive multiples of the number p up to # is, by

. [n
Theorem 25, [%], the number of positive multiples of $% up to » is [1-)—,] ; etc.
The multiplicity with which p divides n! therefore
oo
= X number of positive multiples of p™ up to n
m=1

- ¥ [2);

m==1 pm
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for each of the numbers 1, ..., n is counted / times (and so not at all if /==0)
as a multiple of p” for m=1, 2, ..., [, if p divides it exactly [ times ({==0).

2) (This proof is longer than the former, and introduces the logarithmic
function—which can, of course, be eliminated by the use of exponents—but
the proof is otherwise useful.) Let us henceforth set

__Jlogp for a=p, c=1,
(5) A= a>0.

(thus A(1)=0, A(2)=log2, A(3)=log3, A(4)=log2, A(5)=logh,
A(6)=0, ...). Let the symbol

21(d)

dla
mean, on principle, for a>0, that the sum is taken over all positive divisors

d of a.
Then we have

(6) log a=‘;;‘3/1 ().

For (6) is obvious if a=1 (0=0), and if

o=IIp" (r=r, ;)
pla

is the canonical decomposition of a>1, then
loga=2'rlog p=2(A(p)+A(P)+---+A(p"))=T 4 ().
vl Pla dla
From (6) it now follows that

& & 3] &
) log (E1)=2loga=2 T A@)=34(a)[%];

a==1 a=1 dfa d=1 d
(I am generalizing the result somewhat, in that I replace # by any real £§>0) ;
for A(d) appears only for 1=<<d=</[&], and for each such d it appears as many
times as there are positive multiples of d up to &, that is, lé] times, by Theo-

d
rem 25. By the definition (5) of A we have, by (7),

o e [} Zpen [l antzen 2 )

so that the assertion (4) is proved if we set &=n.
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If we wish to apply Theorem 27, we should note that for every n>0
and every p, the terms of
z |3
m=1 pm

can be most expeditiously computed one after the other by use of the result

[pmn+1]= [L%]] ,

which follows from Theorem 26.

Example: n=1000, p=3; the calculations should not proceed as fol-
lows (every # is >0 and <1)

1000 1000 1000 1000
———3—-= 333+’l91, Tz 111-—’—02, ——2—7—= 37+793, —8—1——'—: 12-}—194,
1000 1000
7R P A
but rather
1000 333 111 37 12
——3——= 333+197, '-3—=111, T=—‘37, ?:: 12+08" _3_=4’
4
"§'= 1+099

in order to compute the terms 333, 111, 37, 12, 4, 1, and the final result of 498.



CHAPTER III
THE GREATEST COMMON DIVISOR OF SEVERAL NUMBERS

TureoreMm 28: Let a=1 and b=1. Let their canonical decompositions
be written
a=ITp, b=IIp™ (I=lyp >0, m=mp,>0)
?la /b

(where, in case a or b=1, the empty product shall mean 1). If [ and m are
allowed to assume the value 0, then a and b may be written in uniform nota-

tion as

?lad plad
Then
(8) (a’ b):H pmn (lr m) .
vlad
If y1, ..., yr are real numbers, then Min (vy, ..., y,) represents here—
as it shall from now on—the smallest and Max (y1,...,Yr) the largest, of
the numbers vy, ..., Y

Examples: Min (—3,0,—3)=—3; Max (1,0)=1.

Proof: The positive divisors of a are (by Theorem 23) the numbers
II ¢, 0<t<l ; those of b are the numbers IT p¥% 0<u<m; the com-

plab labd
mon positive divisors are therefore the numbers IT p°, 0<v< Min (I, m)
plad

and the right-hand side of (8) is the largest of them.

NotaTIoN: If the numbers as, ..., a (r=2) are not all O, then their
greatest common divisor (which of course exists) is denoted by (ay,...,a,)
(in agreement with our former notation for r=2).

Examples: (6,10,15)=1, (2,0,—4)=2.

DerINITION 6: If ¥=2 and (a4,...,a,)=1, then ay,. .., a, are called
relatively prime. (For r=2 this is our old definition.)

26
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TueorEM 29: If r=2 and if ai,...,a, are not all O, then (ay,. .., a)
is divisible by every common divisor of ay, . . ., a,.

Proof: 1f only one of the numbers ay, .. ., a, is different from 0, then
the assertion is trivial.

Otherwise, without loss of generality, let a4, . . ., a, all be >0 ; for if they
are not, then we merely discard those that equal zero and change the sign
of those that are negative.

1) For r=2 the assertion is true by Theorem 11.

2) For r>2, 1 give two proofs.

21) Set

ay= II ph...,a,= I p»r (,=0,...,1[=0).
ta

pla, -+ - a, v/as - «a,

Then (compare the proof of Theorem 28), we obviously have

(al,..., a,-)= H pmn av~~vlr)’
pla, -

ety
and every common divisor is

+ IO p° 0<v<Min (,.., &),

pla,- - -4y

and hence goes into (a4, ..., a,).
22) Let the assertion be already proved for »~—1. Every common divisor

of ay, ..., a,divides ay, ..., a,_; and hence (a4, ..., a-—;); it also divides ay,
and hence ((ay, ..., ar—1), @ ). This number divides (ay,...,a-_;) and a,
and hence ay, @,,..., @,_1, @,; it is therefore equal to (ay,...,a,).

We should make note of the relation
9 @y a)=((ay,. .-, Gr—1), @)

for ¥>2, >0, ..., a,>0, which we found during the second proof.

Tueorem 30: Let r=2, a;>>0, ..., and a,>0. Then every common
multiple of n of a, . . ., a, is divisible by their smallest positive common mul-
tiple v (which obviously exists).

Proof: 1) For r=2, we know this by Theorem 9.

2) For r>2, 1 give two proofs (as for Theorem 29).
21) In the notation of the previous proof, we clearly have

V= II pM&X (l‘,.-., lf).
Play---a,
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Either n=0 (so that it is certainly divisible by v), or |n| contains every
play ... aratleast]; times, .. ., at least [, times, and therefore at least Max ([,
.., ;) times.

22) Let the assertion already be proved for »—1. Let w represent the
smallest positive common multiple of as, ..., a,—y, so that n is divisible by
@y, ..., 0,— and hence by w; but it is also divisible by a, and hence by the
smallest positive common multiple of w and a,. Since this number is itself
a positive common multiple of a4, . . ., ar—1, @y, it must equal v.



CHAPTER IV

NUMBER-THEORETIC FUNCTIONS

DErFINITION 7: A function F(a) which is defined for every a>0 is
called a number-theoretic function.

The value of the function is not required to be a positive integer, nor
an integer, a rational number, or even a real number.

Examples: F(a)=a!, F(a)=sina, F(a)=(a+2)"?, F(a)=T(a)
(the number of positive divisors of Theorem 23), F(a)=4(a) (Formula
(5)), F(a):fd:S(a) (the sum of the positive divisors of a).

ja

TueoreM 31: If a>1 and a=IIyp isits canonical decomposition, then
pla

11
S a :Hp
(@) pa P—1

Proof: If we add the positive divisors p,™ p,™ - -+ p, of a enumer-
ated in (3), and use the fact that

.

then the result follows.

DeriNiTION 8: Any divisor of a other than a itself is called a proper
divisor of a.

DErFINITION 9: aiscalled even if 2]a; odd, if 24a.

Examples: 01is even ; of two successive numbers ¢ and a1, exactly one
is always even, the other odd; every p>2 is odd.

DeriniTION 10: a>>0 is called a perfect number if a equals the sum of
its proper divisors, that is, if

S(a)="2a.

Examples: 6=1+42+43, 28=1+42+4-4+47414.
29
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This old-fashioned concept of perfect number, and the questions asso-
ciated with it, are not especially important; we consider them only because,
in so doing, we will encounter two questions that remain unanswered to this
day: Are there infinitely many perfect numbers? Is there an odd perfect
number? Modern mathematics has solved many (apparently) difficult prob-
lems, even in number theory; but we stand powerless in the face of such
(apparently) simple problems as these. Of course, the fact that they have
never been solved is irrelevant to the rest of this work. We will leave no
gaps; when we come to a bypath which leads to an insurmountable barrier,
we will turn around, rather than—as is so often done—continue on beyond
the barrier.

TreorREM 32: If p=2"—1 (so that n>1; for example, n=2, p=3;

n=3, p=7), then

2

is an (of necessity even) perfect number, and there are no other even perfect
numbers.

Proof: 1) For
a=2m12"—1), 2*—1=p

we have, by Theorem 31,
S@=5 Lo =@ D) o+ Y= - ) =20
2) If aisan even perfect number, then

a=2"1y, n>1, 4>0 and odd,
so that, by Theorem 31,
2 y=20= S(a)—-

S (w)=(2"—1)S(»)

and

2y %
S)=gn—y=vtg

In this formula, 5——= DT v —3 (=S (u)—u) is an integer, and hence (since n>1)

it is a proper divisor of . The sum S (u) of all the divisors of # is therefore
equal to the sum of u and a certain proper divisor. Hence u is a prime, and

the proper divisor

271. i =1, so that u=2"—1. This proves the theorem.
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Now, are there infinitely many perfect numbers? I do not know. It
was already mentioned above that 2"—1 is prime for n=2 and n=3. For

n=4, 2"—1=15 is composite. More generally, 2"—1 is always composite if
n is composite ; for if n=>bc, with b>1 and ¢>1, then

9n 1= B0 1 — (20— 1) (XD 28~ . .. 4 21 1),

where both factors are >1.

For n=35, 2"—1=2°—1=31 is a prime that yields the perfect number
16 - 31=496 ; for n=7, 2"—1=2"—1=127 is a prime that yields the perfect
number 64 - 127=8128; for n=11, 2"—1=2'—1=2047=23 - 89 is compos-
ite. The question is, therefore, whether there are infinitely many primes p
for which 2#—1 is a prime. Even this is not known.

Are there infinitely many odd perfect numbers? I do not even know
whether there is a single one.

However, I should like to ask the reader not to meditate too long over
these two questions; he will meet with many more promising and gratifying
problems in his study of this work.

The analogous problem of finding all the numbers a>1 which are equal
to the product of their factors, i.e., for which

(10) IId=a? a>1

dla
is trivial. For the following simple theorem holds:

TaeoreM 33: (10) holds if and only if

a=p® or a=p1p2, pr=Fp2.
Proof: 1) Asd runs through all the positive divisors of a, so, obviously,

does%—. It therefore follows from (10) that

wt=a*a?=I1d - Mo=I1( d- 2\—Ha=a",
da  dad dfa dfa

T(@)=+4;
and hence, by Theorem 23,
(h+1) ... (b+1)=4

in the canonical decomposition a=p,% - - - p/r, so that either r=1 and 5, =3,
orr=2and l;=lL=1.
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2) Conversely, in these cases,

ITd=1-p;-p* p*=p,°=(p,")* and LI d=1-p, p,-pipy=(pp,)%

ajp} djppy
respectively.
DerinttioN 11: The number-theoretic function u(e) (the Mobius
Function) is defined by
1if a=1,
p(a)= 73 (—1)"if aisthe product of r (=1) distinct primes,
0 otherwise, i.e., if the square of at least one prime divides a.

The numbers e==1 that are not divisible by the square of any prime (or,
equivalently, by any perfect square >1) are also called square-free numbers;
this quite customary terminology is just as logical as saying that two numbers
are prime to each other when they have exactly one positive common divisor
(namely, 1). In this sense of square-free, we say: u(a)==1 if a is square-
free, and u(a) =0 otherwise.

Examples: p(1)=1L u(2)=—1, u(DH=—1 (u(p) is always =—1),
u(4$)=0, p(B)=—1, u(6)=1, p(N=—1, p(8)=0, u(9)=0, n(10)=1.

THEOREM 34: If a>0, 8>0, and (a, b)=1, then
#(ad)=p(a)u(b).
Proof: 1) If g or b is not square-free, then neither is ab, so that
#(ab)=0=p(a)p(b).

2) If eand b are square-free, then since (a, b)=1, ab is also square-free.
If a=1 or b=1, then the statement is obviously true; otherwise the number
of prime factors of ab equals the sum of the number of prime factors of
and of 5.

THEOREM 35: Zﬂ(d)={l for a=1,
dfa

0 for a>1.
Proof: 1) 5ﬂ(d)=ﬂ(l)=l-

2) If ¢>1 and if a=pk - - - plr is the canonical decomposition of a,
then obviously

Zu@=Zu@=1+(1) 0+ (5)+ - +() =y

=2(5) vr=a—1y=0;
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for if s=1, 2, ..., r, then there are exactly ; divisors of p; ... p, which

consist of exactly s prime factors, and for these we have u(d)=(—1).

THEOREM 36: If §=1, then

Zue []=1

Proof: Let the formula of Theorem 35 be summed over =1, 2, ..., [£].
This gives

13 Zu@—tn@[5);

for, by Theorem 25, the number of positive multiples of d up to & is [%]

TreoreM 37: If x=1, then

therefore either converges, or else it oscillates between finite limits. The
question as to which of these two alternatives holds does not interest us at
the moment ; the reader can learn the answer in Part Seven, Chapter 12, § 1 of
my Vorlesungen iiber Zahlentheorie.

Gordan used to say something to the effect that “Number Theory is useful
since one can, after all, use it to get a doctorate with.” In 1899 I received
my doctorate by answering this question.

Proof: We have

O<£——[—:€] <1 for 1=n<ux,
=n nld | =0 for n=ua.

Hence, by Theorem 36,

w:‘:' ’u—(ﬁ—l’

=1 N

=% (2-[2]) e,

n=1 \70 n

o (- [2])

n=1 "

5 5L )|<1+(x—1)=x.

n==1
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TrroreM 38: Let F(a) be any number-theoretic function whatever.
Let G(a) be the number-theoretic function

¢(@=ZF(@).

Then
F@)=Zn (d)G(%).

(This is the so-called Mébius Inversion.)

Remark: The fact that F(a) is uniquely determined at all, in reverse,
by G(a) is clear to start with; for from

G)=F(1), GA=F@+ - GO=FO+ .

we can successively compute F (1), F(2),F(3),....

Proof: For every positive dfa we have

o(3)- 250

@6 (3)= ZR@FO

Zp@6(g)=2 Zn@F®=Z X p@F®
i "/d /b

(for b only runs through positive divisors of a, and to every such & there
corresponds exactly to those d for which dfa, and in fact for which db/a, that
is, for which d/3 )
—ZF®) Zp@=F (@),
bja r / %

since, by Theorem 35, 1 for b—a,

Zu(d)=
d/gﬂ( ) {O for bja, b<<a.
)

DerintTION 12: The number-theoretic function @(a) (Euler’s Func-
tion) represents the number of numbers n in the sequence 1,2,...,a for
which (n, a)=1.

Exnifles: o()= Le=1 pA=1(0=1), 9()=2(1=1, 2) p(4)=2
(n= % 13) p@)=4(n=1,23, 4), ¢(6)=2(n=1,5), (p)=p—1(n=1,2,.
p.—
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THEOREM 39: Z¢(d)=a.
dja

Proof: Divide all the a numbers n=1, ..., a into classes according to
the value of d=(#,a). Only those numbers d>0 that divide a enter into
consideration. To each d|a let there belong the n=kd for which (kd, a)=d,

i.e. (by Theorems 13 and 14), (k ) 1 and moreover for which 0<kd=a,
ie, 0< k<% But by Definition 12 there are exactly qo( ) such numbers.

Hence

a=Z9(%) =Z()

since % runs through all the positive divisors of @ when d does.

THEOREM 40: qa(a):.—az.‘."@.
dla d

Proof: By Theorems 39 and 38 (with F(a)=¢(a) and G(a)=a),
we have

T .1 )
?(a) d;al‘(d)d “dz/z AR

1
THuEeOrREM 41 : ¢(@)=all| 1— = ).
?(@ m( p)

Proof: 1) For a=1 we have ¢(1)=1 (the product in the statement
of the theorem is empty).

2) Fora>1let a:pll‘ e p,l" be its canonical decomposition. Then by
Theorem 40 we have

p(a)=a 27 ”(d)——a,ﬂ 1— Pn)

ajp, - -, n=1

as is seen by calculating the 27 terms of the product.

THEOREM 42: For a>1 we have, in the canonical notation,
r
9@ = I p" " (pa—1)-
n=

Proof: By Theorem 41,

- g It (1=2) = ).

n=1 pn n—-l pn
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THEOREM 43: For >0 we have
o(p)=p"(p—D).

Two proofs: 1) Special case of Theorem 42.

2) (Direct proof.) Of the numbers 1,2,..., ¢/, those not relatively
prime to p/ are precisely all the multiples of p ; their number is p*~*; hence

0 (@)= —

All of Theorem 42 itself can be proven directly by counting the numbers
n which are not relatively prime to ¢ and for which 1=n=a; but this is
somewhat more laborious and is a good exercise for the reader. (The solu-
tion of this exercise is, however, not essential for the remainder of this book.)

THEOREM 44: If a>0, b>0, and (a, b)=1, then
p(@b)=p(@) o).
Proof: Without loss of generality let (canonically) a = H p,. #>1 and
b= mH In ™ >1. From Theorem 42 it follows that

(p(a) =”1=I lpﬂln— ! (P—1), ¢ ®) =mlz Ikam -t (gm— 1).
Since (e, b)=1,

L TSy
ab=I p,IT q, ™
n=1 =1

me=

is the canonical decomposition of ab ; hence, by Theorem 42,

?(ab) =”1jlp.l"—1 (pa—1) ;nélqrnkm - (@n—1)=¢(a) p(b).

The reader will find another proof of Theorem 44, one based directly
on the definition of ¢, in Theorem 74.



CHAPTER V
CONGRUENCES

In this chapter m will always be >0.

DeFiniTION 13: @ is said to be congruent to b modulo m, written

a==b (mod m),

mf(a—Db).
a is called incongruent to b modulo m, written

a==b (mod m),

m4(a—Db).

Examples: 31=—9 (mod 10),
627=587 (mod 10),
5==4 (mod 2),
a=b (mod 1) for arbitrary a and b.

< ” &

Any concept such as “congruent,” “equivalent,” “equal,” or “similar,”
in mathematics must satisfy three properties (the so-called reflexivity, sym-
metry, and transitivity ), which are expressed here by means of the following
three theorems.

TrEOREM 45 (Reflexivity) : We always have

a==a (mod m).

Proof: m|0, m|(a—a).

TrEOREM 46 (Symmetry) : If

a==b (mod m)

then
b=a (mod m).

37
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Proof: wm|(a—b), and hence, by Theorem 1, m/(b—a).
TuroreM 47 (Transitivity) : If

a=b (mod m), b=c (mod m)

then
a=c (mod m).

Proof: m|la—b, m[b—c, m|(@—b)-+(b—c), m/a—e.

Thus, just like equations, congruences (with the same modulus) can be
written in sequence as a congruence with more than two terms; for example,
a=b=c (mod m).

The following theorem (which, incidentally, makes Theorems 45-47 self-

evident) provides a useful necessary and sufficient condition for the validity
of a congruence.

THEOREM 48: According to Theorem 7, given the numbers ¢ and m,
there 15 o uniquely determined number r such that

c=gm—+r, 0=r<m;
let this number v be called the residue of ¢ modulo m. Then
a=b (mod m)

holds if and only if o and b have the same residue modulo m.
Proof: 1) If
a=q,m~+r, b=g,m-+r

then
a'_b=(Q1_q‘a)m'7
m[a—Db.
2) If
a=qm—+r, 0=r<m, a=>b(mod m)
then

b=a+-gm=(q,+q)m+r=g,m+r.

Theorem 48 shows that, given a number , all the numbers fall into
classes (“residue classes”) in such a way that any two numbers in the same
class are congruent, and any two numbers in different classes are incongruent.
One of the classes consists of the multiples of .
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Theorems 49-56 which follow are analogous to the corresponding theo-
rems on equalities; they make clear the usefulness of the congruence sign;
looking at it intrinsically, one might have objected that no new symbol is
needed for mf(a—b). Since the modulus m in Theorems 49-56 remains the
same throughout, we shall not bother to write it for the time being.

Turorem 49: If

a=b, c=d
then
a+c=b-+d, a—c=b—d.

Proof: m|a—b, mjc—d, m|(@—b)=E (c—d), m[(atc)—(bEd).

TaeoreM 50: If

an=b, for n=1,...,v,

then
2z an—:—f,' b.

n=1 n=1
Proof: Follows by induction from Theorem 49.
TueoreM 51: If
a==b,
then, for every c,
ac=bc.

Proof: m|(a—b), m|(a—b)c, m|(ac—bc).

TueorEM 52: If
a==b and c==d,
then
ac==bd.

Proof: By Theorem 51 it follows from the first part of the hypothesis
that ac==bc and from the second that bc==bd ; hence, by Theorem 47, the con-
clusion follows.

TuroreM 53: If

a,=b, for n=1,...,v,
then

Iof a,,:——..ﬁ b,.

n=1 n==1

Proof: By induction, using Theorem 52.
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TureoreM 54 : If
a=b, v> 0,
then

ar=b".
Proof: Follows from Theorem 53.

THEOREM 55: Let

f(x)‘=00+01x+ cee +Cnx”=—§n;cvxﬂ (n= O)

be any rational integral function with integer coefficients. If

a==b,
then
f(a)=f(b).

The solutions (if any exist) of the congruence
H2)=0

thus fall into complete residue classes mod #.

Proof: By Theorem 54 it follows from the hypothesis that

a’=b" for O<v=m,

so that, by Theorem 51,
Cp0=c, b® for O0<v=mn;
since
Co=0,
our result n n
Ze,at=2c,b?.

pe=0 =0

follows by Theorem 50.

Theorem 55 justifies :

DerINITION 14: By the number of solutions, or roots, of a congruence
f(z)=0 (mod m)

we shall mean the number of those numbers of the set ¥=0, ..., m—1 that
satisfy the congruence, that is, the number of residue classes all of whose
members satisfy the congruence.

Thus the number of solutions is always either 0 or some other finite
number.
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Example: x*=1 (mod 8) has four solutions, since x=1, 3, 5, 7 (but not
x=0, 2, 4, 6) satisfy the congruence. This fact, that 8/(#?—1) for every odd
number x, should be kept in mind.

THEOREM 56: If
ac=bc, (¢,m)=1
then
a==b.

Proof: m|(ac—bc), m|(a—b)c; since (m, c)=1, it follows from Theo-
rem 15 that
wmf(a—b).
Tueorem 57: If
ac=bc (mod m),

then
a=b (mod ).
(c;m)
(If (¢, m)=1, this reduces to Theorem 56.)
Proof: m/(a—Db) c,
hence, by Theorem 3,

m
(e;m)

By Theorem 13 it follows that

¢
[ (a—b) m

(.ﬁ'_ __c_)__ 1
(am)’ (c;m)/ 7
so that by Theorem 15,

——m—/ a—b.

(¢, m)

TueoreM 58: Let ¢>0. If
a=b (mod m),

then
ac=bc (mod cm),

and conversely.
Proof: Since ¢>0, it follows from Theorem 3 that the relations m/(a—b)
and c¢mfc (a—b) are equivalent.

THEOREM 59: If
a=b (mod m), n>0, n/m,
then
a=b (mod n).

Proof: m|(a—>b) and n/m ; hence n/(a—b).
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TuroreM 60 : If
=b (mod my,) for n=1, 2,...,v (v=2)

then, if m is the smallest common positive multiple of my, . .., m,, we have

a=b (mod m).

Proof: a—b is divisible by .y, . . ., m,, and hence, according to Theorem
30, by m.

TxaEOREM 61 : If
a=b (mod m),

then
(a, m)=(b, m).

In particular: If (a,m)=1, then (b, m)=1. Consequently the num-
bers in a residue class are either all relatively prime to m, or none of them is.

Proof: From b=a-+mgq it follows that (a, m)/b, so that (a, m)[(b, m);
similarly, (b, m)[(a, m).

DerINITION 15: By a complete set of residues mod m 1s meant a set of
m numbers each of which is congruent to exactly one of the numbers 0,1, .. .,
m—1 (mod m), that is, which represents the m classes into which all the
wntegers mod m fall.

It suffices, of course, to require that at least one of the m numbers belong
to each class. “If m objects are put into m pigeon-holes and each pigeon-hole
contains at least one object, then each pigeon-hole contains exactly one object.”

Alternatively: 1t suffices to require that each pair of m numbers be
incongruent. “If m objects are put into m pigeon-holes and each pigeon-hole
contains at most one object, then each pigeon-hole contains exactly one object.”

Examples: Any m consecutive numbers, for example 1,..., m, or the
integers of the interval -3 (exclusive) to 7 (inclusive) constitute a com-

plete set of residues, since they are incongruent to each other.
Our old Definition 14 can now be expressed as follows : The number of

solutions of
f(#)=0 (mod m)

is the number of its solutions taken from any complete set of residues.

DerinNiTION 16: By @ reduced set of residues mod m is meant a set of
@(m) numbers exactly one of which belongs to each of the classes all of
whose numbers are relatively prime to m.
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Once again it suffices, given @(m) numbers, to require either that at
least one belong to each of the above-mentioned ¢ (m) classes or that each of
the ¢(m) numbers be relatively prime to # and that each pair of them be
incongruent.

THEOREM 62: If (k, m)=1, then the numbers
0-21.%,2.k...,(m—1) -k

constitute a complete set of residues mod m.

More generally: If (k,m)=1 and ay,..., an is any complete set of
residues, then so is a k, . . ., ank.

Proof: From

a.k=a,k (mod m), 1=r=m, 1<s=m

it follows by Theorem 56, since by assumption (%, m)=1, that

a,=a, (mod m)

and
r==s;

the terms a.k are therefore mutually incongruent.

TueoreM 63: If (k,m)=1and if ay,..., Coim) constitute a reduced set

of residues mod m, then so do a;k, .. ., @ gim) k.

Proof: Each of these @(m) numbers is relatively prime to m (for any
common factor of a,% and m would have to go into e, and m) ; hence any two
are incongruent, by Theorem 62.

TueorREM 64: If (a, m)=1, then the congruence
ax+a,=0 (mod m)
has exactly one solution.
Proof: By Theorem 62,

a-0, a-1, ..., a(m—1)

constitute a complete set of residues; hence exactly one of these numbers
is = —a, (mod m).

THEOREM 65: 1) The congruence
(11) az+a,=0 (mod m)

is solvable if and only if
(a, m)|ao.
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2) In that case the number of solutions =(a, m), and the congruence
is satisfied by precisely all of the numbers x in a certain residue class

mod ((a, m))

Remark: Theorem 64 is obviously a special case of this theorem, but
is made use of to prove it.

Proof: 11) If (11) is solvable, then
ax—{—aozd (mod (a, m)),
a,=0 (mod (a, m)).
12) If
a,=0 (mod (a, m)),

then, by Theorem 64, the congruence

a a m
12 (a,m) *+ Gom) (a, m) (mOd (a, m))

is solvable. Hence, by Theorem 58, (11) is satisfied.

2) If (a, m)[ao, then (12) has exactly one solution mod ——— @m)’ accord-

( »
ing to Theorem 64 ; since (11) and (12) have the same solutions, by Theorem
58, it follows that (11) has (a, m) solutions (solutions mod m, as usual),

since if d>0 and djm, then a residue class mod % breaks up into d residue
classes mod m.

THEOREM 66: Let n>1 and let at least one of the numbers ay, . .., a,
be different from 0; set
@, -y an)=d.

We claim that the diophantine equation (i.e., equation with integral
coefficients and unknowns)

Gy T+« FGpLp=C

is solvable if and only if
dle.

Hence, in particular: If (g, b)=1, then

is solvable.
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Proof: 1) If exactly one coefficient does not vanish, say a,, then
0202y - -+ 02—
is obviously solvable if ay/c, that is, if

@y 0, ..., 0)/c

2) If at least two coefficients do not vanish, then we may assume without
loss of generality that no coefficient vanishes; for otherwise we simply omit
those terms anx, for which a,=0, and this does not alter the value of the
greatest common divisor of the coefficients; the number of terms that remain
is then still =2.

Without loss of generality we may even take all the coefficients to be
>0; for we merely have to replace each negative a,, by —a, (which does not
alter the greatest common divisor) and the corresponding % by —#m.

We may therefore assume that

n>1, 6,>0, ..., a,>0.
21) If our diophantine equation is solvable, then obviously

d/a1x1+ Tt +a'nxm
dfc.
22) Let
dlc.

221) If n=2, then we merely have to show that
a,z,=c (mod a,)
is solvable for #y. This follows from Theorem 65, since
(ay, ay)[—c.

222) Let n>2, and assume the assertion proved for 2,..., n—I1; if

we set
@y - - -5 Gn)=0

then, by (9),
(a,, a,,)= d.

From what we showed in 221), it follows that
AL+ Qp Tp==C-

for suitably chosen r, #,. By our induction hypothesis for n—1, it follows

in addition, since
@y - ) Gn—v) [T,

that
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alxl"‘ cre - Qpey Ty =aT
for suitably chosen #y, . .., #a—1, SO that, finally,
a'lxl'l" o gy Ty - AT ==C.
THEOREM 67 : If (a, b)=d and d|c, then
ax-+by=c

is solvable, by Theorem 66, then, given any solution xo, yo, all the solutions
are of the form

b a
r= xo+h;z‘1 y= yo"kg’

where his arbitrary.

Proof: 1) The fact that such a pair x, y satisfies the equation follows
from the relation

a,(xo—l-h%)+b(yo—-h%):axo—|-byo=c.

2) The fact that no other solutions exist is seen as follows. Without
loss of generality, let b5=0. (Otherwise interchange a and b, and observe that
as h runs through all the integers, so does —h.) Since

az4-by=c=ax,+by,,
it follows that

az—c=0 (mod |b]),
—c==0 (mod [b]),
and hence by Theorem 65 (with ay= —¢, m=|b|), we have

r=2, (mod %l),

x=xy-} h%,

by=c-—ax-—=c—a(xo+h—-) =(c—ax,)— b——_.byo-——b ——b(yo -),

a
y=Y—h a
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THEOREM 68: If (a,b)=1 and if x., y, is any solution of (13), then
all the solutions are of the form

$=xo+hb, yzyo——ka, ,

where h is arbitrary.
Proof: This follows from Theorem 67, with d=c=1.

THEOREM 69: 1) The congruences

19 r=a, (mod m,),
(15) r=a, (mod m,)
have a common solution if and only if

(16) (my, my)|a,—ay.

In particular, therefore, they always do if (m,, ms)=1.

2) If condition (16) is satisfied and if m represents the smallest common
multiple of my and my, then the common solutions of (14) and (15) consist
of all the numbers in a certain residue class mod m.

Proof: 11) If we set (my, mp)=d, then it follows from (14) and (15)
that

z=a, (mod d),
r=a, (mod d),
a,=a, (mod d),
d | a,—a,
12) If
d/ @y — 8y

then from among all solutions of (14) of the form
x=a,+ym, (y arbitrary)

we can certainly choose one for which (15) holds. For we need
a,+ymy=a, (wod m,);

this is equivalent to

a7 m, Y+ (a,—a,)=0 (mod m,)

which, by Theorem 65, 1), is solvable.

2) If (16) is satisfied, and therefore (14) and (15) along with it, then
congruence (17) is satisfied for suitably chosen y, precisely by
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Y=y, (mod 7%)
m
by virtue of Theorem 65, 2). Therefore, since — dmﬁ =m (by Theorem 11),

all the numbers x satisfying (14) and (15) are given by the formulas

m, .
r=a,+ (yo—i-hr-nc—l?) My=0,+m, 1/0""75@2—2 =a,+m,Y,~+ hm, h arbitrary,

but these constitute a certain residue class mod #.

TueoreM 70: Let r>1, and let every pair from among the numbers
my, .. ., M, be relatively prime. Then the congruences

(18) r=a, (modm,), n=1, .., r

are consistent, and their common solutions consist of all the numbers in a
certatn residue class mod mims . . . My,

Proof: 1) For r=2 this follows from Theorem 69, since m=m;m, in
that case.

2) Let r>2, and assume the theorem proved for »—1. Then the first
r—1 congruences (18) are covered by

r=a (mod m, --- m,,).

for a suitably chosen a. Hence, by Theorem 69, the conclusion follows, since
m, -+ My—y is relatively prime to #,.

TreoreM 71: Let r>1, and let each pair of numbers from among
my, ..., my be relatively prime. Then the number of solutions of

(19) f(#)=0 (mod mym, ---m,)
equals the product of the numbers of solutions of

(20) {(2)=0 (mod my), ..., f(2)=0 (mod m,).

In particular: If m>1and m= IT p,'™ is its canonical decomposition
n=1

then, if > 1, the number of solutions of
f(2)=0 (mod m)
equals the product of the numbers of solutions of

f(2)=0 (mod p,’»).
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Proof: First of all, it is clear that (19) 1s satisfied if and only if the »
congruences in (20) are simultaneously satisfied. Hence if one of these has
no solution, then neither does (19). If the congruences in (20) are all
solvable then, by Theorem 70, to each residue class mod m; that satisfies
the first congruence in (20) there corresponds one-to-one a residue class
mod my . . . m, that satisfies (19); similarly for ms, ..., m,.

TueoreM 72: If
f(@)=cy+cy @+ —+caZ® DfCn
then the congruence
(21) f(2)=0 (mod p)
has at most n solutions.

Proof: 1) For n==0 this is obvious, since for every x,
co==0 (mod p),

so that (21) has no root.

2) Let n>0, and assume the theorem true for n—1. If (21) had at
least the n41 (incongruent) roots o, &1, . . ., #», then if we note that

n n
F@)—f ()= Z co(2—,")=(2—%,) Xep(2"~ 1+ 2y 2"~ -+ )
=1 r=1
=(2—1,)9(%)
g(x)=b0+b1 x+ . '+b”_1 x”_l, bn —1=Cp,y p%b”_l,
it would follow that
(0e—20) (W) =F (a2)—F () =0—0=0 (mod ),

for k=1, ..., n, so that

and

g(2x)=0 (mod p), -
contrary to the induction hypothesis for n—1.

TaeoreM 73: Let a>0, >0, and (a,b)=1. Let x range over o
complete set of residues mod b and y over a complete set of residues mod a.
Then ax-+by ranges over a complete set of residues mod ab.

Proof: Of the ab numbers ax4-by, any two are incongruent mod ab.
For if
az,+by,=axr,+by, (mod ab),

then
ax,+by,=ax,+by, (mod b),

ax,=azx, (mod b),
x, =z, (mod b),
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and similarly, by symmetry,
y1=y, (mod a).

TuEOREM 74: Let a>0, >0, and (a,b)=1. Let x and y range over
reduced sets of residues mod b and mod a, respectively. Then ax-+-by ranges
over a reduced set of residues mod ab.

Rewmark: This is the direct proof of Theorem 44 which we announced
earlier. Since Theorem 43 was also proved directly, there thus results a new,

direct proof of Theorem 42, and consequently of Theorems 41 and 40; up to
this point, everything had been obtained from the Mébius Inversion formula.

Proof: If (x,b)>1, then certainly (ax-+by, ab) >1; for (#,b) divides
ax+by and ab, and hence divides (ax—+by,ab). If (y,a¢)>1, then, by

symmetry, (ax-+by, ab) >1 as well.
What remains to be shown, by Theorem 73, is that if

(#,0)=1 and (y,a)=1,
then
(ax+by,ab)=1.
In fact, let p/(ax+by,ab). Then we would have pjab, so that, without loss

of generality, pla; moreover, p/(ax-+by), so that plby, and consequently
(since (a, b)=1) p[y, contrary to the assumption that (y, a)=1.
TueorEM 75 (The so-called Little Fermat Theorem) : If (a, m)=1,
then
a¥™=1 (mod m).

Remark: It is not known whether the so-called Last Theorem of Fermat,
which is discussed in Parts 12 and 13 of my Vorlesungen iiber Zahlentheorie,
is true or not. I would therefore rather refer to it as the Fermat Conjecture,
and to Theorem 75 simply as Fermat’s Theorem.

Proof: Let ay,..., Ggim be a reduced set of residues mod m. Then, by
Theorem 63, aa,,..., Ay is also such a set. Hence the numbers a, are
congruent to the numbers aa, (n=1,...,@(m)), apart from their order.
Hence the product of the a, is congruent to the product of the aa,, or

@m)  @m)  @m)
1 I ap=IIg,=II (aa,.)=a9°‘"‘) II Gn (mod m),

n=1 n=1 n=1
so that, by Theorem 56,

1=a%™ (mod m).
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THEOREM 76: If pta, then

a? =1 (mod p);

for any a at all we have

a?=a (mod p).

Proof: The first statement follows from Theorem 75, since g (p)=p—1;
the second follows from the first by Theorem 51 if pta; and if pla, it is
trivial, since

a?=0=a (mod p).
Tueorem 77 (The so-called Theorem of Wilson): (p—1)!=—1
(mod p).

Two Proofs: 1) For p=2 and p=3, the statement is obvious. For
>3, I consider the p—3 numbers

(22) 2,3,..., p—3, p—2.

For each 7 in this sequence, p+7, and hence, by Theorem 64, there is exactly
one s in the sequence 0, 1, ..., p—1 for which

(23) rs=1 (mod p).

s=0 does not obtain here; nor do s=1 and s=p—1, since otherwise » would
be =*1. The s therefore occurs in the sequence (22) as well. Moreover,

$==r;

f
or =1 (mod p)

would give

p/(r—1)(r+1),
r==x1 (mod p).

Hence to each » in (22) there corresponds exactly one s==r in (22) for
which (23) holds. Since rs=sr, it follows, conversely, that r is uniquely

determined by s. The p—3 numbers in (22) thus break up into L 3 pairs

in such a way that the product of the numbers in each pair is =1. Hence
p—38

(p—2)!=2-3---(p—2)=1"2 =1 (mod p),
(p—D!=(p—1) (p—2)!=—(p—2)!=—1 (mod p).
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2) If weset
—1
(@) =271 —1—1I (w—m),
m=1

then clearly
f@)=co+e @+ +op—a2P %

By Theorem 76, the congruence
f(#)==0 (mod p)
has at least the p—1 roots #==1,2,..., p~—1. Hence, by "
Co==C,=---=Cp_3=0 (mod p).
Our result then follows from the fact that
Cp=—1—(—1p—1(p—1)!



