Summary of MAT 221

David Pierce

January 2, 2013 dpierce@msgsu.edu.tr http://mat.msgsu.edu.tr/~dpierce/Dersler/ Number-theory/

Let $\mathbb{N}=\{1,2,3, \ldots\}=\{x \in \mathbb{Z}: x>0\}$. On \mathbb{N} (or more generally on $\{n, n+1, n+2, \ldots\})$, we can:

- define functions by recursion (so that, if A is some set, $c \in A$, and $f: A \rightarrow A$, then there is a unique function $k \mapsto a_{k}$ on \mathbb{N} such that $a_{1}=c$ and, for all k in $\mathbb{N}, a_{k+1}=f\left(a_{k}\right)$; if also $g: A \times \mathbb{N} \rightarrow A$, then there is a unique function $k \mapsto b_{k}$ on \mathbb{N} such that $b_{1}=c$ and, for all k in $\left.\mathbb{N}, b_{k+1}=g\left(b_{k}, k\right)\right)$;
- prove theorems by induction;
- prove theorems by strong induction.

For example, by strong induction, every natural number other than 1 has a prime factor: For, suppose $n \in \mathbb{N}$, and every element of $\{x \in \mathbb{N}$: $1<$ $x<n\}$ has a prime factor. Either n is 1 , or n is prime, or n has a factor k such that $1<k<n$. In the last case, by the strong inductive hypothesis, k has a prime factor; but this factor is then a factor of n too.

We have the Euclidean algorithm for finding the greatest common divisor of two integers (not both of which are 0). If $\operatorname{gcd}(a, b)=d$, then we can also use the algorithm to solve

$$
a x+b y=d
$$

If $\operatorname{gcd}(a, n)=1$, then $a \cdot a^{-1} \equiv 1(\bmod n)$ for some number a^{-1}, which can be found by means of the Euclidean algorithm.

If $n \mid a b$ and $\operatorname{gcd}(n, a)=1$, then $n \mid b$. In particular, if $p \mid a b$, but $p \nmid a$, then $p \mid b$. This can be used to prove the Fundamental Theorem of Arithmetic.

We can solve all linear congruences, that is, congruences of the form

$$
a x \equiv b \quad(\bmod n) .
$$

By the Chinese Remainder Theorem, every linear system

$$
x \equiv a_{1} \quad\left(\bmod n_{1}\right), \quad \ldots, \quad x \equiv a_{k} \quad\left(\bmod n_{k}\right),
$$

has a unique solution (which we can find) modulo $n_{1} \cdots n_{k}$, assuming the moduli n_{i} are pairwise coprime. (What if they are not?)

An even number n is perfect, that is, $\sum_{d \mid n}=2 n$, if and only if

$$
n=2^{k-1} \cdot\left(2^{k}-1\right)
$$

for some k such that $2^{k}-1$ is prime.
If $n>0$, we let

$$
\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}, \quad \mathbb{Z}_{n} \times=\left\{x \in \mathbb{Z}_{n}: \operatorname{gcd}(x, n)=1\right\} .
$$

Then by definition

$$
\phi(n)=\left|\mathbb{Z}_{n} \times\right| .
$$

The values of ϕ (the Euler phi-function) can be found by two rules:

1. $\phi(a b)=\phi(a) \cdot \phi(b)$, if $\operatorname{gcd}(a, b)=1$.
2. $\phi\left(p^{k+1}\right)=p^{k+1}-p^{k}=p^{k+1} \cdot(1-1 / p)$.

Euler's Theorem is

$$
\operatorname{gcd}(a, n)=1 \Longrightarrow a^{\phi(n)} \equiv 1 \quad(\bmod n) .
$$

(Fermat's Theorem is the special case when $n=p$.) The proof uses that if $\operatorname{gcd}(a, n)=1$, then

$$
\prod_{x \in \mathbb{Z}_{n} \times} x \equiv \prod_{x \in \mathbb{Z}_{n} \times}(a x) \equiv a^{\phi(n)} \cdot \prod_{x \in \mathbb{Z}_{n} \times} x \quad(\bmod n) .
$$

Compare to the proof of Wilson's Theorem:

$$
(p-1)!\equiv-1 \cdot 2 \cdot 2^{-1} \cdots \equiv-1 \quad(\bmod p)
$$

We now have a method for computing powers modulo n, that is, for solving $a^{k} \equiv x(\bmod n)$. If $0<k<\phi(n)$, we can find b_{1}, \ldots, b_{m} such that

$$
0 \leqslant b_{1}<\cdots<b_{m}, \quad k=2^{b_{1}}+\cdots+2^{b_{m}}
$$

and then a^{k} is easily computed as $a^{2^{b_{1}}} \cdots a^{2^{b_{m}}}$.
Henceforth p is an odd prime. With the usual quadratic formula, we can solve quadratic congruences

$$
a x^{2}+b x+c \equiv 0 \quad(\bmod p),
$$

at least if we have a way to find square roots modulo p, when they exist. If the square root of d modulo p does exist, that is, if $x^{2} \equiv d(\bmod p)$ is soluble, then d is called a quadratic residue of p.

If $\operatorname{gcd}(a, n)=1$, then a has an order modulo n, namely the least positive exponent k such that $a^{k} \equiv 1(\bmod n)$. We may denote this exponent by

$$
\operatorname{ord}_{n}(a) .
$$

Then $\operatorname{ord}_{n}(a) \mid \phi(n)$. For example, by the computations

we have $\operatorname{ord}_{17}(2)=8$. Likewise, $\operatorname{ord}_{17}(3)=16$, by the following.

	k	1	2	3	4	5	6	7	8
$3^{k}(\bmod 17)$	3	-8	-7	-4	5	-2	-6	-1	
k	9	10	11	12	13	14	15	16	
$3^{k}(\bmod 17)$	-3	8	7	4	-5	2	6	1	

In general, a is called a primitive root of n of $\operatorname{ord}_{p}(a)=\phi(n)$. For example, 3 is a primitive root of 17 , but 2 is not. Also, 8 has no primitive
root, since $\phi(8)=4$, but $3^{2} \equiv 5^{2} \equiv 7^{2} \equiv 1(\bmod 8)$. When they exist, primitive roots are found by trial; there is no formula for computing them.

Suppose a is a primitive root of p. Then

$$
\operatorname{ord}_{p}\left(a^{k}\right)=\frac{p-1}{\operatorname{gcd}(k, p-1)}
$$

This gives us the following from the computations above:

k	0	14	1	12	5	15	11	10	$(\bmod 16)$
3^{k}	1	2	3	4	5	6	7	8	$(\bmod 17)$
$\operatorname{ord}_{17}\left(3^{k}\right)$	1	8	16	4	16	16	16	8	
$\operatorname{gcd}(k, 16)$	16	2	1	4	1	1	1	2	

$k+8$	8	6	9	4	13	7	3	2	$(\bmod 16)$
3^{k+8}	16	15	14	13	12	11	10	9	$(\bmod 17)$
$\operatorname{ord}_{17}\left(3^{k+8}\right)$	2	8	16	4	16	16	16	8	
$\operatorname{gcd}(k+8,16)$	8	2	1	4	1	1	1	2	

In general, if $\operatorname{gcd}(d, n)=1$, let

$$
\psi_{n}(d)=\left|\left\{x \in \mathbb{Z}_{n} \times: \operatorname{ord}_{n}(x)=d\right\}\right|
$$

For example, from the last table we have the following.

d	1	2	4	8	16
$\psi_{17}(d)$	1	1	2	4	8
$\phi(d)$	1	1	2	4	8

In fact it is always true that ${ }^{1}$

$$
\psi_{p}(d)=\phi(d)
$$

In particular, since $\phi(p-1) \geqslant 1, p$ must have a primitive root. ${ }^{2}$
If a is a primitive root of p, then the quadratic residues of p are the even powers of a (that is, the powers a^{k} such that k is even).

[^0]
[^0]: ${ }^{1}$ The proof is that $\sum_{d \mid p-1} \phi(d)=p-1=\sum_{d \mid p-1} \psi_{p}(d)$ and $\psi_{p}(d) \leqslant \phi(d)$; but we have not seen all of the details.
 ${ }^{2}$ Only $2,4, p^{k}$, and $2 p^{k}$ have primitive roots.

