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Let N = {1, 2, 3, . . . } = {x ∈ Z : x > 0}. On N (or more generally on
{n, n+ 1, n+ 2, . . . }), we can:

• define functions by recursion (so that, if A is some set, c ∈ A, and
f : A → A, then there is a unique function k 7→ ak on N such that
a1 = c and, for all k in N, ak+1 = f(ak); if also g : A×N→ A, then
there is a unique function k 7→ bk on N such that b1 = c and, for
all k in N, bk+1 = g(bk, k));
• prove theorems by induction;
• prove theorems by strong induction.

For example, by strong induction, every natural number other than 1 has
a prime factor: For, suppose n ∈ N, and every element of {x ∈ N : 1 <
x < n} has a prime factor. Either n is 1, or n is prime, or n has a factor k
such that 1 < k < n. In the last case, by the strong inductive hypothesis,
k has a prime factor; but this factor is then a factor of n too.

We have the Euclidean algorithm for finding the greatest common
divisor of two integers (not both of which are 0). If gcd(a, b) = d, then
we can also use the algorithm to solve

ax+ by = d.





If gcd(a, n) = 1, then a · a−1 ≡ 1 (mod n) for some number a−1, which
can be found by means of the Euclidean algorithm.

If n | ab and gcd(n, a) = 1, then n | b. In particular, if p | ab, but p - a,
then p | b. This can be used to prove the Fundamental Theorem of
Arithmetic.

We can solve all linear congruences, that is, congruences of the form

ax ≡ b (mod n).

By the Chinese Remainder Theorem, every linear system

x ≡ a1 (mod n1), . . . , x ≡ ak (mod nk),

has a unique solution (which we can find) modulo n1 · · ·nk, assuming the
moduli ni are pairwise coprime. (What if they are not?)

An even number n is perfect, that is,
∑
d|n = 2n, if and only if

n = 2k−1 · (2k − 1)

for some k such that 2k − 1 is prime.

If n > 0, we let

Zn = {0, 1, . . . , n− 1}, Zn× = {x ∈ Zn : gcd(x, n) = 1}.

Then by definition
φ(n) = |Zn×|.

The values of φ (the Euler phi-function) can be found by two rules:

. φ(ab) = φ(a) · φ(b), if gcd(a, b) = 1.
. φ(pk+1) = pk+1 − pk = pk+1 · (1− 1/p).

Euler’s Theorem is

gcd(a, n) = 1 =⇒ aφ(n) ≡ 1 (mod n).

(Fermat’s Theorem is the special case when n = p.) The proof uses
that if gcd(a, n) = 1, then∏

x∈Zn
×

x ≡
∏

x∈Zn
×

(ax) ≡ aφ(n) ·
∏

x∈Zn
×

x (mod n).





Compare to the proof of Wilson’s Theorem:

(p− 1)! ≡ −1 · 2 · 2−1 · · · ≡ −1 (mod p).

We now have a method for computing powers modulo n, that is, for
solving ak ≡ x (mod n). If 0 < k < φ(n), we can find b1, . . . , bm such
that

0 6 b1 < · · · < bm, k = 2b1 + · · ·+ 2bm ;

and then ak is easily computed as a2
b1 · · · a2bm .

Henceforth p is an odd prime. With the usual quadratic formula, we can
solve quadratic congruences

ax2 + bx+ c ≡ 0 (mod p),

at least if we have a way to find square roots modulo p, when they exist.
If the square root of d modulo p does exist, that is, if x2 ≡ d (mod p) is
soluble, then d is called a quadratic residue of p.

If gcd(a, n) = 1, then a has an order modulo n, namely the least positive
exponent k such that ak ≡ 1 (mod n). We may denote this exponent
by

ordn(a).

Then ordn(a) | φ(n). For example, by the computations

k 1 2 3 4 5 6 7 8
2k (mod 17) 2 4 8 −1 −2 −4 −8 1

we have ord17(2) = 8. Likewise, ord17(3) = 16, by the following.

k 1 2 3 4 5 6 7 8
3k (mod 17) 3 −8 −7 −4 5 −2 −6 −1

k 9 10 11 12 13 14 15 16
3k (mod 17) −3 8 7 4 −5 2 6 1

In general, a is called a primitive root of n of ordp(a) = φ(n). For
example, 3 is a primitive root of 17, but 2 is not. Also, 8 has no primitive





root, since φ(8) = 4, but 32 ≡ 52 ≡ 72 ≡ 1 (mod 8). When they exist,
primitive roots are found by trial; there is no formula for computing
them.

Suppose a is a primitive root of p. Then

ordp(a
k) =

p− 1

gcd(k, p− 1)
.

This gives us the following from the computations above:

k 0 14 1 12 5 15 11 10 (mod 16)
3k 1 2 3 4 5 6 7 8 (mod 17)

ord17(3
k) 1 8 16 4 16 16 16 8

gcd(k, 16) 16 2 1 4 1 1 1 2

k + 8 8 6 9 4 13 7 3 2 (mod 16)
3k+8 16 15 14 13 12 11 10 9 (mod 17)

ord17(3
k+8) 2 8 16 4 16 16 16 8

gcd(k + 8, 16) 8 2 1 4 1 1 1 2

In general, if gcd(d, n) = 1, let

ψn(d) = |{x ∈ Zn× : ordn(x) = d}|.

For example, from the last table we have the following.

d 1 2 4 8 16
ψ17(d) 1 1 2 4 8
φ(d) 1 1 2 4 8

In fact it is always true that

ψp(d) = φ(d).

In particular, since φ(p− 1) > 1, p must have a primitive root.

If a is a primitive root of p, then the quadratic residues of p are the even
powers of a (that is, the powers ak such that k is even).
The proof is that

∑
d|p−1 φ(d) = p− 1 =

∑
d|p−1 ψp(d) and ψp(d) 6 φ(d); but we

have not seen all of the details.
Only 2, 4, pk, and 2pk have primitive roots.




