MAT 221 exam solutions

David Pierce

January 10, 2013

http://mat.msgsu.edu.tr/~dpierce/

Problem 1. Explain why the following argument is incorrect.

- 1. All numbers are equal to one another.
- 2. We shall prove this by showing by induction that, for all positive integers n, for every set of n numbers, those numbers are all equal to one another.
- 3. This is obviously true when n = 1: if a set contains just one number, then all numbers in the set are equal to one another.
- 4. Suppose the claim is true when n = k, so that for every set of k numbers, those numbers are equal to one another.
- 5. Let A be a set of k + 1 numbers.
- 6. Suppose $b \in A$ and $c \in A$; we shall show b = c.
- 7. Suppose $b \neq c$.
- 8. Then $c \in A \setminus \{b\}$.
- 9. By inductive hypothesis, all elements of $A \smallsetminus \{b\}$ are equal to one another.
- 10. Let $d \in A \smallsetminus \{b\}$.
- 11. Therefore c = d.
- 12. Similarly b = d. (That is, $b \in A \setminus \{c\}$, so if $d \in A \setminus \{c\}$, we have b = d.)
- 13. Therefore b = c.
- 14. Thus all elements of A are equal to one another.
- 15. By induction, every set of n numbers really contains only one number.

Solution. Step 12 is incorrect. There is no similarity to step 11. The elements b and c of A are not interchangeable with respect to d. By step 10, $d \in A \setminus \{b\}$; but we need not have $d \in A \setminus \{c\}$. In fact $d \notin A \setminus \{c\}$, since d = c. (The argument in parentheses in step 12 is correct, but the hypothesis $d \in A \setminus \{c\}$ is false, so the conclusion b = d does not follow.)

Problem 2. The following prime factorizations will be useful:

$$280 = 2^3 \cdot 5 \cdot 7, \qquad 679 = 7 \cdot 97.$$

(a) If the congruence

$$280x \equiv a \pmod{679}$$

has at least one solution, how many solutions *modulo* 679 does it have?

Solution. Since gcd(679, 280) = 7, there are 7 solutions, if there are any at all.

(b) Find all solutions of the linear congruence $40x \equiv 14 \pmod{97}$. (Do not try to solve by trial and error; there is a clear method available to us.)

Solution. We have gcd(40, 14) = 2 (and $2 \nmid 97$); so we have to solve

$$20x \equiv 7 \pmod{97}.$$

We invert 20 modulo 97 by means of the Euclidean algorithm:

$$\begin{array}{l} 97 = 20 \cdot 4 + 17, \\ 20 = 17 \cdot 1 + 3, \\ 17 = 3 \cdot 5 + 2, \\ 3 = 2 \cdot 1 + 1, \end{array}$$

and then

$$1 = 3 - 2 = 3 - (17 - 3 \cdot 5)$$

= 3 \cdot 6 - 17 = (20 - 17) \cdot 6 - 17
= 20 \cdot 6 - 17 \cdot 7 = 20 \cdot 6 - (97 - 20 \cdot 4) \cdot 7
= 20 \cdot 34 - 97 \cdot 7.

Thus

$$x \equiv 34 \cdot 7 = 238 \equiv 44 \pmod{97}.$$

(c) Find all solutions of the linear congruence $280x \equiv 98 \pmod{679}$. (You may express these in terms of a solution to the congruence in part (b).)

Solution. Since $98 = 7 \cdot 14$, the solutions of $280x \equiv 98 \pmod{679}$ are precisely the solutions of $40x \equiv 14 \pmod{97}$; but if b is a solution of the latter, then the solutions of the former are expressed as

$$x \equiv a, a + 97, a + 97 \cdot 2, \dots, a + 97 \cdot 6 \pmod{679}.$$

In fact the solutions are

 $x \equiv 44, 141, 238, 335, 432, 529, 626 \pmod{679}$.

Problem 3. The number 2003 is known to be a prime number.

- (a) Solve $2x \equiv 1 \pmod{2003}$. Solution. $x \equiv 1002 \equiv -1001 \pmod{2003}$.
- (b) Compute 2000! modulo 2003. (We have a named theorem that is useful for this.)

Solution. By Wilson's Theorem,

$$2002! \equiv -1 \pmod{2003},$$

and therefore

 $2000! \equiv \frac{2002!}{2002 \cdot 2001} \equiv \frac{-1}{-1 \cdot -2} \equiv 1001 \pmod{2003}.$

Problem 4. (a) Show that 3 is a primitive root of 7 by filling out the following table:

k	C	1	2	3		4		5	6	(mod 6)
3^k	;									$(\mathrm{mod}7)$
ſ	k	1	2	3	4	5	5	6	(mod	16)

Solution. 2^{k} 3 2 -1 -3 -2 $1 \pmod{7}$ (b) Fill out the following table. (Recall that $\operatorname{ord}_{n}(a)$ is the least non-

(b) Fill out the following table. (Recall that $\operatorname{ord}_p(a)$ is the least nonnegative exponent b such that $a^b \equiv 1 \pmod{p}$.)

k							$(\mathrm{mod} 6)$
3^k	1	2	3	4	5	6	(mod 7)
$\operatorname{ord}_7(3^k)$							

	k	0	2	1	4	5	3	$(\mod 6)$
Solution.	3^k	1	2	3	4	5	6	(mod 7)
	$\operatorname{ord}_7(3^k)$	1	3	6	3	6	2	

(c) Fill out the following table, in which ϕ is Euler's phi-function. (You can use this to check your work in (b), since for every divisor d of 6, the number of elements of \mathbb{Z}_7^{\times} with order d is precisely $\phi(d)$. Alternatively, if you are confident of your solution to (b), you can use that to fill out the table here.)

d	1	2	3	6
$\phi(d)$				

(d) Solve the quadratic congruence

 $x^2 + 8x + 5 \equiv 0 \pmod{19}.$

Again, do not use trial and error; we have a clear method. You may find needed square roots from the following table: and then you should make it clear how you do this.

k	1	2	3	4	5	6	7	8	9	(mod 18)
2^k	2	4	8	-3	-6	7	-5	9	-1	(mod 19)
2^{k+9}	-2	-4	-8	3	6	-7	5	-9	1	(mod 19)

Solution. $x \equiv \frac{-8 \pm \sqrt{64 - 20}}{2} \equiv \frac{-8 \pm \sqrt{6}}{2}$. From the table, $6 \equiv 2^{14}$, so $\sqrt{6} \equiv \pm 2^7 \equiv \mp 5$. Therefore $x \equiv -4 \pm 10 \cdot 5 \equiv 46, -54 \equiv 8, 3 \pmod{19}$.

Alternatively, we can complete the square:

$$x^{2} + 8x + 5 \equiv 0$$

$$\iff x^{2} + 8x \equiv -5$$

$$\iff x^{2} + 8x + 16 \equiv 11$$

$$\iff (x+4)^{2} \equiv -8.$$

From the table, $-8 \equiv 2^{12}$, so $\sqrt{-7} \equiv \pm 2^6 \equiv \pm 7$, and therefore $x \equiv -4 \pm 7 \equiv 3, -11 \equiv 3, 8$.