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Problem . What is wrong with the following argument?

. All positive integers are odd.
. We shall prove this by mathematical induction.
. Obviously 1 is odd.
. As an inductive hypothesis, we suppose that 1, 2, . . . , n− 1, n are

all odd.
. If n+ 1 is odd, we are done.
. Suppose n+ 1 is even.
. We have n+ 1 ≡ n− 1 (mod 2).
. By inductive hypothesis, n− 1 is odd.
. Therefore n+ 1 is odd.

. By induction, all positive integers are odd.

Solution. Step  is wrong, since n could be 1, and in this case n− 1 is
not covered by the inductive hypothesis.

Remark. This is the only correct answer. Step  is wrong, and Step  is
wrong because the set {1, 2, . . . , n− 1, n} does not actually contain n− 1





if n = 1. (The reason why Step  is wrong is not that n− 1 is not always
odd.) Step  contains an incorrect statement, but it is not an error in
the argument as a whole. (If the argument in Steps – were correct,
then Step  would be correct.) Step  makes the inductive hypothesis
that all elements of the set {x ∈ Z : 1 6 x 6 n} are odd. Steps  and
 are not actually needed for the argument, but they are not incorrect.
Step  contains an obviously correct statement. If Step  were correct,
then Step  would be correct.

Problem . Recall that the triangular numbers are defined recursively
by

t1 = 1, tn+1 = tn + n+ 1.

Prove by induction that, for all positive integers n,

tn + tn+1 = (n+ 1)2.

Solution. We have

t1 + t2 = 2t2 + 2 = 4 = 22.

Thus the claim holds when n = 1. Suppose the claim holds when n = k,
that is,

tk + tk+1 = (k + 1)2.

Then

tk+1 + tk+2 = tk + k + 1 + tk+1 + k + 2

= tk + tk+1 + 2k + 3

= (k + 1)2 + 2k + 3

= k2 + 2k + 1 + 2k + 3

= k2 + 4k + 4

= (k + 2)2.

Thus the claim holds when n = k+1. Therefore, by induction, the claim
holds for all positive integers n.





Remark. The claim can be proved directly (without induction) if one
knows tn = (t+1)t/2. However, the problem does not provide this infor-
mation. When one uses induction, one should not present the argument
as follows:

tk+1 + tk+2
?
= (k + 2)2

tk + k + 1 + tk+1 + k + 2
?
= k2 + 4k + 4

tk + tk+1
?
= k2 + 2k + 1

tk + tk+1 = (k + 1)2

Do not write this way. Why not? Because nothing here is known to be
correct, except the last line. The logical connection between the lines is
not clear. One should rearrange the lines and write

tk + tk+1 = (k + 1)2 = k2 + 2k + 1,

therefore
tk + k + 1 + tk+1 + k + 2 = k2 + 4k + 4,

that is,
tk+1 + tk+2 = (k + 2)2.

Problem . The following is a variant of a famous problem (discussed
in class) from the ancient Chinese work called Mathematical Classic of
Master Sun.

Now there are an unknown number of things. If we count by
threes, there is a remainder 1; if we count by fives, there is a
remainder 2; if we count by sevens, there is a remainder 3.
Find the number of things.

Solution. We have to solve

x ≡ 1 (mod 3), x ≡ 2 (mod 5), x ≡ 3 (mod 7).

The moduli 3, 5, and 7 are pairwise coprime. (In fact they are all distinct
primes.) We compute some inverses:

5 · 7 = 35 ≡ 2 (mod 3),

2 · 2 ≡ 1 (mod 3),

3 · 7 = 21 ≡ 1 (mod 5),

3 · 5 = 15 ≡ 1 (mod 7).





Also 3 · 5 · 7 = 21 · 5 = 105. Therefore

x ≡ 35 · 2 + 2 · 21 + 3 · 15 = 70 + 42 + 45 = 157 ≡ 52 (mod 105).

The number of things is 52, or 52 + 105n for some positive integer n.

Problem . Compute 91815 modulo 19. That is, find all integers x such
that

0 6 x < 19 and 19 | 91815 − x.

Solution. Since 19 is prime, by Fermat’s Theorem we have, modulo 19,

91815 ≡ (918)100 · 915 ≡ 915 = 98+4+2+1 = 98 · 94 · 92 · 9,
92 = 81 ≡ 5,

94 ≡ 52 = 25 ≡ 6,

98 ≡ 62 = 36 ≡ −2,
91815 ≡ −2 · 6 · 5 · 9 = −18 · 30 ≡ 30 ≡ 11.

Remark. I believe the foregoing solution is the most efficient. It is less
efficient to compute, for example,

91815 ≡ (919)95 · 910 ≡ 995 · 910 ≡ (919)5 · 910 ≡ 915.

In any case, one must not remember Fermat’s Theorem incorrectly.

Problem . Solve the congruence

12x ≡ 6 (mod 18),

that is, find all integers k such that

12k ≡ 6 (mod 15) and 0 6 k 6 15.

Solution. Because gcd(12, 6) = 6 and gcd(6, 15) = 3, we have

12x ≡ 6 (mod 15) ⇐⇒ 2x ≡ 1 (mod 5)

⇐⇒ 6x ≡ 3 (mod 5)

⇐⇒ x ≡ 3 (mod 5)

⇐⇒ x ≡ 3, 8, 13 (mod 15).





Bonus. List the odd primes in increasing order:

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, . . .

Prove that the sum of any two consecutive numbers on this infinite list is
the product of three integers that are greater than 1. For example,

3 + 5 = 2 · 2 · 2, 17 + 19 = 3 · 3 · 4, 19 + 23 = 2 · 3 · 7.

Solution. Suppose p and q are consecutive odd primes. Then p + q is
even, and

p <
p+ q

2
< q.

Therefore (p+ q)/2 is composite: say (p+ q)/2 = ab, where a and b are
both greater than 1. Then

p+ q = 2ab.




