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Problem 1. What is wrong with the following argument?

All positive integers are odd.

We shall prove this by mathematical induction.
Obuviously 1 is odd.

As an inductive hypothesis, we suppose that 1,2, ..., n—1, n are
all odd.

If n+ 1 is odd, we are done.

Suppose n + 1 is even.

We have n+1=n—1 (mod 2).

By inductive hypothesis, n — 1 is odd.
Therefore n + 1 is odd.

By induction, all positive integers are odd.
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Solution. Step 8 is wrong, since n could be 1, and in this case n — 1 is
not covered by the inductive hypothesis.

Remark. This is the only correct answer. Step 8 is wrong, and Step 8 is
wrong because the set {1,2,...,n—1,n} does not actually contain n — 1



if n = 1. (The reason why Step 8 is wrong is not that n — 1 is not always
odd.) Step 1 contains an incorrect statement, but it is not an error in
the argument as a whole. (If the argument in Steps 2—10 were correct,
then Step 1 would be correct.) Step 4 makes the inductive hypothesis
that all elements of the set {x € Z: 1 < z < n} are odd. Steps 5 and
6 are not actually needed for the argument, but they are not incorrect.
Step 7 contains an obviously correct statement. If Step 8 were correct,
then Step 9 would be correct.

Problem 2. Recall that the triangular numbers are defined recursively
by

t =1, tng1 =tn +n+ 1.
Prove by induction that, for all positive integers n,
th +tni1 = (n+1)2
Solution. We have
ti+ty =2t +2=4=2%

Thus the claim holds when n = 1. Suppose the claim holds when n = k,
that is,

te +ter = (k+1)2
Then

tir1 +tpro =t +k+ 1+t +k+2
=tp+tpy1 +2k+3
=(k+1)°+2k+3
=k +2k+1+2k+3
=k*+4k+4
= (k +2)°.

Thus the claim holds when n = k+ 1. Therefore, by induction, the claim
holds for all positive integers n.



Remark. The claim can be proved directly (without induction) if one
knows t,, = (¢t +1)t/2. However, the problem does not provide this infor-
mation. When one uses induction, one should not present the argument
as follows:

?
thi1 +tepe = (b +2)2
thtk+ 14t +h+2=k2+4k+4

th+ bt = K2+ 2k + 1
th+tper = (k+1)32
Do not write this way. Why not? Because nothing here is known to be

correct, except the last line. The logical connection between the lines is
not clear. One should rearrange the lines and write

th -t = (k+1)2 =k +2k +1,
therefore
th+k+14+tp +h+2=4k +4k+4,
that is,
th1 + thro = (k+2)%

Problem 3. The following is a variant of a famous problem (discussed
in class) from the ancient Chinese work called Mathematical Classic of
Master Sun.

Now there are an unknown number of things. If we count by
threes, there is a remainder 1; if we count by fives, there is a
remainder 2; if we count by sevens, there is a remainder 3.
Find the number of things.

Solution. We have to solve
z=1 (mod 3), x=2 (mod 5), z=3 (mod7).

The moduli 3, 5, and 7 are pairwise coprime. (In fact they are all distinct
primes.) We compute some inverses:

5.-7=35=2 (mod 3),
2-2=1 (mod 3),
3.7=21=1 (mod5),
3-5=15=1 (mod 7).



Also 3-5-7=21-5=105. Therefore
x=35-24+2-21+3-15=70+42+45=157=52 (mod 105).
The number of things is 52, or 52 + 105n for some positive integer n.

Problem 4. Compute 9'%15 modulo 19. That is, find all integers x such
that

0<z<19 and 19 | 91815 — o,
Solution. Since 19 is prime, by Fermat’s Theorem we have, modulo 19,
91815 = (918)100 . 915 = 915 — 98+4+2+1 — 98 . 94 3 92 A 9
92 =81 =5,
9* =5% =25 =6,
9% =62 =36 = —2,
9185 = _2.6.5.9=-18-30 =30 = 11.

Remark. 1 believe the foregoing solution is the most efficient. It is less
efficient to compute, for example,

gl815 — (919)95 . 910 — 95 . 910 — (g19)5 . 910 — g15
In any case, one must not remember Fermat’s Theorem incorrectly.
Problem 5. Solve the congruence
122 =6 (mod 18),
that is, find all integers k such that
12k =6 (mod 15) and 0< k<15
Solution. Because gcd(12,6) = 6 and ged(6, 15) = 3, we have

120 =6 (mod 15) <= 2z =1 (mod 5)
<= 6z=3 (mod5)
< =3 (mod?5)
<— £ =3,8,13 (mod 15).



Bonus. List the odd primes in increasing order:
3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ...

Prove that the sum of any two consecutive numbers on this infinite list is
the product of three integers that are greater than 1. For example,

3+56=2-2-2, 174+19=3-3-4, 19423=2-3-7.

Solution. Suppose p and ¢ are consecutive odd primes. Then p + ¢ is
even, and

<i<
p 5 q-

Therefore (p + ¢)/2 is composite: say (p + ¢)/2 = ab, where a and b are
both greater than 1. Then

p+ q = 2ab.



