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Introduction

References for these notes include Hoffman and Kunze [], Koç
[], Lang [, ], and Roman [], but I may not follow them
closely.

Since in set theory the letter ω denotes the set {0, 1, 2, . . . }
of natural numbers, I let N denote the set {1, 2, 3, . . . } of
counting numbers. For notational convenience, each n in N
is the set {0, . . . , n − 1}, which has n elements. The expres-
sions i < n and i ∈ n are interchangeable.

An expression like
∧

i<n

ϕ(i)

means ϕ(i) holds whenever i < n; that is,

i < n =⇒ ϕ(i).

The notation f : A → B is to be read as a sentence, “f is a
function from A to B.”





 Determinants

. Matrix multiplication

The structures C, R, Q, Z, and Z/(n), where n ∈ N, where

N = {x ∈ Z : x > 0},

are commutative rings.

For us, a ring will be a structure (R, · , 1), where

) R is an abelian group, written additively,
) · is a multiplication on R, that is, a binary operation

on R that distributes from each side over addition,
) · is associative, and
) 1 is a two-sided identity with respect to · .

We usually write (R, · , 1) as R.

A unit of a ring is an invertible element, that is, an element
with a left inverse and a right inverse. When these one-sided
inverses exist, they are equal. The units of a ring R compose
a multiplicative group, denoted by

R×.

A ring is commutative if its multiplication is commutative.
We gave examples above. For an example of a group of units,
we note that, for all n in N,

|Z/(n)×| = |x ∈ Z/(n) : gcd(x, n) = 1}| = φ(n).





A commutative ring R is a field if R× = Rr{0}. If p is prime,
then Z/(p) is the field Fp, and

Fp
× ∼= Zp−1,

where in general Zn is the cyclic group of order n, and Z/(n)
means (Zn, · , 1).

In this chapter, we shall work with an arbitrary commutative
ring K. The definition of a module over K is the same as the
definition of a vector space, when K is a field. An abelian
group is a module over Z.

If (m,n) ∈ N×N, then Km×n and Kn are modules over K,
and

(X,y) 7→ Xy : Km×n ×Kn → Km,

defined as follows.
If Ω is a set, we denote by

KΩ

the K-module of functions from Ω to K. This defines Kn

when we understand n as the n-element set {0, . . . , n−1}. An
arbitrary element of Kn is one of

(a0, . . . , an−1), (aj : j ∈ n), a.

The superscripts are row numbers, when we think of a as the
1× n matrix







a0

...
an−1






.

Many persons understand Kn as K [n], where [n] is the set
{1, . . . , n} with n elements. What is important is that the

. Matrix multiplication 



entries of an element of Kn be functions into K from a linearly
ordered set with n elements.

An element A of Km×n is a matrix of m rows and n columns,
having entries aij from K, where i ∈ m and j ∈ n, so

A =







a00 · · · a0n−1
...

. . .
...

am−1
0 · · · am−1

n−1






= (aij)

i∈m
j∈n .

If one prefers, one may work instead with elements of E[m]×[n],
and one may write aij for aij. If also b ∈ Kn, we define

Ab =

(

∑

j∈n

aijb
j : i ∈ m

)

, (.)

an element of Km. As in (.) with j, when an index appears
twice, once raised and once lowered, it is usually being summed
over. When j ∈ n, we define

ej = (δij : i ∈ n) (.)

in the module Kn, where

δij =

{

1, if i = j,

0, if i 6= j.
(.)

Then

Aej =

(

∑

k∈n

aikδ
k
j : i ∈ n

)

= (aij : i ∈ n) = aj , (.)

this being column j of A. If b ∈ Kn, then

b =
∑

j∈n

bjej . (.)
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We denote by
τA

the function x 7→ Ax from Kn to Km.
To say that a function ϕ from Kn to Km is a linear trans-

formation means that ϕ is a homomorphism of modules over
K, that is,

ϕ(b+ c) = ϕ(b) + ϕ(c), ϕ(d · b) = d · ϕ(b).

The linear transformations from Kn to Km compose a module
over K denoted by

L (Kn, Km).

Theorem . X 7→ τX : Km×n ∼= L (Kn, Km).

Proof. We have to check that
() τA ∈ L (Kn, Km) for each A in Km×n;
() X 7→ τX is a homomorphism;
() if τA = 0, then A = 0;
() every member of L (Kn, Km) is τA for some A in Km×n.

Each step in the verification of the first two points uses the
definition of a K-module or a property of K as a commutative
ring. If τA = 0, this means in each case 000 = Aej, which is
column j of A by (.); so A = 0.

Finally, since each τA is linear, from (.) and (.) we have

Ab =
∑

j∈n

bjaj .

If T ∈ L (Kn, Km), by defining

Tej = aj,

we obtain A, and then

T = τA.

. Matrix multiplication 



If still A ∈ Km×n, and now also C ∈ Kn×s, then we define

AC =

(

∑

j∈n

aijc
j
k

)i∈m

k∈s

, (.)

an element of Km×s. We shall let M denote the special case
Kn×n, which is closed under matrix multiplication. We have

IA = A = AI,

where
I = (δij)

i∈n
j∈n. (.)

Theorem . When A ∈ Km×n and C ∈ Kn×s, then

τAC = τA ◦ τC .

Thus for any matrices A, B, and C for which either of the
products (AB)C and A(BC) is defined, then both are defined,
and they are equal. In particular, the structure (M, ·, I) is a
ring, and X 7→ τX from M to L (Kn, Kn) is an isomorphism
of rings.

. Determinants

We use the possibility of Gauss–Jordan elimination to moti-
vate the so-called Leibniz formula (.) for the determinant.

.. Desired Properties

Let M be the ring Kn×n. We want to define a determinant

function,
X 7→ detX,

  Determinants



from M to K so that

detX ∈ K× ⇐⇒ X ∈ M×. (.)

If K is the two-element field F2, then (.) is equivalent to

detX =

{

1, if X ∈ M×,

0, otherwise.
(.)

Moreover, with this definition,

det(XY ) = detX det Y. (.)

However, over any K, we also want

detX = f
(

xi
j : (i, j) ∈ n× n

)

(.)

for some polynomial f (namely an element of the free abelian
group generated by products of the variables xi

j). In general
then, (.) will fail. We still want (.) to hold, and this and
(.) imply

det I = 1. (.)

.. Additional properties

In seeking a determinant function satisfying (.), (.), and
(.), and therefore (.), we consider what we know about
M×. An element A of M is in M× just in case A is row-
equivalent to I. This means, for some elementary matrices
Ei,

A = E1 · · ·EnI. (.)

Thus, if (.) and (.) hold, then detA will determined by
the detEi.

. Determinants 



We recall that an elementary matrix is the result of ap-
plying to I an elementary row operation. If Φ is such,
then

Φ(I)A = Φ(A).

Here Φ does one of the following:
) add to one row another row, scaled by some a in K;
) interchange two rows;
) scale a row by an element s of K×.

Let us denote the specific instance of Φ respectively by

Φa, Ψ, Θs.

We do not specify the row or rows involved. We draw the
following conclusions about determinants.

. If (.) is to hold, then, for some single-variable polyno-
mial f ,

det Φa(I) = f(a).

If also (.) is to hold, then, since

Φa(I) · Φb(I) = Φa+b(I),

we must have
f(a) · f(b) = f(a+ b).

In particular, f(x)n = f(nx) for all n in N, and so, since f 6= 0,
we must have

det Φa(I) = 1. (.)

. If, again, (.) is to hold, then, since

Ψ(I) ·Ψ(I) = I,

we should have det Ψ(I) = ±1; we choose

detΨ(I) = −1. (.)

  Determinants



. If, again (.) is to hold, then, for some single-variable
polynomial g,

detΘs(I) = g(s).

If also (.) is to hold, then, since

Θs(I) ·Θt(I) = Θst(I),

we must have
g(s) · g(t) = g(st).

In particular, g(x)n = g(xn), so detΘs(I) must be a power of
s; we choose

detΘs(I) = s. (.)

The definitions, or choices, (.), (.), and (.) will
follow if X 7→ detX is an alternating multilinear form.

We can understand any module Km×n as (Km)n or (Kn)m,
treating an element A as one of

(

(aij : i ∈ m) : j ∈ n
)

,
(

(aij : j ∈ n) : i ∈ m
)

.

Given a module V over K and n in N, we can form the module
V n. For each k in n, we let πk the function from V n to V given
by

πk(xj : j ∈ n) = xk.

Suppose now
ϕ : V n → K.

Given k in n and a function j 7→ aj from n r {k} to V , we
let ι be the function from V to V n given by the rule that, for
each j in n,

πj(ι(x)) =

{

x, if j = k,

aj, if j ∈ nr {k}.

. Determinants 



If the function x 7→ ϕ(ι(x)) is always linear, then ϕ itself is
a multilinear form, specifically an n-linear form, on V . If,
further, whenever i < j < n,

xi = xj =⇒ ϕ(xk : k ∈ n) = 0,

then ϕ is alternating as a multilinear form.
We let the group of permutations of a set Ω be

Sym(Ω).

If Ω is finite, then Sym(Ω) is generated by transpositions. If
σ ∈ Sym(n), we define

sgn(σ) = (−1)|(i,j)∈n×n : i<j & σ(i)>σ(j)}|, (.)

one of the elements of Z×.

Theorem . For every n in N, the function ξ 7→ sgn(ξ) on
Sym(n)

) is given by

sgn(σ) =
∏

i∈j∈n

σ(i)− σ(j)

i− j
, (.)

) is a homomorphism onto Z×, and
) takes every transposition to −1.

Proof. . Since

∏

i∈j∈n

σ(i)− σ(j)

i− j
=

∏

i∈j∈n(σ(i)− σ(j))
∏

i∈j∈n(i− j)
= ±1,

(.) follows from (.).

  Determinants



. Note

sgn(τσ) =
∏

i∈j∈n

τσ(i)− τσ(j)

i− j

=
∏

i∈j∈n

(

τσ(i)− τσ(j)

σ(i)− σ(j)
·
σ(i)− σ(j)

i− j

)

=
∏

i∈j∈n

τ(i)− τ(j)

i− j
· sgn(σ) = sgn(τ) · sgn(σ).

. Letting

τ = (0 1),

since every transposition is σ−1 · τ · σ for some σ, it is enough
to note that

sgn(τ) = −1,

since

τ(i)− τ(j)

i− j

{

> 0, when (i, j) 6= (0, 1),

< 0, when (i, j) = (0, 1).

An element σ of Sym(n) is even if sgn(σ) = 1; this means
σ is a product of an even number of transpositions. The even
permutations compose the subgroup of Sym(n) denoted by

Alt(n).

Theorem . For any module V over K, for any n in N, for
any n-linear form ϕ on V , for each σ in Sym(n),

ϕ(xσ(j) : j ∈ n) = sgn(σ) · ϕ(xj : j ∈ n).

. Determinants 



Proof. Every permutation of a finite set being a product of
transpositions, we need only prove the claim when n = 2 and
σ is the nontrivial permutation of 2. Assuming

x = y =⇒ ϕ(x,y) = 0,

we have 0 = ϕ(x+ y,x+ y), but the latter is

ϕ(x,x) + ϕ(x,y) + ϕ(y,x) + ϕ(y,y),

which reduces to ϕ(x,y) + ϕ(y,x).

In particular, if σ ∈ Alt(n), then

ϕ(xσ(j) : j ∈ n) = ϕ(xj : j ∈ n).

.. Existence and uniqueness

Theorem . There is at most one alternating multilinear
function X 7→ detX from M to K that satisfies (.), and if
it does exist, it satisfies satisfies (.) and (.).

Proof. The hypotheses ensure (.), (.), and (.), as
well as (.). Then (.) holds when X is elementary, and
therefore it holds for all X, and also (.) holds by the analysis
(.) and since every non-invertible matrix is row-equivalent
to one with a zero row.

We now show that there is at least one function X 7→ detX
as desired. We define

detX =
∑

σ∈Sym(n)

sgn(σ)
∏

i∈n

xi
σ(i). (.)

Thus (.) holds.

  Determinants



Theorem . For all A in M ,

det(At) = detA.

Proof. Since sgn(σ−1) = sgn(σ), we compute

det(At) =
∑

σ∈Sym(n)

sgn(σ)
∏

i∈n

a
σ(i)
i

=
∑

σ∈Sym(n)

sgn(σ−1)
∏

i∈n

aiσ−1(i),

which is detA.

Theorem . The function given by (.) is n-linear and al-
ternating, and satisfies (.).

Proof. By (.), since
∏

i∈n

δiσ(i) = 0 ⇐⇒ σ 6= idn,

(.) holds. For multilinearity, Suppose matrices A, B, and
C agree everywhere but in some row k, and akj = s · bkj + t · ckj
for each j in n, for some s and t in K. Then

detA =
∑

σ∈Sym(n)

sgn(σ)
∏

i∈nr{k}

aiσ(i) · (s · b
k
σ(k) + t · ckσ(k))

= s · detB + t · detC.

Finally, if i < j < n, and τ in Sym(n) transposes i and j,
then τ−1 = τ , and ξ 7→ ξ ◦ τ is a bijection between Alt(n) and
Sym(n)rAlt(n), so

detA =
∑

σ∈Alt(n)

(

∏

k∈n

akσ(k) −
∏

k∈n

a
τ(k)
σ(k

)

.

If moreover aik = ajk for each k in n, then detA = 0.

. Determinants 



. Inversion

We know from Theorems  and  that (.) holds. In partic-
ular, if detA ∈ K×, then A−1 exists in M . We can compute
A−1 by the reduction in (.); but we now develop another
method.

As in (.), if τ is a bijection from a finite ordered set S to
a finite ordered set T , we can define

sgn(τ) = (−1)|(i,j)∈S×S : i<j & σ(i)>σ(j)}|.

There is a unique isomorphism ϕ from S to T , and then

ϕ−1 ◦ τ ∈ Sym(S),

sgn(τ) = sgn(ϕ−1 ◦ τ).

Suppose now σ ∈ Sym(n) and k ∈ n. Letting S be n r {k}
and T be nr {σ(k)}, we can define τ to be the restriction of
σ to S, so that τ is a bijection from S to T . Then

sgn(σ)

sgn(τ)
= (−1)|{j∈nr{k} : j>k ⇐⇒ σ(j)<σ(k)}|.

Theorem . In the notation above,

sgn(σ)

sgn(τ)
= (−1)k+σ(k).

Proof. We may assume k 6 σ(k). There are at least σ(k)− k
values of j greater than k and the condition

j > k ⇐⇒ σ(j) < σ(k) (.)

is satisfied. For every additional such value, there must be a
value less than k for which (.) is satisfied. This proves the
claim.

  Determinants



For any (k, ℓ) in n × n, assuming n > 1, we let Âk
ℓ be the

matrix that we obtain from A by deleting row k and column
ℓ. Formally,

Âk
ℓ =

(

a
[i,k]
[j,ℓ]

)i∈n−1

j∈n−1
,

where

[i, k] =

{

i, if i < k,

i+ 1, if k 6 i.

Theorem . For any k in n,

detX =
∑

j∈n

(−1)k+jxk
j det X̂

k
j .

Proof. We group the terms in (.), which are indexed by σ
in Sym(n), according to the value of σ(k):

detX =
∑

j∈n

∑

σ∈Sym(n)
σ(k)=j

sgn(σ)
∏

i∈n

xi
σ(i)

=
∑

j∈n

xk
j

∑

σ∈Sym(n)
σ(k)=j

sgn(σ)
∏

i∈n
i 6=k

xi
σ(i)

=
∑

j∈n

(−1)k+jxk
j det X̂

k
j

by Theorem .

We now define the operation X 7→ adj(X) on M by

adj(A) =
(

(−1)i+j det Âj
i

)i∈n

j∈n
.

This is the adjugate of A.

. Inversion 



Theorem . For all A in M ,

A adj(A) = detA · I.

Proof. By Theorem , if A adj(A) = B, then bij is the deter-
minant of the matrix that we obtain from A by replacing row
j with row i. This determinant is

• detA, if i = j;
• 0, if i 6= j, since X 7→ detX is alternating.

Theorem . If detA ∈ K×, then

A−1 = (detA)−1 · adj(A).

Proof. Assuming detA ∈ K×, if we denote (detA)−1 · adj(A)
by B, then by Theorem ,

AB = I.

Since A−1 does exist, we have

A−1 = A−1(AB) = (A−1A)B = IB = B.

  Determinants



 Polynomials

. Characteristic values

We henceforth suppose K is a field; still M is Kn×n. For
any A in M , an element λ of K is a characteristic value or
eigenvalue of A if, for some b in Kn,

Ab = λ · b. (.)

In this case, b is a characteristic vector or eigenvector of
A associated with λ. Rewriting (.) as

(A− λ · I)b = 000

shows that the characteristic values of A are precisely the ze-
roes of the polynomial

det(A− x · I),

which is called the characteristic polynomial of A.
If λ is indeed a characteristic value of A, then the null-space

of A− λ · I is the characteristic space or eigenspace of A
associated with λ.

Theorem . Eigenvectors corresponding to distinct eigen-
values of any matrix are linearly independent.

Proof. We prove the claim by induction on the number of
eigenvectors. The empty set of eigenvectors is trivially linearly





independent. Suppose (vi : i < k) is linearly independent, each
vi being an eigenvector of A with associated eigenvalue λi, the
λi being distinct. Let vk be a an eigenvector associated with
a new eigenvalue, λk. If

∑

i6k

xivi = 000, (.)

then

000 = (A− λk · I)
∑

i<m+1

xivi =
∑

i6k

(λi − λk)x
ivi

=
∑

i<k

(λi − λk)x
ivi,

so xi = 0 when i < k, and then also xk = 0 by (.).

If A in M has n linearly independent eigenvectors bi, each
associated with an eigenvalue λi (possibly not distinct), then
the eigenvectors are the columns of an element B of M×, and

AB = BL,

where

ℓij =

{

λi, if i = j,

0, if i 6= j,

or in short
L = diag(λi : i ∈ n),

a diagonal matrix. Thus

B−1AB = diag(λi : i ∈ n),

and in particular A is diagonalizable.

  Polynomials



It will be useful to recall that every matrix B in M× is
the change-of-basis matrix from the basis (j : j ∈ n) of Kn

consisting of the columns of B to the standard basis of Kn.
Every matrix of the form P−1AP for some P in M× is sim-

ilar to A (in group theory one says conjugate). Similarity of
matrices is an equivalence relation, as is row-equivalence (men-
tioned first on page ); but they are different relations. We
want to characterize the diagonalizable matrices.

A matrix A in M is triangular if
∧

j<i<n

aij = 0. (.)

A matrix similar to a triangular matrix is triangularizable.

Theorem . A matrix A in M is triangularizable just in
case, for some B in M×,

∧

j∈n

Abj ∈ span{b0, . . . , bj}; (.)

and in this case B−1AB is triangular.

Proof. The condition (.) on A for being triangular means
precisely

∧

j∈n

Aej =

j
∑

i=0

aijei, (.)

and thus that I is a matrix B as in the statement of the the-
orem. If B−1AB is triangular, then putting this matrix in
place of A in (.) yields (.). Conversely, if B is as in the
statement, then we can write (.) as

∧

j∈n

ABej ∈ span{Be0, . . . , Bej},
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and then
∧

j∈n

B−1ABej ∈ span{e0, . . . , ej},

so B−1AB is triangular.

Theorem . Every matrix in M is triangularizable over an
algebraically closed field.

Proof. Given A in M , assuming K is algebraically closed, so
that the characteristic polynomial of A has at least one zero,
and therefore A has at least one eigenvector, we extend this to
a basis of Kn that satisfies (.). Doing this will be enough,
by Theorem .

We use induction on n. The claim is trivial when n = 1.
Suppose it holds when n = m. Now let n = m + 1 and
A ∈ M . There is a basis (p0, . . . ,pm) of Kn such that p0

is an eigenvector. Thus the basis satisfies the first conjunct
of (.). We could satisfy the remaining conjuncts, by the
inductive hypothesis, if we had

m
∧

j=1

Apj ∈ span{p1, . . . ,pm}.

However, we may not actually have this. Nonetheless, there
are matrices B and C such that

τB

(

m
∑

i=0

xipi

)

= x0p0, τC

(

m
∑

i=0

xipi

)

=

m
∑

i=1

xipi. (.)

In words,
• τC is an endomorphism of span{p1, . . . ,pm}, and there-

fore so is τCA;
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• τB is a homomorphism from Kn to span{p0}, and there-
fore so is τBA.

Now span{p1, . . . ,pm} has a basis (v1 . . . , vm) such that

m
∧

j=1

CAvj ∈ span{v1 . . . , vj},

by inductive hypothesis. Therefore now

m
∧

j=1

(BA + CA)vj ∈ span{v0, . . . , vj}.

From all of (.),
τB + τC = idKn,

and so
m
∧

j=1

Avj ∈ span{v0, . . . , vj}.

Finally, since v0 is an eigenvector of A,

m
∧

j=0

Avj ∈ span{v0, . . . , vj}.

Thus we have (.). This completes the induction.

We can write out the foregoing proof entirely in terms of
matrices as follows. We have

P−1AP =

(

λ a

000 D

)

for some m×m matrix D, where λ is the eigenvalue associated
with p0. We choose B and C so that

P−1BP =

(

1 000
000 0

)

, P−1CP =

(

0 000
000 I

)

.
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Then

P−1CAP = P−1CPP−1AP =

(

0 000
000 I

)(

λ a

000 D

)

=

(

0 000
000 D

)

and

P−1BAP =

(

1 000
000 0

)(

λ a

000 D

)

=

(

λ a

000 0

)

.

Therefore

P−1BAP + P−1CAP = P−1AP,

BA+ CA = A.

By inductive hypothesis, for some Q, Q−1DQ is a triangular
matrix T . Then

(

1 000
000 Q

)−1

P−1CAP

(

1 000
000 Q

)

=

(

0 000
000 T

)

,

while

(

1 000
000 Q

)−1

P−1BAP

(

1 000
000 Q

)

=

(

1 000
000 Q−1

)(

λ aQ
000 0

)

=

(

λ aQ
000 0

)

,

and therefore
(

1 000
000 Q

)−1

P−1AP

(

1 000
000 Q

)

=

(

λ aQ
000 T

)

,

a triangular matrix.
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. Polynomial functions of matrices

Although K is a field, the ring M is not commutative when
n > 1. However, it has commutative sub-rings. Indeed, for
every A in M , the smallest sub-ring of M that contains A is
commutative. We may denote this sub-ring by

K[A].

This is also a vector space over K, spanned by the powers I,
A, A2, A3, . . . , of A. Thus

K[A] =
{

f(A) : f ∈ K[x]
}

,

where, if

f(x) =
m
∑

i=0

fix
i (.)

in K[x] (and xi is now the power
∏

k∈i x), we define

f(A) =
n
∑

i=0

fiA
i.

If f(A) is the zero matrix, we may say A is a zero of f .
However, theorems about zeroes in fields may not apply here.
For example, since K[A] may have zero divisors, the number
of zeroes of f in M may exceed deg f . Indeed, A itself may be
a zero divisor, as for example when

A =

(

0 1
0 0

)

,

since then A2 is the zero matrix. In this case every scalar
multiple b · A of A is a zero in K[A] of the polynomial x2.
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. Cayley–Hamilton Theorem

Given A in M , we are going to want to know that A is a zero
of some nonzero polynomial over K. Suppose

f(x) = det(x · I− A), (.)

the characteristic polynomial of A. The equation remains cor-
rect automatically when we replace x with an element of K or
of any field that includes K. Note however that, for a matrix
B in M , while f(B) ∈ M , we have

det(BI−A) ∈ K.

Since AI − A is the zero matrix, we have det(AI − A) = 0.
This observation is not enough to ensure that f(A) is the zero
matrix. Nonetheless, we shall show that it is, in two ways.

Theorem  (Cayley–Hamilton). Over any field, every ma-
trix is a zero of its characteristic polynomial.

First proof. By Theorem , with f as in (.) we have

f(x) · I = (x · I− A) adj(x · I−A). (.)

Moreover,

f(x) · I =
n
∑

j=0

xj · Fj,

where, in the notation of (.),

F = fj · I.

Likewise, for some matrices Bj in M ,

adj(x · I− A) =
n−1
∑

j=0

xj · Bj.
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Thus (.) becomes

n
∑

j=0

xj · fj · I = (x · I−A)

n−1
∑

j=0

xj ·Bj . (.)

This then will be true when x is replaced by an element of
M that commutes with A. Since A is such an element, and
the right member of (.) becomes 0 when x is replaced with
A, the same is true for the left member; but this just means
f(A) = 0.

Second proof. Letting f be the characteristic polynomial of
A in M as in (.), we want to show f(A) = 0. Since the
determinant function is multiplicative, for every P in M×,

det(x · I−A) = det
(

P−1 · (x · I− A) · P
)

= det(x · I− P−1AP ).

By Theorem , for some matrix P , P−1AP is a triangular
matrix. It does not matter that entries of P may come from
the algebraic closure of K, possibly not K itself. We may
assume A is triangular. The characteristic polynomial of A is
now

∏

i<n

(x− aii).

Since the product is independent of the order of the factors,
so is the product

∏

i<n(A− aii · I). We have to show that this
product is 0. Column j of the product is

∏

i<n

(A− aii · I)ej .
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However, by (.),

(A− ajj · I)ej = Aej − ajjej =
∑

i<j

ajiei, (.)

and in particular

(A− ajj · I)ej ∈ span{ei : i < j}.

By induction then,

∏

i6j

(A− aii · I)ej = 000.

Finally

∏

i∈n

(A− aii · I)ej =
∏

j<i<n

(A− aii · I)
∏

i6j

(A− aii · I)ej = 000.

. Minimal polynomial

Theorem . For any A in M , the subset

{f ∈ K[x] : f(A) = 0}

of K[x] is a nonzero ideal.

Proof. The set is easily an ideal. It is nontrivial for con-
taining the characteristic polynomial of A; alternatively, since
dimM = n2, there must be some coefficients fi, not all 0, for
which

f0 + f1 · A+ · · ·+ fn2 · An2

= 0.
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Since K[x] is a principal-ideal domain, the ideal of the theo-
rem has a monic generator, called the minimal polynomial

of A. This polynomial therefore is a factor of the characteristic
polynomial of A. In particular, every zero in K of the minimal
polynomial is a zero of the characteristic polynomial.

Theorem . In a field, every zero of the characteristic poly-
nomial of a square matrix over the field is a zero of the minimal
polynomial. Hence every irreducible factor of the characteris-
tic polynomial is a factor of the minimal polynomial.

Proof. A zero of the characteristic polynomial of A is just an
eigenvalue of A. Let λ be an eigenvalue, with corresponding
eigenvector b. Thus

Ab = λb,

Ajb = λjb,

f(A)b = f(λ)b

for all f(x) in K[x]. In particular,

f(A) = 0 =⇒ f(λ) = 0.

If f is the minimal polynomial of A, then f(A) = 0, so f(λ) =
0.

Theorem . A square matrix is diagonalizable if and only if
its minimal polynomial is the product of distinct linear factors.

Proof. Suppose A in M is diagonalizable, so that, for some B
in M×, for some λj in K,

AB = B diag(λj : j ∈ n).
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Letting column j of B be bj , we have

Abj = λjbj,

(A− λj · I)bj = 000.

Letting m = |{λj : j ∈ n}|, we may assume

{λj : j ∈ n} = {λi : i ∈ m}.

For all j in n, we have

∏

i∈m

(A− λi · I)bj = 000.

The bj being linearly independent, letting

f(x) =
∏

i∈m

(x− λi), (.)

we conclude f(A) = 0, so the minimal polynomial of A is
a factor of f(x). (It is the same as f(x), since the λi are
eigenvectors of A, and each of these must be a zero of the
minimal polynomial, by Theorem .)

Suppose conversely f(x) as given by (.), where again the
λi are all distinct, is the minimal polynomial of A. In partic-
ular, f(A) = 0. If j ∈ m, we can define gj(x) in K[x] by

(x− λj)gj(x) = f(x). (.)

The λj being distinct, the greatest common divisor of the gj(x)
in K[x] is unity. Since K[x] is a Euclidean domain, by Bézout’s
Lemma there are qj(x) in K[x] such that

∑

j∈m

gj(x)qj(x) = 1.

  Polynomials



Then
∑

j∈m

gj(A)qj(A) = I.

Thus for every v in Kn, when we define

gj(A)qj(A)v = wj , (.)

we have
∑

j∈m

wj = v.

But then since f(A) = 0, from (.) and (.) we have

000 = f(A)qj(A)v = (A− λj)wj ,

so that wj belongs to the eigenspace associated with λj. In
particular, by Theorem , there must be n linearly indepen-
dent eigenvectors, so A is diagonalizable.
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 Jordan Normal Form

The presentation here is based mainly on Lang [].

. Cyclic spaces

Supposing λ is an eigenvalue of the n× n matrix A, we let

Bλ = A− λ · I. (.)

If v0 is a corresponding eigenvector, this means

v0 6= 000, Bλv0 = 000.

If possible now, let Bλv1 = v0. Then

Av1 = λv1 + v0, Bλ
2v1 = 000.

Suppose, in this way, for some s, when 0 < k < s,

Avk = λvk + vk−1, Bλ
k+1vk = 000.

Then defining P as the n× s matrix

(

v0 · · · vs−1

)

,

we have

AP =
(

Av0 · · · Avs−1

)

=
(

λv0 v0 + λv1 · · · vs−2 + λvs−1

)

= PJ, (.)





where J is the s× s matrix
















λ 1 0 . . . 0

0 λ 1
. . .

...

0 0
. . .

. . . 0
...

. . . λ 1
0 . . . . . . 0 λ

















.

Theorem . The columns of the matrix P just defined are
linearly independent.

Proof. Writing v for vs−1 and B for Bλ, we have

P =
(

Bs−1v · · · B0v.
)

.

We show the columns are linearly independent. Suppose for
some scalars ci,

∑

i<s

ci ·Bs−iv = 000.

Then f(B)v = 000, where

f(x) =
∑

i<s

cixs−i.

However, also g(B)v = 000, where

g(x) = xs.

Letting h be the greatest common factor of f and g, we have

h(B)v = 000.

Also, h(x) = xr for some r, where r 6 s. When r < s, we
have

Brv = vs−1−r,

which is not 000. Thus h(x) = xs, and therefore f = 0.
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In the proof, span{vk : k ∈ s} is a B-cyclic subspace of Kn,
because it is, for some one vector v, spanned by the vectors
Bkv. The space is then B-invariant, because closed under
multiplication by B.

. Direct sums

Suppose V is a vector space over K, and for some m in N, and
for each j in n, Vj is a subspace of V . If the homomorphism

(vi : i < n) 7→
∑

i<n

vi

from
∏

i<n Vi to V is surjective, then V is the sum of the
subspaces Vi, and we may write

V = V0 + · · ·+ Vn−1 =
∑

i<n

Vi.

If, further, the homomorphism is injective, then V is the di-

rect sum of the Vi, and we may write

V = V0 ⊕ · · · ⊕ Vn−1 =
⊕

i<n

Vi.

Given B in M , we shall understand

kerB = {x ∈ Kn : Bx = 000}.

Lemma . If f and g in K[x] are co-prime, then for all A in
M ,

ker(f(A)g(A)) = ker f(A)⊕ ker g(A).
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Proof. By Bézout’s Lemma for some q and r in K[x],

qf + rg = 1,

q(A)f(A) + r(A)g(A) = I.

For all v in Kn then,

q(A)f(A)v + r(A)g(A)v = v.

Suppose now
w ∈ ker(f(A)g(A)).

Then

r(A)g(A)w ∈ ker f(A), q(A)f(A)w ∈ ker g(A),

and so
w ∈ ker f(A) + ker g(A).

Conversely, suppose

u ∈ ker f(A), v ∈ ker g(A).

Then

u = q(A)f(A)u+ r(A)g(A)u

= r(A)g(A)u = r(A)g(A)(u+ v)

and likewise
v = q(A)f(A)(u+ v).

This shows (u, v) 7→ u+ v is injective.

Theorem . If each of some f in K[x] is prime to the others,
then for all A in M ,

ker
∏

f

f(A) =
⊕

f

ker f(A).
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. Kernels

Suppose A in M has characteristic polynomial f , and K is
algebraically closed. Then

f =
∏

j<m

(x− λj)
rj

for some λj in K and rj in N. By the Cayley–Hamilton The-
orem,

ker
(

f(A)
)

= Kn.

Letting

Bj = A− λj · I,

we have now, by Theorem ,

Kn =
⊕

j<m

ker (Bj
rj ) . (.)

Theorem . For all B in M , for all s in N, ker(Bs) is the
direct sum of B-cyclic subspaces.

Proof. We shall prove the claim for every B-invariant subspace
of ker(Bs). We use induction on the dimension of the subspace.
If the dimension is 0, the claim is vacuously true. Suppose V is
a B-invariant subspace of ker(Bs) having positive dimension.
Then

V * ker(B0), ker(B0) ⊆ . . . ⊆ ker(Bs), V ⊆ ker(Bs),

so for some r,

V * ker(Br−1), V ⊆ ker(Br).
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Then
V B ⊆ V ∩ ker(Br−1) ⊂ V.

This shows
V B ⊂ V.

As an inductive hypothesis, we assume

V B =
⊕

i<m

Wi, (.)

where each Wi is B-cyclic. Then for some wi in V , for some
ri in N,

Wi = span{Bjwi : j < ri}, 000 = Briwi. (.)

For some vi in V ,
wi = Bvi. (.)

Now let
Vi = span{Bjvi : i 6 ri}.

Then Vi is a B-cyclic space, since Bri+1vi = 000. We shall show
that the sum of the Vi is direct. An arbitrary element of Vi is
fi(B)vi for some fi in K[x] such that

deg fi 6 ri. (.)

Suppose

000 =
∑

i<m

fi(B)vi.

Then by (.),

000 =
∑

i<m

fi(B)wi. (.)

But then by (.),
000 = fi(B)wi,
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so by (.), and (.), and Theorem ,

fi = cix
ri

for some ci in K. In this case, we can write (.) as

000 =
∑

i<m

ciB
ri−1wi,

which implies that each ci is 0. Thus fi = 0.
Now we can let

V ′ =
⊕

i<m

Vi.

Then V ′ ⊆ V . By construction, ViB = Wi, so

V ′B = W = V B.

Therefore
V = V ′ + kerB.

Each element of kerB constitutes a basis of a one-dimensional
B-cyclic space. Then V is the direct sum of some of these
spaces, along with the Vi, as desired.

In the notation of (.), there are nj in N, and then there
are vjk in ker(Bj

rj) and sjk in N such that

Bj
sjk−1vjk 6= 000, Bj

sjkvjk = 000,

and
ker(Bj

rj) =
⊕

k<nj

span{Bj
ivjk : i < sjk}.

Now we may let

P =
(

P0 · · · Pm−1

)

,

  Jordan Normal Form



where, for each j in m,

Pj =
(

Pj0 · · · Pj,nj−1

)

,

where, for each k in nj ,

Pjk =
(

Bj
sjk−1vjk · · · vj,k

)

.

Then PAP−1 is a Jordan normal form for A. Indeed, by
the considerations yielding (.),

PAP−1 = diag(Λ0, . . . ,Λm−1),

where, for each j in m,

Λj = diag(Λj0, . . . ,Λj,nj−1),

where, for each k in nj , Λj,k is the sjk × sjk matrix

















λj 1 0 . . . 0

0 λj 1
. . .

...

0 0
. . .

. . . 0
...

. . . λj 1
0 . . . . . . . 0 λj

















.
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