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Introduction

References for these notes include Hoffman and Kunze [1], Kog
[2], Lang [3, 4], and Roman [5], but I may not follow them
closely.

Since in set theory the letter w denotes the set {0,1,2,...}
of natural numbers, I let N denote the set {1,2,3,...} of
counting numbers. For notational convenience, each n in N
is the set {0,...,n — 1}, which has n elements. The expres-
sions ¢ < n and ¢ € n are interchangeable.

An expression like
N\ (i)
<n
means ¢(7) holds whenever i < n; that is,
i<n = ().

The notation f: A — B is to be read as a sentence, “f is a
function from A to B.”



1 Determinants

1.1 Matrix multiplication
The structures C, R, Q, Z, and Z/(n), where n € N, where
N={x€Z: x>0},

are commutative rings.

For us, a ring will be a structure (R, -, 1), where

1) R is an abelian group, written additively,

2) - is a multiplication on R, that is, a binary operation

on R that distributes from each side over addition,

3) - is associative, and

4) 1is a two-sided identity with respect to - .

We usually write (R, -,1) as R.

A unit of a ring is an invertible element, that is, an element
with a left inverse and a right inverse. When these one-sided
inverses exist, they are equal. The units of a ring R compose
a multiplicative group, denoted by

R*.

A ring is commutative if its multiplication is commutative.
We gave examples above. For an example of a group of units,
we note that, for all n in N,

Z/(n)"| = |z € Z/(n): ged(z,n) =1} = d(n).



A commutative ring R is a field if R* = R~ {0}. If p is prime,
then Z/(p) is the field I, and

F,* =7, 1,
where in general Z, is the cyclic group of order n, and Z/(n)
means (Z,, -, 1).

In this chapter, we shall work with an arbitrary commutative
ring K. The definition of a module over K is the same as the
definition of a vector space, when K is a field. An abelian
group is a module over Z.

If (m,n) € Nx N, then K™*" and K™ are modules over K,
and

(X,y)— Xy: K™" x K" — K™,

defined as follows.
If Q is a set, we denote by

KQ

the K-module of functions from € to K. This defines K"
when we understand n as the n-element set {0,...,n—1}. An
arbitrary element of K™ is one of

(a®,...,a" 1), (a’: j €n), a.

The superscripts are row numbers, when we think of a as the
1 X n matrix

n—1

Many persons understand K" as K™ where [n] is the set
{1,...,n} with n elements. What is important is that the
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entries of an element of K™ be functions into K from a linearly
ordered set with n elements.

An element A of K™*™ is a matrix of m rows and n columns,
having entries aé» from K, where i € m and j € n, so

a/() o s e a’n_l
_ . . . _ 1 \tEM
A= : - : = (aj)jen'
m—1 m—1
a/() o s e an_l

If one prefers, one may work instead with elements of E*["

and one may write a;; for aé». If also b € K", we define
Ab = <Za§»bj: i€m> , (1.1)
JEN
an element of K™. As in (1.1) with j, when an index appears

twice, once raised and once lowered, it is usually being summed
over. When j € n, we define

e;=(8:ien) (1.2)

in the module K™, where

; 1, ifi=j,
6]': o . (13)
0, ifi#j.
Then
Ae; = <Zaf€6§5: iEn) :(aé»: i€n)=a;, (1.4)
ken

this being column j of A. If b € K™, then

b:ijej. (1.5)

JjEN

6 1 Determinants



We denote by
TA

the function & — Az from K" to K™.
To say that a function ¢ from K" to K™ is a linear trans-

formation means that ¢ is a homomorphism of modules over
K, that is,

p(b+c) = ¢(b) + ¢(c), p(d-b) =d- o(b).
The linear transformations from K™ to K™ compose a module
over K denoted by
ZL(K", K™).
Theorem 1. X — tx: K"™" = Z(K", K™).

Proof. We have to check that

(1) T4 € Z(K",K™) for each A in K™*",

(2) X — Tx is a homomorphism;

(3) if T4 =0, then A = 0;

(4) every member of Z (K™, K™) is T4 for some A in K™*".
Each step in the verification of the first two points uses the
definition of a K-module or a property of K as a commutative
ring. If T4 = 0, this means in each case 0 = Ae;, which is
column j of A by (1.4); so A= 0.

Finally, since each T4 is linear, from (1.4) and (1.5) we have

Ab:ZHaJ

JjEN
IfT e (K" K™), by defining
Tej = aj,
we obtain A, and then

T:TA. O
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If still A € K™ and now also C' € K"™** then we define

AC = (Z aﬁc,i) : (1.6)

jen kes

an element of K>, We shall let M denote the special case
K™ which is closed under matrix multiplication. We have

A= A=Al

where

I=(8))jen (17)
Theorem 2. When A € K™ and C' € K™**, then

Tac = T4 O Tc.

Thus for any matrices A, B, and C for which either of the
products (AB)C and A(BC') is defined, then both are defined,
and they are equal. In particular, the structure (M,-,1) is a
ring, and X — Tx from M to L (K™, K") is an isomorphism
of rings.

1.2 Determinants

We use the possibility of Gauss—Jordan elimination to moti-
vate the so-called Leibniz formula (1.19) for the determinant.

1.2.1 Desired Properties

Let M be the ring K™*". We want to define a determinant
function,
X — det X,
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from M to K so that
det X € K* <= X e M”*. (1.8)

If K is the two-element field Fy, then (1.8) is equivalent to

1, if XeM*
detX:{ A e (1.9)

0, otherwise.
Moreover, with this definition,
det(XY) = det X det Y. (1.10)
However, over any K, we also want
det X = f(z: (i,4) € n x n) (1.11)

for some polynomial f (namely an element of the free abelian
group generated by products of the variables x;) In general
then, (1.9) will fail. We still want (1.10) to hold, and this and
(1.8) imply

detI=1. (1.12)

1.2.2 Additional properties

In seeking a determinant function satisfying (1.8), (1.10), and
(1.11), and therefore (1.12), we consider what we know about
M*. An element A of M is in M* just in case A is row-
equivalent to I. This means, for some elementary matrices
E;

A=E,---E,L (1.13)

Thus, if (1.10) and (1.12) hold, then det A will determined by
the det E;.
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We recall that an elementary matrix is the result of ap-
plying to I an elementary row operation. If ¢ is such,
then

O(I)A =D(A).

Here ® does one of the following:
1) add to one row another row, scaled by some a in K;
2) interchange two rows;
3) scale a row by an element s of K*.

Let us denote the specific instance of ® respectively by

D, v, Os.

We do not specify the row or rows involved. We draw the
following conclusions about determinants.
1. If (1.11) is to hold, then, for some single-variable polyno-
mial f,
det @,(I) = f(a).

If also (1.10) is to hold, then, since
Do(1) - B (1) = Dy (1),

we must have
fla)- f(b) = f(a+b).
In particular, f(x)" = f(nz) for all n in N, and so, since f # 0,

we must have
det @,(I) = 1. (1.14)

2. If, again, (1.10) is to hold, then, since
(D)) =1,
we should have det ¥(I) = £1; we choose
det U(I) = —1. (1.15)
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3. If, again (1.11) is to hold, then, for some single-variable
polynomial g,
det ©4(I) = g(s).

If also (1.10) is to hold, then, since
65(1) : G)t(l) = G)st(l)u

we must have

9(s) - g(t) = g(st).
In particular, g(z)” = g(2"), so det O4(I) must be a power of
s; we choose

det ©4(I) = s. (1.16)
The definitions, or choices, (1.14), (1.15), and (1.16) will
follow if X +— det X is an alternating multilinear form.

We can understand any module K™*™ as (K™)" or (K™)™,
treating an element A as one of

((al:iem): jen), ((af:jen):iem).

Given a module V' over K and n in N, we can form the module
V™. For each k in n, we let 713, the function from V™ to V' given
by

ﬂk(alji j € n) = Tk.

Suppose now
p: V' = K.

Given k in n and a function j — a; from n ~\ {k} to V, we
let v be the function from V to V" given by the rule that, for
each j in n,

a;, ifjen~{k}.

(1) = {"” L
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If the function & — ¢(1(x)) is always linear, then ¢ itself is
a multilinear form, specifically an n-linear form, on V. If,
further, whenever i < j < n,

r,=x; = ¢(xx: ken)=0,

then ¢ is alternating as a multilinear form.
We let the group of permutations of a set €2 be

Sym(€).

If Q is finite, then Sym(2) is generated by transpositions. If
o € Sym(n), we define

SgH(O') _ (_1)\(i,j)€n><n: 1<j & U(’i)>0’(j)}|’ (1'17>
one of the elements of Z*.

Theorem 3. For every n in N, the function £ — sgn(§) on
Sym(n)
1) is given by

(o) = I 0@%;(9) (1.18)

2) is a homomorphism onto Z*, and
3) takes every transposition to —1.

Proof. 1. Since

— = — = =41,
(R Hiejen(l —J)

H o(i) —o(j)  licjenlo(i) —a(4))

(1.17) follows from (1.18).
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2. Note

sen(ro) = H To(i) — 10(j)

1€EJEN ‘ _‘j
B To(i) — 10(j) _ o(i) —o(j)
‘H( e )
B H w -sgn(o) = sgn(r) - sgn(o).
3. Letting
T7=1(01),

since every transposition is 0!

to note that

-1 - o for some o, it is enough

SgH(T) - _17

since

(1) —7(j) | >0, when (i,7) # (0,1),
=] <0, when (i,7) = (0,1).

An element o of Sym(n) is even if sgn(c) = 1; this means

o is a product of an even number of transpositions. The even
permutations compose the subgroup of Sym(n) denoted by

Alt(n).

Theorem 4. For any module V' over K, for any n in N, for
any n-linear form ¢ on' V', for each o in Sym(n),

o(xojy: J €n) =sgn(o) - p(x;: j €n).
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Proof. Every permutation of a finite set being a product of
transpositions, we need only prove the claim when n = 2 and
o is the nontrivial permutation of 2. Assuming

=y = ¢(x,y) =0,
we have 0 = p(x + y,x + y), but the latter is

p(e, @) + oz, y) + oy, ) + ¢(y,y),
which reduces to p(x,y) + ¢(y, x). O

In particular, if o € Alt(n), then
(o) J €n) =p(x;: j €En).

1.2.3 Existence and uniqueness

Theorem 5. There is at most one alternating multilinear
function X — det X from M to K that satisfies (1.12), and if
it does exist, it satisfies satisfies (1.8) and (1.10).

Proof. The hypotheses ensure (1.14), (1.15), and (1.16), as
well as (1.12). Then (1.10) holds when X is elementary, and
therefore it holds for all X', and also (1.8) holds by the analysis
(1.13) and since every non-invertible matrix is row-equivalent
to one with a zero row. O

We now show that there is at least one function X ~ det X
as desired. We define

det X = Z sgn(o)ng(i). (1.19)

o€Sym(n) i€n

Thus (1.11) holds.

14 1 Determinants



Theorem 6. For all A in M,
det(A") = det A.

Proof. Since sgn(c~!') = sgn(o), we compute

det(A") = Z sgn(o) Haf(i)

o€Sym(n) i€n
= Z sgn(o™") Hafy—l(i)a
o€Sym(n) i€n
which is det A. O

Theorem 7. The function given by (1.19) is n-linear and al-
ternating, and satisfies (1.12).

Proof. By (1.7), since
[[%0 =0 < o+#id,,
€N
(1.12) holds. For multilinearity, Suppose matrices A, B, and

C agree everywhere but in some row k, and aé? =s- b? +t- cg‘?
for each j in n, for some s and ¢ in K. Then

det A = Z sgn(o H %(z p c())

o€Sym(n) ien~{k}

=s-det B+t -detC.

Finally, if i < j < n, and 7 in Sym(n) transposes ¢ and j,
then 77! = 7, and £ — £ o7 is a bijection between Alt(n) and
Sym(n) \ Alt(n), so

detA= 3 <H “o -1 T<g>>.

o€Alt(n) \ke€n ken

If moreover a, = ai} for each k in n, then det A = 0. O
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1.3 Inversion

We know from Theorems 5 and 7 that (1.8) holds. In partic-
ular, if det A € K*, then A~! exists in M. We can compute
A~ by the reduction in (1.13); but we now develop another
method.

Asin (1.17), if 7 is a bijection from a finite ordered set S to
a finite ordered set T', we can define

SgD(T) _ (_1)|(i,j)65’><5’: i<j & o(i)>0(j)} )
There is a unique isomorphism ¢ from S to 7', and then

¢~ o1 € Sym(S),
sgn(r) = sgn(p~" o 7).
Suppose now o € Sym(n) and k € n. Letting S be n \ {k}
and T be n . {o(k)}, we can define 7 to be the restriction of
o to S, so that 7 is a bijection from S to 7. Then

sgn(o) _ (_1)\{j€n\{k}: i>k == o(j)<o(k)}|
sgn(T)

Theorem 8. In the notation abowve,

sgn(o) _ (—1)k+ot®)

sgn(7) ‘
Proof. We may assume k < o(k). There are at least o(k) — k
values of j greater than k and the condition

j>k <= o(j) <oa(k) (1.20)

is satisfied. For every additional such value, there must be a
value less than k for which (1.20) is satisfied. This proves the
claim. [
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For any (k,?) in n x n, assuming n > 1, we let Af be the
matrix that we obtain from A by deleting row k and column

{. Formally,
N ik i€En—1
Af = <a{ﬂ]})

Y
jENn—1

. i<k
[i,k‘]:{lf ifi <k,

i+ 1, ifk <.

where

Theorem g. For any k in n,

det X = Z(—l)kﬂxf det X

JjEN

Proof. We group the terms in (1.19), which are indexed by o
in Sym(n), according to the value of o(k):

det X =" > sgn(o) [[ 2l

Jjen o€Sym(n) €N
o(k)=j
=D 7 >, san(o) ][
jeEn oc€Sym(n 1EN
’ i e
= Z(—l)kﬂx? det Xf
JEN
by Theorem 8. O

We now define the operation X +— adj(X) on M by
L ~ N\ 1EN
adj(A) = ((—1)Z+ﬂ det Ag)

JjEN

This is the adjugate of A.
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Theorem 10. For all A in M,
Aadj(A) =det A- L.

Proof. By Theorem g, if Aadj(A) = B, then b} is the deter-
minant of the matrix that we obtain from A by replacing row
J with row ¢. This determinant is
o det A, if 1 = j;
e 0, if i # j, since X — det X is alternating. O
Theorem 11. I[fdet A € K*, then
A7l = (det A)~' - adj(A).

Proof. Assuming det A € K*| if we denote (det A)~! - adj(A)
by B, then by Theorem 10,

AB =1.
Since A~! does exist, we have

At =AY (AB) = (A"'A)B = 1B = B. O
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2 Polynomials

2.1 Characteristic values

We henceforth suppose K is a field; still M is K™*". For
any A in M, an element \ of K is a characteristic value or
eigenvalue of A if, for some b in K",

Ab=\-b. (2.1)

In this case, b is a characteristic vector or eigenvector of
A associated with \. Rewriting (2.1) as

(A=X-D)b=0

shows that the characteristic values of A are precisely the ze-
roes of the polynomial

det(A —x-1),

which is called the characteristic polynomial of A.

If X\ is indeed a characteristic value of A, then the null-space
of A — X\-1is the characteristic space or eigenspace of A
associated with A.

Theorem 12. FEigenvectors corresponding to distinct eigen-
values of any matrix are linearly independent.

Proof. We prove the claim by induction on the number of
eigenvectors. The empty set of eigenvectors is trivially linearly
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independent. Suppose (v;: ¢ < k) is linearly independent, each
v; being an eigenvector of A with associated eigenvalue \;, the
A; being distinct. Let v be a an eigenvector associated with
a new eigenvalue, \y. If

invi =0, (2.2)

i<k
then
0=(A=X-1) ) a'v; =) (\i— \)r'v;
i<m+1 i<k
= Z()\z - )\k)l“ivz',
i<k
so ' = 0 when 4 < k, and then also z* = 0 by (2.2). O

If A in M has n linearly independent eigenvectors b;, each
associated with an eigenvalue \; (possibly not distinct), then
the eigenvectors are the columns of an element B of M*, and

AB = BL,
where
70, ifi#g
or in short

L = diag(\;: 7 € n),

a diagonal matrix. Thus
B'AB = diag()\;: i € n),

and in particular A is diagonalizable.
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It will be useful to recall that every matrix B in M* is
the change-of-basis matrix from the basis (;: j € n) of K"
consisting of the columns of B to the standard basis of K™.

Every matrix of the form P~'AP for some P in M* is sim-
ilar to A (in group theory one says conjugate). Similarity of
matrices is an equivalence relation, as is row-equivalence (men-
tioned first on page 9); but they are different relations. We
want to characterize the diagonalizable matrices.

A matrix A in M is triangular if

/\ a; = 0. (2.3)
j<i<n
A matrix similar to a triangular matrix is triangularizable.

Theorem 13. A matriz A in M is triangularizable just in
case, for some B in M*,

/\ Ab; € span{by,...,b;}; (2.4)
JjEN
and in this case B~*AB is triangular.

Proof. The condition (2.3) on A for being triangular means

precisely
j
/\ Ae; = Z ase;, (2.5)
JjEN =0

and thus that I is a matrix B as in the statement of the the-
orem. If B~'AB is triangular, then putting this matrix in
place of A in (2.5) yields (2.4). Conversely, if B is as in the
statement, then we can write (2.4) as

/\ ABe; € span{Bey, ..., Be,},

JjEN
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and then
/\ B~ 'ABe; € span{ey, ..., e;},
JjEN

so B~'AB is triangular. O

Theorem 14. Every matrix in M is triangularizable over an
algebraically closed field.

Proof. Given A in M, assuming K is algebraically closed, so
that the characteristic polynomial of A has at least one zero,
and therefore A has at least one eigenvector, we extend this to
a basis of K™ that satisfies (2.4). Doing this will be enough,
by Theorem 13.

We use induction on n. The claim is trivial when n = 1.
Suppose it holds when n = m. Now let n = m + 1 and
A € M. There is a basis (po,...,Pmn) of K™ such that pg
is an eigenvector. Thus the basis satisfies the first conjunct
of (2.4). We could satisfy the remaining conjuncts, by the
inductive hypothesis, if we had

/\ Ap; € span{p1,...,Pm}-
j=1

However, we may not actually have this. Nonetheless, there
are matrices B and C such that

B (Z fipz') = ZoPo, Tc (Z fiPi) = Zflpz (2.6)
i=0 i=0 i=1

In words,
e T¢ is an endomorphism of span{py,...,p,}, and there-
fore so is Toa;
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e T is a homomorphism from K™ to span{po}, and there-
fore so is Tg4.
Now span{py,...,pn} has a basis (v; ..., v,,) such that

/\ CAv; € span{v; ..., v;},

j=1
by inductive hypothesis. Therefore now

/\(BA + CA)v; € spanf{vy,...,v,}.

j=1
From all of (2.6),
Tp + To = idgn,
and so
m
/\ Av; € span{vy,...,v,}.
j=1
Finally, since vy is an eigenvector of A,

/\ Aw; € span{vy,...,v,}.
=0
Thus we have (2.4). This completes the induction. O

We can write out the foregoing proof entirely in terms of
matrices as follows. We have

- (33)

for some m x m matrix D, where \ is the eigenvalue associated
with pg. We choose B and C so that

o= (32). pice- (40,
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Then

PT'CAP = P'CPP AP = ( 8 | (I) ) ( A a )

and

rnar=(5f) (3t5) - (316)

Therefore

P 'BAP + P 'CAP = P 'AP,
BA+CA = A.

By inductive hypothesis, for some Q, Q~1DQ is a triangular
matrix 7. Then

(5ra) e (te) - (5f5).

while

(1 ‘ 0 A ‘ a@Q \ [ A|aQ
S\0]Q™ ojo ) \o]o )’
and therefore

(e o ) (1)

a triangular matrix.
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2.2 Polynomial functions of matrices

Although K is a field, the ring M is not commutative when
n > 1. However, it has commutative sub-rings. Indeed, for
every A in M, the smallest sub-ring of M that contains A is
commutative. We may denote this sub-ring by

KA.

This is also a vector space over K, spanned by the powers I,
A, A% A3 ..., of A. Thus

K[A] = {f(A): f € K[a]},
where, if

fa) =Y f (27

in K[z] (and 2" is now the power [], ., x), we define
flA) =) fiA"
i=0

If f(A) is the zero matrix, we may say A is a zero of f.
However, theorems about zeroes in fields may not apply here.
For example, since K[A] may have zero divisors, the number
of zeroes of f in M may exceed deg f. Indeed, A itself may be
a zero divisor, as for example when

0 1
= 00)

since then A% is the zero matrix. In this case every scalar
multiple b - A of A is a zero in K[A] of the polynomial z2.
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2.3 Cayley—Hamilton Theorem

Given A in M, we are going to want to know that A is a zero
of some nonzero polynomial over K. Suppose

f(z) =det(x-1— A), (2.8)

the characteristic polynomial of A. The equation remains cor-
rect automatically when we replace x with an element of K or
of any field that includes K. Note however that, for a matrix
B in M, while f(B) € M, we have

det(BI — A) € K.

Since Al — A is the zero matrix, we have det(Al — A) = 0.
This observation is not enough to ensure that f(A) is the zero
matrix. Nonetheless, we shall show that it is, in two ways.

Theorem 15 (Cayley-Hamilton). Over any field, every ma-
triz is a zero of its characteristic polynomial.

First proof. By Theorem 10, with f as in (2.8) we have
f(z) IT=(z-1—A)adj(x-1— A). (2.9)
Moreover,
x)-I= Z 2 F
=0
where, in the notation of (2.7),

Likewise, for some matrices B; in M,

adj(z-1— A Zx]
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Thus (2.9) becomes

n n—1
S oalifjl=(z-1-4)Y a7 B, (2.10)
j=0 Jj=0

This then will be true when x is replaced by an element of
M that commutes with A. Since A is such an element, and
the right member of (2.10) becomes 0 when z is replaced with
A, the same is true for the left member; but this just means

F(A) = 0. O

Second proof. Letting f be the characteristic polynomial of
Ain M as in (2.8), we want to show f(A) = 0. Since the
determinant function is multiplicative, for every P in M*,

det(z -1 — A) =det(P~" - (z-1— A)- P)
=det(x-1— P7'AP).

By Theorem 14, for some matrix P, P~'AP is a triangular
matrix. It does not matter that entries of P may come from
the algebraic closure of K, possibly not K itself. We may
assume A is triangular. The characteristic polynomial of A is

[t i)

<n
Since the product is independent of the order of the factors,

so is the product [],_, (A — a}-I). We have to show that this
product is 0. Column 5 of the product is

H(A —al-T)e;.

<n
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However, by (2.5),

(A—d-Te; = Ae; — agej = Zafei, (2.11)

J
i<j

and in particular
(A— a;: -T)e; € span{e;: i < j}.

By induction then,

[[(A—ai -Te; =0.

i<
Finally
[[(A=ai-De;= J] (A=ai-D]](A—di-Te;=0. O
€N j<i<n 1<

2.4 Minimal polynomial

Theorem 16. For any A in M, the subset
{f € Kla]: f(A) =0}

of K[x] is a nonzero ideal.

Proof. The set is easily an ideal. It is nontrivial for con-
taining the characteristic polynomial of A; alternatively, since
dim M = n?, there must be some coefficients f;, not all 0, for
which

2

fod fr-Ad ot fp AV =0 [
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Since K[z] is a principal-ideal domain, the ideal of the theo-
rem has a monic generator, called the minimal polynomial
of A. This polynomial therefore is a factor of the characteristic
polynomial of A. In particular, every zero in K of the minimal
polynomial is a zero of the characteristic polynomial.

Theorem 17. In a field, every zero of the characteristic poly-
nomial of a square matrix over the field is a zero of the minimal
polynomial. Hence every irreducible factor of the characteris-
tic polynomaial is a factor of the minimal polynomial.

Proof. A zero of the characteristic polynomial of A is just an
eigenvalue of A. Let X\ be an eigenvalue, with corresponding
eigenvector b. Thus

Ab = \b,
Alb = \ib,
f(A)b = f(A\)b

for all f(z) in K[z]. In particular,
fA) =0 = f(N)=0.

If f is the minimal polynomial of A, then f(A) =0, so f(\) =
0. U

Theorem 18. A square matriz is diagonalizable if and only if
its minimal polynomial is the product of distinct linear factors.

Proof. Suppose A in M is diagonalizable, so that, for some B
in M, for some A; in K,

AB = Bdiag(\;: j € n).
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Letting column j of B be b;, we have

Ab; = \;b;,
(A=) -I)b; = 0.

Letting m = |[{\;: j € n}|, we may assume
{Njrjent={N:iem}.

For all j in n, we have

[JAa-x-1b; =0.

1Em
The b; being linearly independent, letting

fla) =] - M), (2.12)

1Em

we conclude f(A) = 0, so the minimal polynomial of A is
a factor of f(z). (It is the same as f(x), since the \; are
eigenvectors of A, and each of these must be a zero of the
minimal polynomial, by Theorem 17.)

Suppose conversely f(z) as given by (2.12), where again the
A; are all distinct, is the minimal polynomial of A. In partic-
ular, f(A) =0. If j € m, we can define g;(x) in K[z| by

(x = Aj)g;(x) = f(x). (2.13)

The A; being distinct, the greatest common divisor of the g;(z)
in K[z] is unity. Since K[z] is a Euclidean domain, by Bézout’s
Lemma there are ¢;(z) in Kz] such that

> gi(@)g(z) = 1.

JjeEM
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Then
> gi(A)gi(A) =1

JEM

Thus for every v in K", when we define

gi(A)g;(A)v = wy, (2.14)

E wj:v.

JjeEM

we have

But then since f(A) =0, from (2.13) and (2.14) we have
0= f(A)gi(A)v = (A= Xj)w;,

so that w; belongs to the eigenspace associated with A;. In
particular, by Theorem 12, there must be n linearly indepen-
dent eigenvectors, so A is diagonalizable. O
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3 Jordan Normal Form

The presentation here is based mainly on Lang [3].

3.1 Cyclic spaces
Supposing A is an eigenvalue of the n x n matrix A, we let
By=A-\-1 (3.1)
If vy is a corresponding eigenvector, this means
vy # 0, Byv, = 0.

If possible now, let Byv; = vg. Then

Av, = v, + vy, By\%v, = 0.
Suppose, in this way, for some s, when 0 < k < s,

Av, = Moy, + vy, B,y = 0.

Then defining P as the n X s matrix

(wo| - |wsmr ),
we have
AP = ( Avy |- | Av,y )
:(/\’U()"U()‘}‘)\'vl"" ‘Us—2+)\vs—1>:PJ7 (32)
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where J is the s X s matrix

A1 0 ... 0
0 X 1

o0 . .0
: D |
0 ...... 0 A

Theorem 19. The columns of the matrix P just defined are
linearly independent.

Proof. Writing v for v,_; and B for By, we have
P=(B"w|--|B%.).
We show the columns are linearly independent. Suppose for
some scalars ¢,
Z ¢ By = 0.

1<s
Then f(B)v = 0, where
f(z) = Z Tt
1<s
However, also g(B)v = 0, where
g(x) =2°.
Letting h be the greatest common factor of f and g, we have
h(B)v = 0.

Also, h(xz) = z" for some r, where r < s. When r < s, we
have
B"v = Vs—1—-r,

which is not 0. Thus A(x) = z*, and therefore f = 0. O
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In the proof, span{vy: k € s} is a B-cyclic subspace of K",
because it is, for some one vector v, spanned by the vectors
B*v. The space is then B-invariant, because closed under
multiplication by B.

3.2 Direct sums

Suppose V' is a vector space over K, and for some m in N, and
for each j in n, V; is a subspace of V. If the homomorphism

(vi:i<n)— Zvi
<n

from [[,_, Vi to V is surjective, then V' is the sum of the
subspaces V;, and we may write

V=V0+---+Vn_1=ZVZ-.

<n

If, further, the homomorphism is injective, then V is the di-
rect sum of the V;, and we may write

Ve Vow eV - @V

i<n
Given B in M, we shall understand
ker B={x € K": Bx = 0}.

Lemma 1. If f and g in K[z| are co-prime, then for all A in
M

)

ker(f(A)g(A)) = ker f(A) @ ker g(A).
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Proof. By Bézout’s Lemma for some ¢ and r in Klz],

qf +rg=1,
g(A)f(A) +r(A)g(A) =L

For all v in K then,
a(A)f (Ao + r(A)g(A) = v,

Suppose now

w € ker(f(A)g(A)).
Then

F(A)g(Ayw e ker f(4),  q(A)f(A)w € ker g(A),

and so
w € ker f(A) + ker g(A).

Conversely, suppose

u € ker f(A), v € ker g(A).

and likewise
v = q(A) f(A)(u +v).

This shows (u,v) — u + v is injective. O

Theorem 2o0. If each of some f in K|x] is prime to the others,
then for all A in M,

ker [ ] f£(A) = @D ker f(A).
f f
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3.3 Kernels

Suppose A in M has characteristic polynomial f, and K is
algebraically closed. Then

f= H(x — A"

for some A; in K and r; in N. By the Cayley-Hamilton The-
orem,

ker(f(A)) = K™

Letting

we have now, by Theorem 20,

K" = @ ker (B;"). (3-3)
Theorem 21. For all B in M, for all s in N, ker(B?®) is the
direct sum of B-cyclic subspaces.

Proof. We shall prove the claim for every B-invariant subspace
of ker(B*). We use induction on the dimension of the subspace.
If the dimension is 0, the claim is vacuously true. Suppose V' is
a B-invariant subspace of ker(B?®) having positive dimension.
Then

V ¢ ker(B?), ker(B°) C...Cker(B*), V Cker(B*),
so for some 7,

V & ker(B" ), V C ker(B").
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Then
VBCVN ker(B“l) c V.

This shows
VB CV.

As an inductive hypothesis, we assume
VB =W, (3.4)
<m
where each W; is B-cyclic. Then for some w; in V', for some
r; in N,
W; = span{ B w;: j < 1}, 0 = B"w;,. (3-5)
For some v; in V,
w; = Bv;. (3.6)
Now let .
V; = span{B’v;: i < r;}.

Then V; is a B-cyclic space, since B""tv; = 0. We shall show
that the sum of the V; is direct. An arbitrary element of V; is
fi(B)v; for some f; in K[z]| such that

deg fi < 1. (3-7)

Suppose
<m
Then by (3.6),
<m
But then by (3.4),
0 = fi(B)w;,
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so by (3.7), and (3.5), and Theorem 19,
fi =™
for some ¢; in K. In this case, we can write (3.8) as
0= ZCiBTi_lwia
<m
which implies that each ¢; is 0. Thus f; = 0.
Now we can let
V' =

<m
Then V' C V. By construction, V;B = W;, so
V'B=W =VB.
Therefore
V = V' +ker B.

Each element of ker B constitutes a basis of a one-dimensional
B-cyclic space. Then V is the direct sum of some of these
spaces, along with the V;, as desired. O

In the notation of (3.3), there are n; in N, and then there
are v;j, in ker(B;"7) and s;j; in N such that

By loy # 0, B;* v, = 0,
and '
ker(B;"7) = @ span{B;'vj;: i < sj}.
k<nj
Now we may let
P=(Rl||Pn1),
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where, for each 7 in m,
Pp=(Pol-|Pin-1),
where, for each k in n;,
P = ( B+ o [+ | v )

Then PAP~! is a Jordan normal form for A. Indeed, by
the considerations yielding (3.2),

PAP~" = diag(Ao, ..., Ap-1),
where, for each j in m,
A] = dlag(A]07 e ,Aj7nj71),

where, for each k in nj, Aj; is the s;; x s;, matrix

A 10 .00
0 A 1 :
00 . .0
: A1
0 ...l 0 A
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