Pappus of Alexandria

Book 7 of the Collection

Part 1. Introduction, Text, and Translation

Edited
With Translation and Commentary by Alexander Jones

In Two Parts
With 308 Figures

Springer Science+Business Media, LLC

Alexander Jones
6425 Adera Street
Vancouver, British Columbia V6M 3J7
Canada

AMS Classification: 01A20

Library of Congress Cataloging in Publication Data
Pappus, of Alexandria.
Book 7 of the Collection.
(Sources in the history of mathematics and physical sciences; 8)
English and Greek.
Revision of thesis (Ph. D.)-Brown University, 1985.
Bibliography: p.
Includes indexes.
Contents: pt. 1. Introduction, text, and translation-
pt. 2. Commentary, index, and figures.

1. Mathematics, Greek. I. Jones, Alexander. II. Title. III. Title: Book seven of the Collection. IV. Series.
$\begin{array}{llll}\text { QA22.P3713 } & 1986 & 516.2 & 85-27788\end{array}$
© 1986 by Springer Science+Business Media New York
Originally published by Springer-Verlag New York Inc. in 1986
Softcover reprint of the hardcover 1st edition 1986
All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer Science+Business Media, LLC.

Contents

Part 1

INTRODUCTION
 Pappus and the Collection

§1. Biographical Data 1
§2. Works 3
§3. Integrity and Composition of the Collection 15
§4. Interpolations 18
§5. The Marginalia 20
§6. Early references 21
§7. Foul Papers 24
§8. The Proarchetypes 26
§9. Description of the Vaticanus 30
§10. Disturbances in the Vaticanus 33
§11. Byzantine Notices 36
§12. Witelo 42
§13. The Papal Inventories 45
§14. False Leads 48
§15. The Vaticanus in Florence and Rome 52
§16. The Recentiores 56
§17. Printed Editions 62
Introduction to Book 7
§18. The Domain of Analysis 66
§19. The Purpose and Plan of Book 7 70
§20. Mathematics in Book 7 71
Editorial Principles 75
Abbreviations Used in the Apparatus 79
TEXT AND TRANSLATION 82
Part 2
NOTES 377
ESSAYS ON THE LOST WORKS
A. The Minor Works of Apollonius
§1. Introduction 510
§2. The Cutting off of a Ratio 510
§3. The Cutting off of an Area 513
§4. The Determinate Section 514
§5. General Remarks on the 'Triple Section' 522
§6. The Neuses 527
§7. The Tangencies 534
§8. The Plane Loci 539
B. Euclid's Porisms
§1. Documents 547
§2. The Definitions 549
§3. The First Porism 554
§4. The 'Hyptios' Porisms 556
§5. Rectilinear Configurations 560
§6. Areas and Ranges 563
§7. Porisms on Circles 564
§8. Applications and Purpose 567
§9. Historical Note 569
C. The Loci of Aristaeus, Euclid, and Eratosthenes
573
573
§1. Introduction.
§1. Introduction.
577
577
§2. Documents on Aristaeus
§2. Documents on Aristaeus
582
582
$\S 3$. Fragments from Pappus
$\S 3$. Fragments from Pappus
585
585
§4. Book 3 of Apollonius's Conics
§4. Book 3 of Apollonius's Conics
587
587
§5. The Four Line Locus
§5. The Four Line Locus
591
591
§6. Euclid's Loci on Surfaces
§6. Euclid's Loci on Surfaces 595
§7. The Derivation of Curvilinear Loci599
APPENDICES

1. The Scholia to Book 7 600
2. The Book of Lemmas by "Aqātun" 603
3. Selections from the Cutting off of a Ratio 606
APPARATUS TO THE FIGURES 620
BIBLIOGRAPHIC ABBREVIATIONS 628
INDEX 647
GREEK INDEX 657
FIGURES 667

(193) Porisms, (Books) 1, 2, 3.

From Book 1:

1. (Prop. $127 a-e$) For the first porism.

Let there be figure $A B \Gamma \Delta E Z H$, and, as is $A Z$ to $Z H$, so let $A \Delta$ be to $\Delta \Gamma$, and let $\Theta \mathrm{K}$ be joined. That $\Theta \mathrm{K}$ is parallel to $\mathrm{A} \Gamma$.

Let $\mathbf{Z} \Lambda$ be drawn through \mathbf{Z} parallel to $\mathbf{B} \Delta .^{1}$ Then since, as is AZ to ZH , so is $\mathrm{A} \Delta$ to $\Delta \Gamma,{ }^{2}$ by inversion and componendo and alternando as is $\Delta \mathrm{A}$ to $A Z$, that is, in parallels, as is BA to $A \Lambda,{ }^{4}$ so is ΓA to $A H .{ }^{3}$ Hence ΛH is parallel to $\mathrm{B} \mathrm{\Gamma} .{ }^{5}$ Therefore as is EB to $\mathrm{B} \Lambda$, so is $\angle \mathrm{E} \Theta$ to $\Theta \mathrm{H} .{ }^{6}$ But also as is EB to $\mathrm{B} \Lambda$, so>, in parallels, is EK to KZ. ${ }^{7}$ Thus as is EK to KZ, so is $\mathrm{E} \Theta$ to $\Theta \mathrm{H} \cdot{ }^{8} \Theta \mathrm{~K}$ is therefore parallel to $\mathrm{A} \Gamma \cdot{ }^{9}$
(194) (Prop. $127 a-e$) By compound ratios, as follows:

Since, as is AZ to ZH , so is $\mathrm{A} \Delta$ to $\Delta \Gamma,{ }^{1}$ by inversion, as is HZ to ZA , so is $\Gamma \Delta$ to $\Delta \mathrm{A} .{ }^{2}$ Componendo and alternando and convertendo, as is $A \Delta$ to $\Delta \mathrm{Z}$, so is $\mathrm{A} \Gamma$ to $\Gamma \mathrm{H} .{ }^{3}$ But the (ratio) of $A \Delta$ to $\Delta \mathrm{Z}$ is compounded out of that of $\angle \mathrm{AB}$ to BE and that of EK to KZ ${ }^{4}$ (see commentary), while that of $\mathrm{A} \Gamma$ to $\Gamma \mathrm{H}$ (is compounded) out of that of $>\mathrm{AB}$ to BE and that of $\mathrm{E} \Theta$ to OH^{5} (see commentary). Therefore the ratio compounded out of that which AB has to BE and EK has to KZ is the same as the (ratio) compounded out of that which $A B$ has to $B E$ and $E \Theta$ has to $\Theta H .6$ And let the ratio of $A B$ to $B E$ be removed in common. Then there remains the ratio of $E K$ to $K Z$ equal to the ratio of $\mathrm{E} \Theta$ to $\Theta \mathrm{H} .{ }^{7}$ Thus $\Theta \mathrm{K}$ is parallel to $\mathrm{A} \Gamma .{ }^{8}$
(195) (Prop. 128) For the second porism.

Figure $A B \Gamma \triangle E Z H$. Let $A Z$ be parallel to $\triangle B$, and as is $A E$ to $E Z$, so let $\Gamma \mathrm{H}$ be to HZ . That the (line) through $\Theta, \mathrm{K}, \mathrm{Z}$ is straight.

Let $H \Lambda$ be drawn through H parallel to $\Delta E,{ }^{1}$ and let ΘK be joined and produced to Λ. Then since, as is AE to EZ , so is $\Gamma \mathrm{H}$ to $\mathrm{HZ},{ }^{2}$ alternando as

той $\pi \rho \omega \dot{\tau} \boldsymbol{\tau}$
$a^{\circ} . \epsilon$ is $\tau \grave{o} \pi \rho \tilde{\omega} \tau 0 \nu \pi \dot{\rho} \rho \iota \sigma \mu a$.

 $\dot{\epsilon} \pi \epsilon \dot{i}$ où $\nu \dot{\epsilon} \sigma \tau \iota \nu \dot{\omega} \dot{\varsigma} \dot{\eta} \mathrm{AZ} \pi \rho \dot{o} \varsigma, \tau \dot{\eta} \nu \mathrm{ZH}$, oü $\tau \omega \varsigma \dot{\eta} \mathrm{A} \Delta \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \Delta \Gamma$,

 $\dot{\omega} \varsigma \dot{\eta} \mathrm{EB} \pi \rho \grave{\varsigma} \varsigma \tau \dot{\eta} \nu \mathrm{B} \Lambda$, oü $\tau \omega \varsigma>\bar{\epsilon} \nu \pi a \rho a \lambda \lambda \dot{\eta} \lambda \omega \iota \dot{\eta} \mathrm{EK} \pi \rho \grave{o} \varsigma \tau \dot{\eta} \nu \mathrm{KZ}$.
 $\pi a \rho a ́ \lambda \lambda \eta \lambda o s$ ä $\rho a \dot{\epsilon} \sigma \tau i \nu \dot{\eta} \dot{\eta}$ ӨК $\tau \tilde{\eta} \iota \mathrm{A} \mathrm{\Gamma}$.

I$4 a^{\circ} \mathrm{mg} \mathrm{A} \| 5$ post $\dot{\omega} \mathrm{s}$ add $\dot{\eta}$ Ge (BS) $\left.\| 11 \mathrm{\Lambda H}\right] \mathrm{AH}^{\mathrm{A}}{ }^{1} \Lambda$ supra A^{2} $12 \dot{\eta}(\mathrm{E} \Theta)$ del $\mathrm{Hu} \dot{\epsilon} \nu, \pi a \rho a \lambda \lambda \dot{\eta} \lambda \omega \iota \dot{\eta} \mathrm{Heiberg}_{3} \mid \mathrm{E} \Theta$ - oö́ $\tau \omega \varsigma$ add
 $\tau \grave{\eta} \nu \theta \mathrm{H}$ Co \| $17 \mathrm{HZ} \mathrm{Co} \mathrm{NZ} \mathrm{A} \| 19$ post $\dot{\omega} \mathrm{s}$ add $\dot{\eta} \mathrm{Ge}(\mathrm{BS}) \mid \Delta \mathrm{Z}$ Co AZ

 $\pi a \rho a ́ \lambda \lambda \eta \lambda o s] \lambda o ́ \gamma o s$ A $\left.\pi a \rho a ́ \lambda \lambda \eta \lambda o s \mathrm{Co} \| 32 \pi a \rho a ́ \lambda \lambda \eta \lambda o s ~ \tau \tilde{\eta} _\right]$
 spatium litterarum fere septem relictum A
is AE to $\Gamma \mathrm{H}$, so is EZ to $\mathrm{ZH} .{ }^{3}$ But as is AE to $\Gamma \mathrm{H}$, so is $\mathrm{E} \Theta$ to $\mathrm{H} \Lambda,{ }^{4}$ and alternando, because there are two by two (parallel lines). Therefore as is EZ to ZH , so is $\mathrm{E} \Theta$ to $\mathrm{H} \Lambda .{ }^{5}$ And $\mathrm{E} \Theta$ is parallel to $\mathrm{H} \Lambda .{ }^{6}$ Thus (VI, 32) the (line) through $\Theta, \Lambda, \mathrm{Z}$ is straight. ${ }^{7}$ Q.E.D.
(196) (Prop. $129 a-h$) Let two straight lines $\Theta E, \Theta \Delta$ be drawn onto three straight lines $\mathrm{AB}, \Gamma \mathrm{A}, \Delta \mathrm{A}$. That, as is the rectangle contained by $\Theta \mathrm{E}$, HZ to the rectangle contained by OH, ZE, so is the rectangle contained by $\Theta \mathrm{B}, \Delta \Gamma$ to the rectangle contained by $\Theta \Delta, \mathrm{B} \Gamma$.

Let $K \Lambda$ be drawn through Θ parallel to $Z \Gamma A,{ }^{1}$ and let ΔA and $A B$ intersect it at points K and Λ; and (let there be drawn) $\Lambda \mathrm{M}$ through Λ parallel to $\Delta \mathrm{A},{ }^{2}$ and let it intersect E Θ at M. Then since, as is EZ to ZA, so is $\mathrm{E} \Theta$ to $\Theta \Lambda,{ }^{3}$ while as is $A Z$ to $Z H$, so is $\Theta \Lambda$ to $\Theta M,{ }^{5}$ because $\Theta \mathrm{K}$ is to ΘH also (as is $\Theta \Lambda$ to ΘM) in parallels, ${ }^{4}$ therefore ex aequali as is EZ to ZH , so is $\mathrm{E} \Theta$ to $\Theta \mathrm{M} .{ }^{6}$ Therefore the rectangle contained by $\Theta \mathrm{E}, \mathrm{HZ}$ equals the rectangle contained by EZ, $\Theta \mathrm{M} .7$ But (let) the rectangle contained by EZ, $\Theta \mathrm{H}$ (be) another arbitrary quantity. Then as is the rectangle contained by $\mathrm{E} \Theta, \mathrm{HZ}$ to the rectangle contained by $\mathrm{EZ}, \mathrm{H} \Theta$, so is the rectangle contained by EZ, $\Theta \mathrm{M}$ to the rectangle contained by EZ, $\mathrm{H} \Theta,{ }^{8}$ that is $\Theta \mathrm{M}$ to $\Theta \mathrm{H},{ }^{9}$ that is $\Lambda \Theta$ to $\Theta K .1^{\circ}$ By the same argument also as is $K \Theta$ to $\Theta \Lambda$, so is the rectangle contained by $\Theta \Delta, \mathrm{B} \Gamma$ to the rectangle contained by $\Theta \mathrm{B}, \Gamma \Delta .{ }^{1}$ Вy inversion, therefore, as is $\Lambda \Theta$ to ΘK, so is the rectangle contained by ΘB, $\Gamma \Delta$ to the rectangle contained by $\Theta \Delta, B \Gamma .1^{2}$ But as is $\Lambda \Theta$ to ΘK, so the rectangle contained by $\mathrm{E} \Theta, \mathrm{HZ}$ was shown to be to the rectangle contained by $\mathrm{EZ}, \mathrm{H} \Theta$. And thus as is the rectangle contained by $\mathrm{E} \Theta, \mathrm{HZ}$ to the rectangle contained by $\mathrm{EZ}, \mathrm{H} \Theta$, so is the rectangle contained by $\Theta \mathrm{B}, \Gamma \Delta$ to the rectangle contained by $\Theta \Delta, \mathrm{B} \Gamma .1^{3}$
(197) (Prop. $129 a-h$) By means of compounded ratios, as follows:

Since the ratio of the rectangle contained by $\Theta \mathrm{E}, \mathrm{HZ}$ to the rectangle contained by $\Theta H, Z E$ is compounded out of that which ΘE has to EZ and that which ZH has to $H \Theta,{ }^{1}$ and as is ΘE to $E Z$, so is $\Theta \Lambda$ to $Z A,{ }^{2}$ while as is ZH to $\mathrm{H} \Theta$, so is ZA to $\Theta \mathrm{K},{ }^{3}$ therefore the (ratio of the) rectangle contained by $\Theta \mathrm{E}, \mathrm{HZ}$ to the rectangle contained by $\Theta \mathrm{H}, \mathrm{EZ}$ is compounded out of that which $\Theta \Lambda$ has to ZA and that which ZA has to Θ K. ${ }^{4}$ But the (ratio) compounded out of that which $\Theta \Lambda$ has to ZA and that which ZA has to $\Theta \mathrm{K}$ is the same as that of $\Theta \Lambda$ to $\Theta \mathrm{K} \cdot{ }^{5}$ Hence as is the rectangle contained by $\Theta \mathrm{E}, \mathrm{HZ}$ to the rectangle contained by $\Theta \mathrm{H}, \mathrm{ZE}$, so is $\Theta \Lambda$ to $\Theta \mathrm{K} .6$ For the same reasons also as is the rectangle contained by $\Theta \Delta, B \Gamma$ to

 $\dot{\epsilon} \sigma \tau i \nu \dot{\eta} \delta i \grave{a} \tau \tilde{\omega} \nu \theta, \Lambda, Z$. $\ddot{o}(\pi \epsilon \rho):-$

 $\mathrm{H} \Theta$: каí $\dot{\omega} \varsigma$ ápa rò $\dot{v} \pi \dot{o} \mathrm{E} \Theta, \mathrm{HZ} \pi \rho \grave{o} \varsigma \tau \grave{o}<\dot{v} \pi \grave{o}>\mathrm{EZ}, \mathrm{H} \Theta$, oü $\tau \omega \varsigma \tau \grave{o}$

[^0]the rectangle contained by $\Theta \mathrm{B}, \Gamma \Delta$, so is $\Theta \mathrm{K}$ to $\Theta \Lambda .{ }^{7}$ And by inversion, as is the rectangle contained by $\Theta B, \Gamma \Delta$ to the rectangle contained by $\Theta \Delta, \mathrm{B} \Gamma$, so is $\Lambda \Theta$ to $\Theta \mathrm{K} . .^{8}$ But as is the rectangle contained by $\Theta \mathrm{E}, \mathrm{ZH}$ to the rectangle contained by $\Theta \mathrm{H}, \mathrm{ZE},<$ so was $\Theta \Lambda$ to $\Theta \mathrm{K}$. Thus, as is the rectangle contained by $\Theta \mathrm{E}, \mathrm{ZH}$ to the rectangle contained by $\Theta \mathrm{H}, \mathrm{ZE},>$ so is the rectangle contained by $\Theta \mathrm{B}, \Gamma \Delta$ to the rectangle contained by $\Theta \Delta$, ВГ. ${ }^{9}$
(198) (Prop. $130 a-h$) Figure ABГ $\triangle E Z H \Theta K \Lambda$. As is the rectangle contained by $\mathrm{AZ}, \mathrm{B} \Gamma$ to the rectangle contained by $\mathrm{AB}, \Gamma \mathrm{Z}$, so let the rectangle contained by $\mathrm{AZ}, \Delta \mathrm{E}$ be to the rectangle contained by $\mathrm{A} \Delta, \mathrm{EZ}$. That the (line) through points $\Theta, \mathrm{H}, \mathrm{Z}$ is straight.

Since, as is the rectangle contained by $A Z, B \Gamma$ to the rectangle contained by $\mathrm{AB}, \Gamma \mathrm{Z}$, so is the rectangle contained by $\mathrm{AZ}, \Delta \mathrm{E}$ to the rectangle contained by $\mathrm{A} \Delta, \mathrm{EZ},{ }^{1}$ alternando as is the rectangle contained by $\mathrm{AZ}, \mathrm{B} \Gamma$ to the rectangle contained by $\mathrm{AZ}, \Delta \mathrm{E}$, that is as is $\mathrm{B} \Gamma$ to $\Delta \mathrm{E},{ }^{3}$ so is the rectangle contained by $\mathrm{AB}, \Gamma \mathrm{Z}$ to the rectangle contained by $\mathrm{A} \Delta, \mathrm{EZ} .^{2}$ But the ratio of $B \Gamma$ to ΔE is compounded, if $K M$ is drawn through K parallel to $\mathrm{AZ},{ }^{4}$ out of that which $\mathrm{B} \Gamma$ has to KN and that which KN has to KM , and as well that which KM has to $\Delta \mathrm{E} .{ }^{5}$ But the (ratio) of the rectangle contained by $\mathrm{AB}, \Gamma \mathrm{Z}$ to the rectangle contained by $\mathrm{A} \Delta, \mathrm{EZ}$ is compounded out of that of BA to $\mathrm{A} \Delta$ and that of $\Gamma \mathrm{Z}$ to ZE. ${ }^{6}$ Let the (ratio) of BA to $\mathrm{A} \Delta$ be removed in common, this being the same as that of NK to KM. ${ }^{7}$ Then the remaining (ratio) of ΓZ to $Z E$ is compounded out of that of $B \Gamma$ to $K N$, that is that of $\Theta \Gamma$ to $K \Theta, 9$ and that of $K M$ to ΔE, that is that of $K H$ to HE. ${ }^{10} 8$ Thus the (line) through $\Theta, \mathrm{H}, \mathrm{Z}$ is straight.

For if I draw $E \Xi$ through E parallel to $\Theta \Gamma, 1^{1}$ and ΘH is joined and produced to Ξ, the ratio of KH to HE is the same as that of $\mathrm{K} \Theta$ to $\mathrm{E} \Xi, 12$ while the (ratio) compounded out of that of $\Gamma \Theta$ to $\Theta \mathrm{K}$ and that of $\Theta \mathrm{K}$ to $\mathrm{E} \Xi$ is converted into the ratio of $\Theta \Gamma$ to $\mathrm{E} \Xi, 1^{13}$ and the ratio of $\Gamma \mathrm{Z}$ to ZE is the same as that of $\Gamma \Theta$ to $E \Xi .14$ Because $\Gamma \Theta$ is (therefore) parallel to $E \Xi, 15$ the (line) through Θ, Ξ, \mathbf{Z} is straight; ${ }^{16}$ for that is obvious. Therefore the (line) through $\Theta, \mathrm{H}, \mathrm{Z}$ is also straight. ${ }^{17}$
(199) (Prop. 131) If there is figure $\mathrm{AB} \mathrm{\Gamma} \triangle \mathrm{EZH} \Theta$, then as $\mathrm{A} \Delta$ is to $\Delta \Gamma$, so is $A B$ to $B \Gamma$. So let $A B$ be to $B \Gamma$ as is $A \Delta$ to $\Delta \Gamma$. That the (line) through $\mathrm{A}, \mathrm{H}, \Theta$ is straight.

 $\dot{\epsilon} \sigma \tau \iota \nu$.

 $\dot{\eta} x \theta \omega$ ठià $\tau 0 \tilde{u} \mathrm{H} \tau \tilde{\eta} \iota \mathrm{A} \Delta \pi a \rho a ́ \lambda \lambda \eta \lambda o s \dot{\eta} \mathrm{~K} \Lambda$. $\dot{\epsilon} \pi \epsilon \iota$ ỡ $\nu \dot{\epsilon} \sigma \tau \iota \nu \dot{\omega} \varsigma \dot{\eta}$

Let $K \Lambda$ be drawn through H parallel to $A \Delta .1$ Then since as is $A \Delta$ to $\Delta \Gamma$, so is $A B$ to $B \Gamma,{ }^{2}$ while as is $A \Delta$ to $\Delta \Gamma$, so is $K \Lambda$ to $\Lambda H,{ }^{3}$ and as is $A B$ to $B \Gamma$, so is KH to $\mathrm{HM},{ }^{4}$ therefore as is $\mathrm{K} \Lambda$ to ΛH, so is KH to $\mathrm{HM} .{ }^{5}$ And remainder $\mathrm{H} \Lambda$ is to remainder $\Lambda \mathrm{M}$ as is $\mathrm{K} \Lambda$ to $\Lambda \mathrm{H},{ }^{6}$ that is as $\mathrm{A} \Delta$ is to $\Delta \Gamma .{ }^{7}$ Alternando as is $A \Delta$ to $H \Lambda$, so is $\Gamma \Delta$ to $\Lambda M,{ }^{8}$ that is $\Delta \Theta$ to $\Theta \Lambda .{ }^{9}$ And $H \Lambda$ is parallel to AB. 1° Hence the (line) through points $\mathrm{A}, \mathrm{H}, \boldsymbol{\Theta}$ is straight; ${ }^{1} 1$ for this is obvious.
(200) (Prop. 132) Again if there is a figure ($\mathrm{AB} \Gamma \Delta \mathrm{EZH}$), and $\Delta \mathrm{Z}$ is parallel to $B \Gamma$, then $A B$ equals $B \Gamma$. So let it be equal. That (ΔZ) is parallel (to $\mathrm{B} \mathrm{\Gamma}$).

But it is. For if, with EB drawn through, I make $\mathrm{B} \Theta$ equal to $\mathrm{HB}, 1$ and I join $A \Theta$ and $\Theta \Gamma$, then there results a parallelogram $A \Theta \Gamma H,{ }^{2}$ and because of this, as is $\mathrm{A} \Delta$ to $\Delta \mathrm{E}$, so is $\Gamma \mathrm{Z}$ to ZE. ${ }^{4}$ For each of the foregoing (ratios) is the same as the ratio of $\Theta \mathrm{H}$ to HE. ${ }^{3}$ Thus (VI, 2) $\Delta \mathrm{Z}$ is parallel to $\mathrm{A} \Gamma .{ }^{5}$
(201) (Prop. 133) Let there be a figure (АВГ \triangle EZHQ), and let BA be a mean proportional between $\triangle B$ and $B \Gamma$. That $Z H$ is parallel to $A \Gamma$.

Let EB be produced, and let AK be drawn through A parallel to straight line $\Delta \mathrm{Z},{ }^{1}$ and let $\Gamma \mathrm{K}$ be joined. Then since as is $\Gamma \mathrm{B}$ to BA , so is $A B$ to $B \Delta,{ }^{2}$ while as is $A B$ to $B \Delta$, so is $K B$ to $B \Theta,{ }^{3}$ therefore as is ΓB to $B A$, so is $K B$ to $B \Theta .4$ Hence $A \Theta$ is parallel to $K \Gamma .{ }^{5}$ Therefore again, as is AZ to ZE , so is $\Gamma \mathrm{H}$ to $\mathrm{HE} ;{ }^{7}$ for either of the foregoing ratios is the same as that of $\mathrm{K} \Theta$ to $\mathrm{E} \Theta .{ }^{6}$ Thus ZH is parallel to $\mathrm{A} \Delta .{ }^{8}$
(202) (Prop. 134) Let there be an "altar" $\mathrm{AB} Г \Delta \mathrm{EZH}$, and let $\Delta \mathrm{E}$ be parallel to $\mathrm{B} \mathrm{\Gamma}$, and EH to BZ . That $\Delta \mathrm{Z}$ too is parallel to $\Gamma \mathrm{H}$.

Let $\mathrm{BE}, \Delta \Gamma$, and ZH be joined. Then triangle $\triangle \mathrm{BE}$ equals triangle $\Delta \Gamma E .1$ Let triangle $\triangle A E$ be added in common. Then all triangle ABE equals all triangle $\Gamma \Delta \mathrm{A} .{ }^{2}$ Again, since BZ is parallel to $\mathrm{EH},{ }^{3}$ triangle BZE equals triangle BZH. ${ }^{4}$ Let triangle ABZ be subtracted in common. Then the remaining triangle ABE equals the remaining triangle AHZ. ${ }^{5}$ But

 $\pi \rho \grave{s} \tau \dot{\eta} \nu \mathrm{HE} \lambda o ́ \gamma \omega \iota$. $̈ \sigma \tau \epsilon \pi a \rho a \lambda \lambda \eta \lambda o ́ s ~ \dot{\epsilon} \sigma \tau \iota \nu \dot{\eta} \Delta \mathrm{Z} \tau \tilde{\eta} \iota \mathrm{A} \Gamma$.

 $\pi a \rho a \lambda \lambda \eta \lambda o ́ s \dot{\epsilon} \sigma \tau \iota \nu \dot{\eta} \mathrm{ZH} \tau \tilde{\eta} \iota \mathrm{A} \Delta$.

 $\dot{\epsilon} \sigma \tau i \nu \tau \grave{o}$ BZE $\tau \rho i \gamma \omega \nu 0 \nu \tau \omega ̃ \iota$ BZH $\tau \rho \iota \gamma \dot{\omega} \nu \omega \iota$. ко८ขò $\nu \dot{a} \phi \eta \iota \rho \eta \sigma \theta \omega$

 $\mathrm{AB}] \Delta \Theta \mathrm{AA} \Delta \mathrm{Co} \|{ }^{11} \delta \iota a x \theta \epsilon i \sigma \eta \mathrm{~s}$ rins $\left.\mathrm{EB} \theta \tilde{\omega}\right] \delta \iota a ̀ \tau \dot{\eta} \nu \mathrm{~EB} \theta \tilde{\omega}$ $\mathrm{A} \dot{\epsilon} \pi i \quad \tau \tilde{\eta} \varsigma \mathrm{~EB} \theta \tilde{\omega}$ Hu $\tau \tilde{\eta} \subset$ EB $\pi \rho o \sigma \theta \tilde{\omega}$ Heiberg $_{3}$, del Co 14

 $\mu \epsilon ́ \sigma \eta \mathrm{Hu} \mathrm{AB}, \mathrm{B} \Gamma \mu \dot{\epsilon} \sigma \eta \mathrm{A} \mathrm{AB}, \mathrm{B} \mathrm{\Gamma} \tau \rho i \tau \eta \mathrm{Co} \mathrm{\Gamma В}, \mathrm{AB} \tau \rho i \tau \eta$ Breton $|17 \mathrm{BA} \mathrm{Hu} \mathrm{BA} \mathrm{A}| \epsilon \epsilon \kappa \beta \in \beta \lambda \eta \sigma \theta \mathrm{Co} \dot{\epsilon} \kappa \beta \lambda \eta \theta \in \tilde{\iota} \sigma a \mathrm{~A} \mid \mathrm{EB} \mathrm{Co} \mathrm{AB}$ A \| $21 \mathrm{BA} \mathrm{Co} \mathrm{B} \Lambda \mathrm{A} \| 22 \mathrm{~A} \Theta$ Co $\Lambda \Theta \mathrm{A} \| 23 \mathrm{ZE} \mathrm{Co} \mathrm{Z} \mathrm{\Gamma} \mathrm{~A} \mid$

 app \| $32 \dot{a} \phi \eta \iota \rho \dot{\eta} \sigma \theta \omega \mathrm{Ge}(\mathrm{BS}) \dot{a} \phi a \iota \rho \eta \sigma \theta \omega \mathrm{~A}$
triangle $A B E$ equals triangle $A \Gamma \Delta$. Therefore triangle $A \Gamma \Delta$ too equals triangle AZH. ${ }^{6}$ Let triangle $A \Gamma H$ be added in common. Then all triangle $\Gamma \Delta H$ equals all triangle Γ ZH. ${ }^{7}$ And they are on the same base, $\Gamma \mathrm{H}$. Hence $(\mathrm{I}, 39) \Gamma \mathrm{H}$ is parallel to $\Delta \mathrm{Z} .{ }^{8}$
(203) (Prop. 135) Let there be triangle $\mathrm{AB} \Gamma$, and let $\mathrm{A} \Delta$ and AE be drawn through it, and let ZH be drawn parallel to $\mathrm{B} \mathrm{\Gamma}$, and let $\mathrm{Z} \Theta \mathrm{H}$ be inflected. Let $\Delta \Theta$ be to ΘE as is $B \Theta$ to $\Theta \Gamma$. That $K \Lambda$ is parallel to $B \Gamma$.

For since $\Delta \Theta$ is to ΘE as is $B \Theta$ to $\Theta \Gamma,{ }^{1}$ therefore remainder $B \Delta$ is to remainder ΓE as is $\Delta \Theta$ to $\Theta E .{ }^{2}$ But as is $B \Delta$ to $E \Gamma$, so is ZM to $N H .{ }^{3}$ $<$ Hence as is ZM to $\mathrm{NH},>$ so is $\Delta \Theta$ to $\Theta E .{ }^{4}$ Alternando as is ZM to $\Delta \Theta$, so is $N H$ to $\Theta E .5$ But as is $Z M$ to $\Delta \Theta$, so is $Z K$ to $K \Theta$ in parallels; ${ }^{6}$ while as HN is to $\Theta \mathrm{E}$, so is $\mathrm{H} \Lambda$ to $\Lambda \Theta .{ }^{7}$ Therefore as is ZK to $\mathrm{K} \Theta$, so is $\mathrm{H} \Lambda$ to $\Lambda \Theta .{ }^{8}$ Thus $\mathrm{K} \Lambda$ is parallel to $\mathrm{HZ}, 9^{9}$ and therefore also to $\Gamma \mathrm{B} .{ }^{10}$
(204) (Prop. 136) Let two straight lines $\Delta \Theta, \Theta \mathrm{E}$ be drawn onto two straight lines BAE, $\triangle \mathrm{AH}$ from point Θ. Let the rectangle contained by ΘH, ZE be to the rectangle contained by $\Theta \mathrm{E}, \mathrm{ZH}$ as is the rectangle contained by $\Delta \Theta, B \Gamma$ to the rectangle contained by $\Delta \Gamma, B \Theta$. That the (line) through Γ, A, Z is straight.

Let $\mathrm{K} \Lambda$ be drawn through Θ parallel to $\Gamma \mathrm{A},{ }^{1}$ and let it intersect AB and $A \Delta$ at points K and Λ. And let ΛM be drawn through Λ parallel to $\mathrm{A} \Delta,{ }^{2}$ and let $\mathrm{E} \Theta$ be produced to M . And let KN be drawn through K parallel to $A B,^{3}$ and let $\Delta \Theta$ be produced to N.

Then since because of the parallels $\Delta \Gamma$ is to ΓB as is $\Delta \Theta$ to $\Theta N,{ }^{4}$ therefore the rectangle contained by $\Delta \Theta, \Gamma B$ equals the rectangle contained by $\Delta \Gamma, \Theta N .{ }^{5}$ (Let) the rectangle contained by $\Delta \Gamma, \mathrm{B} \Theta$ (be) some other arbitrary quantity. Then as is the rectangle contained by $\Delta \Theta, B \Gamma$ to the rectangle contained by $\Delta \Gamma, B \Theta$, so is the rectangle contained by $\Gamma \Delta, \Theta N$ to the rectangle contained by $\Delta \Gamma, \mathrm{B} \Theta, 6$ that is $\Theta \mathrm{N}$ to $\Theta \mathrm{B} .{ }^{7}$ But as is the rectangle contained by $\Theta \Delta, B \Gamma$ to the rectangle contained by $\Delta \Gamma, B \Theta$, so was the rectangle contained by $\Theta \mathrm{H}, \mathrm{ZE}$ assumed to be to the rectangle contained by $\Theta \mathrm{E}, \mathrm{ZH},{ }^{8}$ while as is $\Theta \mathrm{N}$ to $\Theta \mathrm{B}$, so is $K \Theta$ to $\Theta \Lambda,{ }^{9}$ that is in parallels $\mathrm{H} \Theta$ to $\Theta \mathrm{M},{ }^{10}$ that is the rectangle contained by $\Theta \mathrm{H}, \mathrm{ZE}$ to the rectangle contained by $\Theta \mathrm{M}, \mathrm{ZE} .^{11}$ Hence as is the rectangle contained by $\Theta \mathrm{H}, \mathrm{ZE}$ to the rectangle contained by $\Theta \mathrm{E}, \mathrm{ZH}$, so is the rectangle contained by $\Theta H, Z E$ to the rectangle contained by $\Theta M, Z E .^{2}$ Therefore <the rectangle contained by $\Theta \mathrm{E}, \mathrm{ZH}>$ equals <the rectangle contained by $\Theta \mathrm{M}$, ZE. ${ }^{13}$ In ratio, therefore, $>$ as is $M \Theta$ to ΘE, so is HZ to ZE. ${ }^{14}$ Componendo ${ }^{15}$ and alternando as is ME to EH , so is $\Theta \mathrm{E}$ to $\mathrm{EZ} .^{16}$ But $\Lambda \mathrm{E}$ is to EA as is ME to EH. ${ }^{17}$ Therefore as is $\Lambda \mathrm{E}$ to EA, so is ΘE to EZ. ${ }^{18}$ Hence $A Z$ is parallel to $K \Lambda .^{19}$ But ΓA is also (parallel) to (K $) .20$ Thus $\Gamma A Z$ is straight. ${ }^{1}$ Q.E.D.
$\tau \rho \iota \gamma \dot{\omega} \nu \omega \iota \quad, i \sigma o \nu \quad \dot{\epsilon} \sigma \tau i \nu . \quad a ̣ \lambda \grave{a}$, $\dot{0} \mathrm{ABE} \tau \rho i \gamma \omega \nu o \nu \quad \tau \tilde{\omega} \iota$ АГ Δ $\tau \rho \iota \gamma \dot{\omega} \nu \omega \iota \quad \dot{\epsilon} \sigma \tau i \nu, \quad i \sigma \sigma \nu$. каi $\tau \grave{o}$ AГ Δ á $\rho a \quad \tau \rho i \gamma \omega \nu 0 \nu \tau \tilde{\omega} \iota$ AZH

 $\dot{\epsilon} \sigma \tau i \nu \dot{\eta} \Gamma \mathrm{H} \tau \tilde{\eta} \iota \Delta \mathrm{Z}$.

 $\tau \dot{\eta} \nu \Gamma \mathrm{C}, \dot{\epsilon} \sigma \tau i \nu \dot{\omega} \varsigma \dot{\eta} \Delta \Theta \pi \rho \dot{o} s ~ \tau \dot{\eta} \nu \quad \Theta \mathrm{E}$. $\dot{\omega} \varsigma \delta \dot{\epsilon} \dot{\eta} \mathrm{B} \Delta \pi \rho \dot{o} s \tau \dot{\eta} \nu \mathrm{E} \Gamma$,

 $\tau \dot{\eta} \nu \Delta \Theta$, oü $\tau \omega \varsigma \dot{\eta} \mathrm{NH} \pi \rho \dot{o} s ~ \tau \dot{\eta} \nu \Theta \mathrm{E}$. á $\lambda \lambda$ ' $\dot{\omega} \varsigma, \mu \dot{\epsilon} \nu \dot{\eta} \mathrm{ZM} \pi \rho \dot{o} s \tau \dot{\eta} \nu \Delta \Theta$, o光 $\tau \omega \varsigma \dot{\epsilon} \sigma \tau i \nu \dot{\epsilon} \nu, \pi a \rho a \lambda \lambda \dot{\eta} \lambda \omega \iota \dot{\eta} \mathrm{ZK} \pi \rho \dot{o} \varsigma \tau \dot{\eta} \nu \mathrm{~K} \Theta \dot{\omega} \varsigma \delta \dot{\epsilon} \dot{\eta} \mathrm{HN} \pi \rho \dot{o} \varsigma$ $\tau \dot{\eta} \nu \Theta \mathrm{E}, ~$ oü $\tau \omega \varsigma \dot{\epsilon} \sigma \tau i \nu \dot{\eta} \mathrm{H} \Lambda \pi \rho o s ~ \tau \dot{\eta} \nu \Lambda \Theta$. каi $\dot{\omega} \varsigma$ á $\rho a \dot{\eta} \mathrm{ZK} \pi \rho \dot{\rho} \mathrm{s}$
 $\dot{\eta} \mathrm{K} \Lambda \tau \tilde{\eta} \iota \mathrm{HZ}$. $\ddot{\omega} \sigma \tau \epsilon \kappa а і \tau \tilde{\eta} \iota \Gamma В$.
(204)| ϵ is δ र́vo $\epsilon \dot{v} \theta \epsilon i a s ~ \tau a ̀ s ~ B A E, ~ \Delta A H ~ a ́ \pi \grave{o} \tau o \tilde{v} \Theta \sigma \eta \mu \epsilon i o v$ dúo

 ӧт $, \epsilon \dot{v} \theta \epsilon \tilde{\imath} \dot{a} \dot{\epsilon} \sigma \tau \iota \nu \dot{\eta} \delta \iota \dot{a} \tau \tilde{\omega} \nu \Gamma, \mathrm{~A}, \mathrm{Z}$. $\dot{\sim}$

$\| 2 \dot{\epsilon} \sigma \tau i \nu-A Z H \tau \rho \iota \dot{\gamma} \omega \nu \omega \iota$ om A^{1} add $\left.\mathrm{mg} \mathrm{A}^{2} \| 6 \dot{\eta} \ldots \tau \tilde{\eta} \iota\right] \tau \tilde{\eta} \iota \ldots$ η coni. Hu app\| $8 \mathrm{Z} \Theta \mathrm{H}$ Co $\mathrm{ZH} \mathrm{A} \| 11 \lambda_{0}<\pi \dot{\eta} \mathrm{Ge}$ (BS) $\lambda o \iota \pi \dot{o} \nu \mathrm{D} \|$
 tris A corr Co \| $21 \delta \iota \dot{\eta} x \theta \omega \sigma a \nu$ Ge (BS) $\delta i \eta \times \theta \omega$ A \| 27
 $\pi a \rho a \lambda \lambda \eta \lambda a \mathrm{~A} \| 29 \Theta \mathrm{~N} \operatorname{Co} \Theta \mathrm{H} \mathrm{A}$

The characteristics of the cases of this (proposition are) as the foregoing ones, of which it is the converse.
(205) (Prop. 137) Triangle $\mathrm{AB} \mathrm{\Gamma}$, and $\mathrm{A} \Delta$ parallel to $\mathrm{B} \Gamma$, and let $\Delta \mathrm{E}$ be drawn through and intersect $\mathrm{B} \Gamma$ at point E . That $\Gamma \mathrm{B}$ is to BE as is the rectangle contained by $\Delta \mathrm{E}, \mathrm{ZH}$ to the rectangle contained by $\mathrm{EZ}, \mathrm{H} \Delta$.

Let $\Gamma \Theta$ be drawn through Γ parallel to $\Delta \mathrm{E},{ }^{1}$ and let AB be produced to Θ. Then since $\Gamma \Theta$ is to ZH as is $\Gamma \mathrm{A}$ to $\mathrm{AH},{ }^{2}$ while $\mathrm{E} \Delta$ is to ΔH as is $\Gamma \mathrm{A}$ to $\mathrm{AH},{ }^{3}$ therefore $\Theta \Gamma$ is to ZH as is $\mathrm{E} \Delta$ to $\Delta \mathrm{H} .{ }^{4}$ Hence the rectangle contained by $\Gamma \Theta, \Delta H$ equals the rectangle contained by $\mathrm{E} \Delta, \mathrm{ZH} .{ }^{5}$ (Let) the rectangle contained by EZ, $\mathrm{H} \Delta$ (be) some other arbitrary quantity. Then as is the rectangle contained by $\Delta \mathrm{E}, \mathrm{ZH}$ to the rectangle contained by $\Delta \mathrm{H}, \mathrm{EZ}$, so is the rectangle contained by $\Gamma \Theta, \Delta H$ to the rectangle contained by $\Delta \mathrm{H}$, $E Z,{ }^{6}$ that is $\Gamma \Theta$ to $E Z,{ }^{7}$ that is ΓB to $B E .{ }^{8}$ Thus as is the rectangle contained by $\triangle \mathrm{E}, \mathrm{ZH}$ to the rectangle contained by $\mathrm{EZ}, \mathrm{H} \Delta$, so is $\Gamma \mathrm{B}$ to BE . The same if parallel $A \Delta$ is drawn on the other side, and the straight line $(\Delta \mathrm{E})$ is drawn through from Δ outside (the triangle) in the direction of Γ.
(206) (Prop. 138) Now that these things have been proved, let it be required to prove that, if AB and $\Gamma \Delta$ are parallel, and some straight lines $\mathrm{A} \Delta, \mathrm{AZ}, \mathrm{B} \Gamma, \mathrm{BZ}$ intersect them, and $\mathrm{E} \Delta$ and $\mathrm{E} \Gamma$ are joined, it results that the (line) through H, M, and K is straight.

For since $\Delta \mathrm{AZ}$ is a triangle, and AE is parallel to $\Delta \mathrm{Z},{ }^{1}$ and $\mathrm{E} \Gamma$ has been drawn through intersecting ΔZ at Γ, by the foregoing (lemma) it turns out that as $\Delta \mathrm{Z}$ is to $\mathrm{Z} \Gamma$, so is the rectangle contained by $\Gamma \mathrm{E}, \mathrm{H} \Theta$ to the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E} .{ }^{2}$ Again, since $\Gamma \mathrm{BZ}$ is a triangle, and BE

 ávaotó́申しov.

 єíveía.

 Co, quorum $\dot{\omega} \varsigma \dot{\epsilon} \pi i \quad \tau \grave{o} \mathrm{E}$ del $\mathrm{Hu} \| 27 \nu \tilde{v} \nu]$ o \tilde{v}_{ν}^{ν} coni. Hu app |

has been drawn parallel to $\Gamma \Delta,{ }^{3}$ and $\Delta \mathrm{E}$ has been drawn through intersecting $\Gamma Z \Delta$ at Δ, it turns out that as ΓZ is to $Z \Delta$, so is the rectangle contained by $\Delta \mathrm{E}, \Lambda \mathrm{K}$ to the rectangle contained by $\Delta \mathrm{K}, \Lambda \mathrm{E} .4$ By inversion, therefore, as $\Delta \mathrm{Z}$ is to $\mathrm{Z} \mathrm{\Gamma}$, so is the rectangle contained by $\Delta \mathrm{K}, \Delta \mathrm{E}$ to the rectangle contained by $\Delta \mathrm{E}, \Lambda \mathrm{K} .{ }^{5}$ But also as $\Delta \mathrm{Z}$ is to $\mathrm{Z} \mathrm{\Gamma}$, so was the rectangle contained by $\Gamma \mathrm{E}, \mathrm{H} \Theta$ to the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E}$. Therefore as the rectangle contained by $\Gamma \mathrm{E}, \mathrm{H} \Theta$ to the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E}$, so is the rectangle contained by $\Delta \mathrm{K}, \Lambda \mathrm{E}$ to the rectangle contained by $\Delta \mathrm{E}, \mathrm{K} \Lambda .{ }^{6}$ This has been reduced to the (lemma) before last. Then since two straight lines $\mathrm{E} \Gamma, \mathrm{E} \Delta$ have been drawn onto two straight lines $\Gamma M \Lambda, \Delta M \Theta$, and as the rectangle contained by $\Gamma E, H \Theta$ is to the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E}$, so is the rectangle contained by $\Delta \mathrm{K}, \mathrm{E} \Lambda$ to the rectangle contained by $\Delta \mathrm{E}, \Lambda \mathrm{K}$, therefore the (line) through $\mathrm{H}, \mathrm{M}, \mathrm{K}$ is straight; ${ }^{7}$ for this was proved before (lemma 7.204).
(207) (Prop. 139) But now let AB and $\Gamma \Delta$ not be parallel, but let them intersect at N. That again the (line) through H, M, and K is straight.

Since two (straight lines) ΓE and $\Gamma \Delta$ have been drawn through from the same point Γ onto three straight lines $A N, A Z, A \Delta$, it turns out that as is the rectangle contained by $\Gamma \mathrm{E}, \mathrm{H} \Theta$ to the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E}$, so is the rectangle contained by $\Gamma \mathrm{N}, \mathrm{Z} \Delta$ to the rectangle contained by $\mathrm{N} \Delta$, ΓZ (lemma 7.196). ${ }^{1}$ Again, since two (straight lines) $\Delta \mathrm{E}, \Delta \mathrm{N}$ have been drawn through from the same point Δ onto three straight lines $B N, B \Gamma, \Gamma Z$, as is the rectangle contained by $\mathrm{N} \Gamma, \mathrm{Z} \Delta$ to the rectangle contained by $\mathrm{N} \Delta$, $\mathrm{Z} \Gamma$, so is the rectangle contained by $\Delta \mathrm{K}, \mathrm{E} \Lambda$ to the rectangle contained by $\Delta \mathrm{E}, \mathrm{K} \Lambda .{ }^{2}$ But as is the rectangle contained by $\mathrm{N} \Gamma, \mathrm{Z} \Delta$ to the rectangle contained by $\mathrm{N} \Delta, \Gamma \mathrm{Z}$, so the rectangle contained by $\Gamma \mathrm{E}, \mathrm{H} \Theta$ was proved to be to the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E}$. Therefore as is the rectangle contained by $\Gamma \mathrm{E}, \Theta \mathrm{H}$ to the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E}$, so is the rectangle contained by $\Delta \mathrm{K}, \mathrm{E} \Lambda$ to the rectangle contained by $\Delta \mathrm{E}, \mathrm{K} \Lambda .^{3}$ It has been reduced to the (lemma) which (it was reduced to) also in the case of the parallels. Because of the foregoing (lemma 7.204) the (line) through $\mathrm{H}, \mathrm{M}, \mathrm{K}$ is straight. ${ }^{4}$
(208) (Prop. 140) Let AB be parallel to $\Gamma \Delta$, and let AE and $\Gamma \mathrm{B}$ be drawn through, and (let) Z (be) a point on $B H$, so that as is ΔE to $E \Gamma$, so will the rectangle contained by $\Gamma \mathrm{B}, \mathrm{HZ}$ be to the rectangle contained by ZB , $\Gamma \mathrm{H}$. That the (line) through $\mathrm{A}, \mathrm{Z}, \Delta$ is straight.

Let $\Delta \Theta$ be drawn through Δ parallel to $\mathrm{B} \Gamma,{ }^{1}$ and let AE be produced to Θ; and let $\Theta \mathrm{K}$ be drawn through Θ parallel to $\Gamma \Delta,{ }^{2}$ and let $B \Gamma$ be produced to K . Then since as is $\Delta \mathrm{E}$ to $\mathrm{E} \Gamma$, so is the rectangle contained by $\Gamma \mathrm{B}, \mathrm{ZH}$ to the rectangle contained by $\mathrm{BZ}, \Gamma \mathrm{H}$ (lemma 7.205), ${ }^{4}$ while as is $\Delta \mathrm{E}$ to $\mathrm{E} \Gamma$, so are $\Delta \Theta$ to $\Gamma \mathrm{H}$ and (consequently) the rectangle contained by $\Delta \Theta, \mathrm{BZ}$ to the rectangle contained by $\Gamma \mathrm{H}, \mathrm{BZ},{ }^{3}$ therefore the rectangle contained by $\mathrm{B} \Gamma, \mathrm{ZH}$ equals the rectangle contained by $\Delta \Theta, \mathrm{BZ} .{ }^{5}$ Hence in

 $\pi \rho о \delta \dot{\epsilon} \delta \epsilon \iota \kappa \tau а \iota$.

 $\mathrm{Ge}(\mathrm{BS}) \dot{\epsilon} \pi \epsilon \bar{i} \mathrm{~A} \mid \mathrm{BH} \mathrm{Co} \mathrm{ZH} \mathrm{A} \| 30 \dot{\epsilon} \kappa \beta \epsilon \beta \lambda \dot{\eta} \sigma \theta \omega \mathrm{Ge} \dot{\epsilon} \kappa \beta \lambda \eta \theta \tilde{\eta} \iota \mathrm{A}$ || 33 BZ, ГН Heiberg ${ }_{3}$ ВГ, ZH A ZB, ГН Co \mid '́ $\sigma \tau i \nu$ del coni. Hu app
ratio as ΓB is to $B Z$, so is $\Delta \Theta$, that is $\Gamma K,{ }^{7}$ to $\mathrm{HZ} .{ }^{6}$ Hence the sum $K B$ is to the sum BH as $\mathrm{K} \Gamma$ is to $\mathrm{ZH},{ }^{8}$ that is as $\Delta \Theta$ is to $\mathrm{ZH} .^{9}$ But as is KB to BH , so in parallels are $\Theta \mathrm{A}$ to AH , and $\Delta \Theta$ to $\mathrm{ZH} .{ }^{10}$ And $\Delta \Theta$ and ZH are parallel. 11 Thus the (line) through points $\mathbf{A}, \mathbf{Z}, \Delta$ is straight. 12
(209) (Prop. 141) Now that this has been proved, let AB be parallel to $\Gamma \Delta$, and let straight lines $\mathrm{AZ}, \mathrm{ZB}, \Gamma \mathrm{E}, \mathrm{E} \Delta$ intersect them, and let $\mathrm{B} \Gamma$ and HK be joined. That the (line) through $\mathrm{A}, \mathrm{M}, \Delta$ is straight.

Let $\Delta \mathrm{M}$ be joined and produced to Θ. Then since, having a triangle $\mathrm{B} \Gamma \mathrm{Z}, \mathrm{BE}$ has been drawn parallel to $\Gamma \Delta$ from the apex point B (and falling) outside (the triangle), and $\Delta \mathrm{E}$ has been drawn through, it turns out (lemma 7.205) that as ΓZ is to $Z \Delta$, so is the rectangle contained by $\Delta \mathrm{E}, \mathrm{K} \Lambda$ to the rectangle contained by $\mathrm{E} \Lambda, \mathrm{K} \Delta .{ }^{1}$ Thus as the rectangle contained by $\Delta \mathrm{E}$, $\mathrm{K} \Lambda$ is to the rectangle contained by $\Delta \mathrm{K}, \Lambda \mathrm{E}$, so is the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E}$ to the rectangle contained by $\Gamma \mathrm{E}, \mathrm{H} \Theta$ (lemma 7.196); ${ }^{2}$ for two (straight lines) $\mathrm{E} \Gamma, \mathrm{E} \Delta$ have been drawn through from the same point E onto three straight lines $\Gamma \Lambda, \Delta \Theta, \mathrm{HK}$. And so as is $\Delta \mathrm{Z}$ to $\mathrm{Z} \Gamma$, so is the rectangle contained by $\Gamma \mathrm{E}, \mathrm{H} \Theta$ to the rectangle contained by $\Gamma \mathrm{H}, \Theta \mathrm{E} .{ }^{3}$ And the (line) through $\mathrm{H}, \mathrm{M}, \mathrm{K}$ is straight. ${ }^{4}$ Hence by the foregoing (lemma 7.208) the (line) through $\mathrm{A}, \mathrm{M}, \Delta$ is also straight. ${ }^{5}$
(210) (Prop. $142 a-b$) Let two (straight lines) $\Delta \mathrm{B}, \Delta \mathrm{E}$ be drawn across two straight lines $A B, A \Gamma$ from the same point Δ, and let points H, Θ be chosen on them. And as is the rectangle contained by $\mathrm{EH}, \mathrm{Z} \Delta$ to the rectangle contained by $\Delta \mathrm{E}, \mathrm{HZ}$, so let the rectangle contained by $\mathrm{B} \Theta, \Gamma \Delta$ be to the rectangle contained by $B \Delta, \Gamma \Theta$. That the (line) through $\mathrm{A}, \mathrm{H}, \Theta$ is straight.

Let $\mathrm{K} \Lambda$ be drawn through H parallel to $\mathrm{B} \Delta .{ }^{1}$ Then since as the rectangle contained by $\mathrm{EH}, \mathrm{Z} \Delta$ is to the rectangle contained by $\Delta \mathrm{E}, \mathrm{ZH}$, so is the rectangle contained by $\mathrm{B} \Theta, \Gamma \Delta$ to the rectangle contained by $\mathrm{B} \Delta$, $\Gamma \Theta, 2$ while the ratio of the rectangle contained by $\mathrm{EH}, \mathrm{Z} \Delta$ to the rectangle contained by $\Delta \mathrm{E}, \mathrm{HZ}$ is compounded out of that which HE has to $\mathrm{E} \Delta$, that is KH to $\mathrm{B} \Delta,{ }^{4}$ and that which $\Delta \mathrm{Z}$ has to ZH , that is $\Delta \Gamma$ to $\mathrm{H} \Lambda ;{ }^{5} 3$ and the ratio of the rectangle contained by $\mathrm{B} \Theta, \Gamma \Delta$ to the rectangle contained by $B \Delta, \Gamma \Theta$ is compounded out of that which ΘB has to $\mathrm{B} \Delta$ and that which $\Delta \Gamma$ has to $\Gamma \Theta, 6$ therefore the (ratio compounded) out of that of KH to $\mathrm{B} \Delta$ and that of $\Delta \Gamma$ to $H \Lambda$ is the same as that compounded out of that of $B \Theta$ to $B \Delta$ and that of $\Delta \Gamma$ to $\Gamma \Theta .{ }^{7}$ But the (ratio) of KH to $\mathrm{B} \Delta$ is compounded out of that of KH to $\mathrm{B} \Theta$ and that of $\mathrm{B} \Theta$ to $\mathrm{B} \Delta .^{8}$ Therefore the (ratio) compounded

 $\epsilon i \sigma i \nu \pi a \rho a ́ \lambda \lambda \eta \lambda o \iota a i \quad \Delta \Theta, \mathbf{Z H} . \epsilon \dot{v} \theta \epsilon \tilde{\imath} a \not a ́ \rho a ́ \epsilon \sigma \tau i \nu \dot{\eta} \delta \iota a ̀ \tau \tilde{\omega} \nu \mathrm{~A}, \mathrm{Z}$, $\Delta \sigma \eta \mu \epsilon i \omega \nu$.

 $\dot{\epsilon} \pi \epsilon \zeta \epsilon \dot{v} \chi \theta \omega \sigma a \nu$ ai $\mathrm{B} \mathrm{\Gamma}$, НK. 'ö $\tau \iota \dot{v} \theta \epsilon i \dot{\imath} \dot{\epsilon} \epsilon \sigma \iota \nu \dot{\eta} \delta \iota \dot{a} \tau \tilde{\omega} \nu \mathrm{~A}, \mathrm{M}, \Delta$.

 $\pi a \rho a ́ \lambda \lambda \eta \lambda o s ~ \grave{\eta} \kappa \tau a \iota \dot{\eta} \mathrm{BE}, \kappa a i \quad \delta \iota \tilde{\eta} \kappa \tau a \iota \dot{\eta} \Delta \mathrm{E}, \gamma \boldsymbol{\gamma} \nu \in \tau a \iota \dot{\omega} \varsigma \dot{\eta} \Gamma Z$

 $\pi \rho о \gamma \in \gamma \rho a \mu \mu \dot{\epsilon} \nu о \nu$ á ρa каi $\dot{\eta} \delta i \grave{a} \tau \tilde{\omega} \nu \mathrm{~A}, \mathrm{M}, \Delta \dot{\epsilon} \sigma \tau i \nu \in \dot{v} \theta \epsilon \tilde{\imath} a$.

 $\dot{\epsilon} \pi \epsilon \xi \epsilon \dot{v} x \theta \omega \mathrm{~A} \mid \mathrm{A}, \mathrm{M}, \Delta \mathrm{Co} \mathrm{HMK} \mathrm{A} \| 11 \dot{\epsilon} \pi \iota \zeta \epsilon v x \theta \epsilon \tilde{i} \sigma a \dot{\eta} \Delta \mathrm{M}]$
 secl $\mathrm{Hu}\left(\right.$ Simson $\left._{2}\right)\|13 \Delta \mathrm{ECo} \mathrm{\Delta BA} \mathrm{\|}\| 14 \mathrm{Z} \Delta \mathrm{Co}_{\mathrm{Z}} \mathrm{Z} \mathrm{\Gamma} \mathrm{~A} \mid$ "ápal $\delta \dot{\epsilon} \mathrm{A} \|$
 $\mathrm{H}, \mathrm{M}, \mathrm{K}] \Delta, \mathrm{M}, \Theta \mathrm{Co} \Theta, \mathrm{M}, \Delta \mathrm{Hu} \| 20 \mathrm{\kappa ai}$ del Heiberg ${ }_{3} \| 22$

 $B \Delta \operatorname{Co} \theta \Delta \mathrm{~A} \mid \Delta \Gamma \mathrm{Co} A \Gamma \mathrm{~A}$
out of that of KH to $\mathrm{B} \Theta$ and that of $\mathrm{B} \Theta$ to $\mathrm{B} \Delta$ and furthermore of that of $\Delta \Gamma$ to $\mathrm{H} \Lambda$ is the same as the (ratio) compounded out of that of $\mathrm{B} \Theta$ to $\mathrm{B} \Delta$ and that of $\Delta \Gamma$ to $\Gamma \Theta .9$ Let the ratio of ΘB to $B \Delta$ be removed in common. Then the remaining (ratio) compounded out of that of KH to $\mathrm{B} \Theta$ and that of $\Delta \Gamma$ to $\mathrm{H} \Lambda$ is the same as that of $\Delta \Gamma$ to $\Gamma \Theta, 1^{10}$ that is the (ratio) compounded out of that of $\Delta \Gamma$ to $\mathrm{H} \Lambda$ and that of $\mathrm{H} \Lambda$ to $\Theta \Gamma .{ }^{1}$ And again, let the ratio of $\Delta \Gamma$ to $\mathrm{H} \Lambda$ be removed in common. Then the remaining ratio of KH to $\mathrm{B} \Theta$ is the same as that of $\mathrm{H} \Lambda$ to $\Theta \Gamma .12$ And alternando, as is KH to $\mathrm{H} \Lambda$, so is $\mathrm{B} \Theta$ to $\Theta \Gamma .1^{3}$ And $\mathrm{K} \Lambda$ and $\mathrm{B} \mathrm{\Gamma}$ are parallel. ${ }^{14}$ Therefore the (line) through points $\mathrm{A}, \mathrm{H}, \Theta$ is straight. ${ }^{15}$
(211) 18. (Prop. 143) But now let AB not be parallel to $\Gamma \Delta$, but let it intersect it at N .

Then since two straight lines $\Delta \mathrm{E}, \Delta \mathrm{N}$ have been drawn from the same point Δ across three straight lines $\mathrm{BN}, \mathrm{B} \Gamma, \mathrm{BZ}$, as the rectangle contained by $\mathrm{N} \Delta, \Gamma \mathrm{Z}$ is to the rectangle contained by $\mathrm{N} \Gamma, \Delta Z$, so is the rectangle contained by $\Delta \mathrm{E}, \mathrm{K} \Lambda$ to the rectangle contained by $\mathrm{E} \Lambda, \mathrm{K} \Delta$ (lemma 7.196). 1 But as is the rectangle contained by $\mathrm{E} \Delta, \mathrm{K} \Lambda$ to the rectangle contained by $\mathrm{E} \Lambda, \mathrm{K} \Delta$, so is the rectangle contained by $\mathrm{E} \Theta, \Gamma \mathrm{H}$ to the rectangle contained by $\mathrm{E} \Gamma, \Theta \mathrm{H} ;{ }^{2}$ for again two (straight lines) $\mathrm{E} \Gamma, \mathrm{E} \Delta$ have been drawn from the same point E across three (straight lines) $\Gamma \Lambda$, $\Delta \Theta, \mathrm{HK}$. Therefore as is the rectangle contained by $\mathrm{E} \Theta, \Gamma \mathrm{H}$ to the rectangle contained by $\mathrm{E} \Gamma, \Theta \mathrm{H}$, so is the rectangle contained by $\mathrm{N} \Delta, \Gamma Z$ to the rectangle contained by $\mathrm{N} \Gamma, \mathrm{Z} \Delta .^{3}$ By the foregoing (lemma) the (line) through $\mathrm{A}, \Theta, \Delta$ is straight. 4 Thus the (line) through $\mathrm{A}, \mathrm{M}, \Delta$ too is straight. 5
(212) (Prop. 144) (Let there be) triangle $\mathrm{AB} \mathrm{\Gamma}$, and let $\mathrm{A} \Delta$ be drawn parallel to $\mathrm{B} \Gamma$, and let $\Delta \mathrm{E}, \mathrm{ZH}$ be drawn across. And as the square of EB is to the rectangle contained by $\mathrm{E} \Gamma, \Gamma В$, so let BH be to $\mathrm{H} \Gamma$. That, if $\mathrm{B} \Delta$ is joined, the (line) through Θ, K, Γ is straight.

Since, as is the square of EB to the rectangle contained by $\mathrm{E} \Gamma, \Gamma \mathrm{B}$, so is BH to $\mathrm{H} \Gamma,{ }^{1}$ let the ratio of $\Gamma \mathrm{E}$ to EB be applied in common, this being the same as that of the rectangle contained by $\mathrm{E} \Gamma, \Gamma \mathrm{B}$ to the rectangle contained by ЕВ, ВГ. ${ }^{2}$ Then ex aequali the ratio of the square of EB to the rectangle contained by $\mathrm{EB}, \mathrm{B} \Gamma$, that is the (ratio) of EB to $\mathrm{B} \Gamma$, is the same as the (ratio) compounded out of that of BH to $\mathrm{H} \Gamma$ and that of the rectangle contained by $\mathrm{E} \Gamma, \Gamma \mathrm{B}$ to the rectangle contained by $\mathrm{EB}, \mathrm{B} \Gamma,{ }^{3}$ which is the same as that of EГ to EB. 4 Therefore the (ratio) of the square of EB to the

 $\epsilon \dot{v} \theta \epsilon i a$ ápa $\epsilon \sigma \tau i \nu \dot{\eta} \delta i a \tau \tilde{\omega} \nu \mathrm{~A}, \mathrm{H}, \theta \sigma \eta \mu \epsilon i \omega \nu$.

 $\delta \iota a ̀ \tau \tilde{\omega} \nu \mathrm{~A}, \mathrm{M}, \Delta \mathrm{a} \rho a \operatorname{\epsilon } \dot{v} \theta \epsilon \bar{\iota} \dot{a}$ є́ $\sigma \tau \iota \nu$.

rectangle contained by $\mathrm{EB}, \mathrm{B} \mathrm{\Gamma}$ is compounded out of that which BH has to $\mathrm{H} \Gamma$ and that which $\mathrm{E} \Gamma$ has to $\mathrm{EB}, 5$ which is the same as that of the rectangle contained by $\mathrm{E} \Gamma, \mathrm{BH}$ to the rectangle contained by $\mathrm{EB}, \Gamma \mathrm{H} .{ }^{6}$ But as is EB to $\mathrm{B} \Gamma$, so, by the foregoing lemma (7.205), is *the rectangle contained by $\Delta \mathrm{E}, \mathrm{Z} \Theta$ to the rectangle contained by $\Delta \mathrm{Z}, \Theta \mathrm{E} .{ }^{7}$ And therefore as is the rectangle contained by $\Gamma \mathrm{E}, \mathrm{BH}$ to the rectangle contained by $\Gamma \mathrm{H}$, EB , so is the rectangle contained by $\Delta \mathrm{E}, \mathrm{Z} \mathrm{\Theta}$ to the rectangle contained by $\Delta \mathrm{Z}, \Theta \mathrm{E} .8$ * Therefore the (line) through $\Theta, \mathrm{K}, \Gamma$ is straight; ${ }^{9}$ for that is in the case-variants of the converses.
(213) (Prop. 145) Let two (straight lines) EZ, EB be drawn from some point E across three straight lines $\mathrm{AB}, \mathrm{A} \Gamma, \mathrm{A} \Delta$, and, as EZ is to ZH , so let ΘE be to ΘH. That also as $B E$ is to $B \Gamma$, so is $E \Delta$ to $\Delta \Gamma$.

Let $\Lambda \mathrm{K}$ be drawn through H parallel to BE. ${ }^{1}$ Then since as is EZ to ZH , so is $\mathrm{E} \Theta$ to $\Theta \mathrm{H},{ }^{2}$ but as is EZ to ZH , so is EB to $\mathrm{HK},{ }^{3}$ while as is $\mathrm{E} \Theta$ to ΘH, so is $\Delta \mathrm{E}$ to $\mathrm{H} \Lambda,{ }^{4}$ therefore as is BE to HK , so is $\Delta \mathrm{E}$ to $\mathrm{H} \Lambda .^{5}$ Alternando, as is EB to $\mathrm{E} \Delta$, so is KH to $\mathrm{H} \Lambda .{ }^{6}$ But as is KH to $\mathrm{H} \Lambda$, so is $\mathrm{B} \Gamma$ to $\Gamma \Delta .{ }^{7}$ Therefore as is BE to $\mathrm{E} \Delta$, so is $\mathrm{B} \Gamma$ to $\Gamma \Delta .^{8}$ Alternando, as is EB to $\mathrm{B} \Gamma$, so is $\mathrm{E} \Delta$ to $\Delta \Gamma .{ }^{9}$ The case-variants likewise.
(214) (Prop. 146) Let there be two triangles $\mathrm{AB} \mathrm{\Gamma}, \triangle \mathrm{EZ}$ that have angles A, Δ equal. That, as is the rectangle contained by $\mathrm{BA}, \mathrm{A} \Gamma$ to the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z}$, so is triangle $\mathrm{AB} \Gamma$ to triangle $\mathrm{E} \Delta \mathrm{Z}$.

Let perpendiculars $\mathrm{BH}, \mathrm{E} \Theta$ be drawn. 1 Then since angle A equals Δ, and H (equals) $\Theta,{ }^{2}$ therefore as is $A B$ to $B H$, so is ΔE to $E \Theta .{ }^{3}$ But as $A B$ is to BH , so is the rectangle contained by $\mathrm{BA}, \mathrm{A} \mathrm{\Gamma}$ to the rectangle contained by $\mathrm{BH}, \mathrm{A} \mathrm{\Gamma}, 4$ while as is $\Delta \mathrm{E}$ to $\mathrm{E} \Theta$, so is the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z}$ to the rectangle contained by $\mathrm{E} \Theta, \Delta \mathrm{Z} .{ }^{5}$ Therefore as is the rectangle contained by $\mathrm{BA}, \mathrm{A} \Gamma$ to the rectangle contained by $\mathrm{BH}, \mathrm{A} \Gamma$, so is the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z}$ to the rectangle contained by $\mathrm{E} \Theta, \Delta \mathrm{Z} ;{ }^{6}$ and alternando. 7 But as is the rectangle contained by $\mathrm{BH}, \mathrm{A} \Gamma$ to the rectangle contained by $\mathrm{E} \Theta, \Delta \mathrm{Z}$, so is triangle $\mathrm{AB} \Gamma$ to triangle $\Delta \mathrm{EZ} ;{ }^{8}$ for each of BH and EO is a perpendicular of each of the triangles named. Therefore as is the rectangle contained by $\mathrm{BA}, \mathrm{A} \Gamma$ to the rectangle contained by $\mathrm{E} \Delta, \Delta \mathrm{Z}$, so is triangle $\mathrm{AB} \Gamma$ to triangle $\triangle \mathrm{EZ} .{ }^{9}$

 $\dot{a} \nu a \sigma \tau \rho o \phi i \omega \nu$.

 $\dot{\dot{o}} \mu \mathrm{o} i \omega s$.

 $\tau \rho \iota \gamma \omega \nu 0 \nu$.

[^0]: transp. Hu, quae omnia del Heiberg $\| 6$ post Θ add $\mathrm{K} \mathrm{Ge}(\mathrm{S}) \mid$ post \mathbf{Z} add $\tau 0 \cup \tau \dot{\epsilon} \sigma \tau \iota \nu \dot{\eta} \delta \iota a ̀ \tau \tilde{\omega} \nu \Theta, \mathrm{~K}, \mathrm{Z}$ Hu $\| 11 \Delta(\mathrm{~A})$ in ras. $\mathrm{A} \mid$ pro $\dot{\eta}$ ММ каi coni. $\delta \iota a x \theta \epsilon i \sigma a \dot{\eta} \mathrm{M}$ Hu app \| 17 pro ruxò coni.

 Co

