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Many exercises here are adaptations of exercises from Hungerford []. In
that case, a reference is given.

The notation N = {1, 2, 3, . . . } and ω = {0, 1, 2, . . . } is used. If A and B
are sets, then the set of functions from A to B is denoted by BA.

Unless otherwise noted, the signature of groups is {e,−1, ·}. Thus, if G is
a group, this means G is the structure (G, eG,−1

G

, ·G). Usually we can
abbreviate this as (G, e,−1, ·). This group is an expansion of the monoid
(G, e, ·) and the semigroup (G, ·).

Exercise  (I..). If A is a set and G is a group, show that the set GA

expands to a group in which · is given by

(f · g)(x) = f(x) · g(x).

Exercise  (I..). (a) Find a set A and a subset B of AA such that
[i] B is closed under functional composition,
[ii] B contains a right identity with respect to composition,
[iii] every element of B has a left inverse with respect to this right

identity, but
[iv] the semigroup (B, ◦) does not expand to a group.





(b) Same problem, with “left” and “right” interchanged.

Exercise  (I..). The Euclidean Algorithm is a way to find the
greatest common divisor gcd(a, b) of two integers a and b, not both 0;
it is established in the first two propositions of Book VII of Euclid’s
Elements []. By means of the algorithm, we can find integral solutions
to the equation

ax+ by = gcd(a, b).

Given a positive integer n, we let Z/nZ denote the set of congruence-
classes of integers modulo n. In the first section of his Disquisitiones
Arithmeticae (published when he was ), Gauss [] shows in effect that

• the map taking an integer to its congruence-class is a bijection from
{0, . . . , n− 1} to Z/nZ, and

• the usual ring-structure on Z induces a ring-structure on Z/nZ.

Let us take all of the foregoing as proved.

(a) Prove Euclid’s Lemma (which is Proposition VII. of the Ele-
ments): If p is prime, and p | ab, show that p divides a or b.

(b) Show that n is prime if and only if the set Z/nZ r {0} is closed
under multiplication. (Of course 0 here means literally the set of
multiples of n.)

(c) If p is prime, show that the semigroup (Z/pZ r {0}, ·) expands to
a group.

Exercise  (I..). Let p be a prime number, and let Z/pZ r {0} be
denoted by Zp

×. We may identify this set with {1, . . . , p− 1}.

(a) Prove that 1 and p− 1 are the only solutions of x2 = 1 in Zp
×.

(b) Prove (p− 2)! = 1 in Zp
×.

(c) Obtain Wilson’s Theorem, namely (p− 1)! ≡ −1 (mod p).
(d) Let G be a finite group. Cauchy’s Theorem is that, if |G| is

a multiple of p, then G contains a nontrivial solution (that is, a
solution other than e) of xp = e. Prove this in case p = 2. (Use
the idea of the proof of Wilson’s Theorem. In fact our proof of
Cauchy’s Theorem is going to use a generalization of this idea.)

Exercise  (I..). Let p be a prime.

(a) Show that {x/y : p - y} is the universe of a subgroup of (Q,+).





(b) Show that {x/pn : n ∈ ω} is the universe of a subgroup of (Q,+).

Exercise  (I..). (a) Show that each of the following conditions
defines the same class of groups:
[i] xy = yx (that is, the group is abelian).
[ii] (xy)2 = x2y2.
[iii] (xy)−1 = x−1y−1.
[iv] (xy)n = xnyn for all n in Z.
[v]

∧
i∈3(xy)n+i = xn+iyn+i for some n in Z.

(b) Show that possibly (xy)n = xnyn and (xy)n+1 = xn+1yn+1, al-
though xy = yx may fail.

Exercise  (I..). Every group satisfying the identity x2 = e is abelian.

Exercise  (I..). Prove:

(a) Every finite semigroup with left and right cancellation (xy = xz ⇒
y = z and yx = zx⇒ y = z) expands to a group.

(b) There is an infinite semigroup with left and right cancellation that
does not expand to a group.

Exercise . (a) Show that semigroup may have a left identity that is
not a right identity.

(b) If a semigroup has a left identity and a right identity, show that
they are equal.

(c) In a monoid, show that there is exactly one left identity, and this
is a right identity.

(d) Find monoids M and N such that

(M, ·) ⊆ (N, ·), but (M, e, ·) * (N, e, ·).

(e) Find a chain M0 ⊆M1 ⊆M2 ⊆ · · · of semigroups that expand to
monoids, although the union

⋃
k∈ω Mk does not.

Remark. This problem yields the following model-theoretic conclusions.
A monoid is a structure (M, e, ·) such that

• (M, ·) is a semigroup satisfying the axiom

∃x ∀y (x · y = y ∧ y · x = y),





• e satisfies the formula
∀y x · y = y.

In this case e is the only element ofM that satisfies this formula. Thus for
every formula ϕ(~x) in the signature {e, ·} of monoids, there is a formula
ϕ∗(~x) in the signature {·} of semigroups such that every monoid satisfies

∀~x
(
ϕ(~x)⇔ ϕ∗(~x)

)
.

One obtains ϕ∗ from ϕ by replacing every equation e · x = y with the
formula ∃z (z · x = y ∧ ∀u z · u = u), and so forth. However:

• Not every function from one monoid to another that is a homomor-
phism of semigroups is a homomorphism of monoids.

• The theory of semigroups that expand to monoids cannot be ax-
iomatized by ∀∃ sentences.

Exercise  (I..). If f is a homomorphism from a group G to a group
H, and K < H, show that

(a) im(f) is the universe of a subgroup of H (briefly, im(f) < H),
(b) f−1(K) is the universe of a subgroup of G (i.e. f−1(K) < G),
(c) ker(f) is the universe of a subgroup of G (i.e. ker(f) < G),
(d) f is injective if and only if ker(f) = {eG}.

Exercise  (I..). Show that a group G is abelian if and only if the
permutation x 7→ x−1 of G is an automorphism of G.

Exercise . In a monoid, show that, if an element has a left inverse
and a right inverse, then these are equal.

Exercise . Let H be the abelian group R ⊕ R ⊕ R ⊕ R. We use the
notation

(1, 0, 0, 0) = 1, (0, 1, 0, 0) = i,

(0, 0, 1, 0) = j, (0, 0, 0, 1) = k.

More generally, we let

(x, 0, 0, 0) = x, (0, x, 0, 0) = xi,

(0, 0, x, 0) = xj, (0, 0, 0, x) = xk.





Thus every element (x, y, z, w) of H can be written as x+ yi + zj + wk.
We define a multiplication (that is, an operation that distributes in both
senses over addition) by these rules:

i · x = xi, j · x = xj, k · x = xk,

i2 = −1, j2 = −1, k2 = −1,

i · j = k, j · k = i, k · i = j,

j · i = −k, k · j = −i, i · k = −j.

So now H is a (possibly non-associative) ring.

(a) Show that multiplication on H is associative, so that (H, 1, ·) is a
monoid. There are several possible approaches to this, including
the following. (So the real challenge of this problem is to find the
most efficient approach to it.)
[i] One can show directly(

(x0 + x1i + x2j + x3k) · (y0 + y1i + y2j + y3k)
)
·

· (z0 + z1i + z2j + z3k) = (x0 + x1i + x2j + x3k) ·
·
(
(y0 + y1i + y2j + y3k) · (z0 + z1i + z2j + z3k)

)
.

[ii] Letting e0 = 1, e1 = i, e2 = j, and e3 = k, one can first
observe that((∑

n<4

xnen

)
·
∑
n<4

xnen

)
·
∑
n<4

xnen

=
∑
m<4

∑
n<4

∑
r<4

xmynzr
(
(em · en) · er

)
and(∑

n<4

xnen

)
·
((∑

n<4

xnen

)
·
∑
n<4

xnen

)
=
∑
m<4

∑
n<4

∑
r<4

xmynzr
(
em · (en · er)

)
.

Also, the definition of multiplication is unaffected by the per-
mutations (1 2 3) and (1 3 2) of the set {1, 2, 3} of indices of
the en.





[iii] One can observe x+ yi + zj + wk = x+ yi + (z + wi) · j, and
the elements x+ yi can be considered as elements of the field
C. If now z ∈ C, we have j · z = z̄j.

[iv] As a ring, H embeds in the associative ring of 2 × 2 matrices
over C under the map

x+ yi + zj + wk 7→
(
x+ yi z + wi
−z + wi x− yi

)
.

[v] As a ring, H embeds in the associative ring of 4 × 4 matrices
over R under the map

x+ yi + zj + wk 7→


x y z w
−y x −w z
−z w x −y
−w −z y x

 .

(b) The semigroup (Cr {0}, ·) is a group because

(x+ yi)(x− yi) = x2 + y2,

so that (assuming x+ yi 6= 0)

(x+ yi)
( x

x2 + y2
− y

x2 + y2
i
)

= 1.

Find an operation h 7→ h̄ on H such that

h 7→ h · h̄ : Hr {0} → Rr {0}.

Then show that (Hr {0}, ·) is a group.

Remark. Consequently H (as a structure in the signature {0,−,+, 1, ·})
is a division ring.

Exercise  (I..). (a) Show that the elements (0 1 2 3) and (0 3)
generate a subgroup, called Dih(4), of Sym(3) of order 8. One way
to do this is to consider the given elements as permutations of the
vertices of a square.

(b) Show that Dih(4) is not isomorphic to the subgroup Q8 of Hr {0}
generated by i and j.





Exercise  (I..). Find all (a, b) in Z ⊕ Z such that, for some (c, d)
in Z⊕ Z,

Z⊕ Z = 〈(a, b), (c, d)〉.

It may be useful to consider x(a, b) + y(c, d) as the matrix product

(x y)

(
a b
c d

)
.

Then the information in Exercise  will be useful.

Exercise . In the most general sense, an algebra is a structure with
no distinguished relations, but only operations. Suppose A is an algebra
with universe A. A congruence-relation on A is an equivalence-relation
∼ on A such that for all n in ω, for all distinguished n-ary operations f
of A,

x0 ∼ y0 ∧ · · · ∧ xn−1 ∼ yn−1 =⇒ f(~x) = f(~y).

In this case there is an n-ary operation f̃ on A/∼ given by

f̃([x0], . . . , [xn−1]) = f(x0, . . . , xn−1).

(In particular, f̃ exists automatically when n = 0.) If indeed ∼ is a
congruence-relation on A, then there is a quotient algebra A/∼ whose
universe is A/∼ and whose distinguished operations are just these f̃ .

Suppose ∼ is a congruence-relation on a semigroup (G, ·), so that there
is an operation on G/∼ given by

[x][y] = [xy].

(a) Show that (G, ·)/∼ is a semigroup.
(b) If (G, ·) expands to a group, show that ∼ is a congruence-relation

on this group, and the quotient of the group by ∼ is a group.
(c) If n ∈ N, we define ≡ on Z by

x ≡ y ⇐⇒ n | x− y.

Show that ≡ is a congruence-relation on Z as a ring. (This was
taken for granted in Exercise .)





Exercise  (I..). The only big theorem used by this exercise is the
Lagrange Theorem, that the order of a subgroup divides the order of the
group. Suppose G is a group of order pq, where p and q are distinct prime
numbers. Prove the following.

(a) If a and b are in G and ord(a) = p = ord(b), then either 〈a〉 = 〈b〉
or 〈a〉 ∩ 〈b〉 = 〈 〉.

(b) G has an element of order p or q.
(c) G = 〈a, b〉 for some a and b in G.
(d) If G is abelian, then G is cyclic.

Exercise  (I.., ). (a) Find an infinite group generated by two
elements, each of which has finite order. You can use the example
of the subgroup of Sym(C×) generated by the elements

τ 7→ −1

τ
, τ 7→ −1

τ + 1
.

(b) Show that no group as in (a) can be abelian.
(c) Find an infinite group containing nontrivial elements of finite order,

but generated by two elements, each having infinite order. You can
let Z/2Z⊕ Z be the group.

Exercise  (I..). Given n in N, describe all subgroups of Z/nZ.
(What are their orders? What are their generators? Are they cyclic?)

Exercise  (I..). Find all cosets (in terms of their elements) of 〈(0 1)〉
and of 〈(0 1 2)〉 in Sym(3).

Exercise  (I..). Find all groups of order 4 (up to isomorphism).
Lagrange’s Theorem and Exercise  may be useful.

Exercise . An automorphism of a group is an isomorphism from the
group to itself. The set of automorphisms of a group G can be denoted
by Aut(G).

(a) Show that Aut(G) < Sym(G). (The first G is the group; the second,
the set. Strictly one would write Aut(G, ·) < Sym(G).)

(b) Find Aut(Z/4Z).
(c) Find Aut(Z/2Z⊕ Z/2Z).





Exercise  (I..). Show that there is a homomorphism x 7→ fx from
a group G to Aut(G) given by

fx(y) = xyx−1.

Exercise  (I..). If H < G, show that, under either of the following
two conditions, H C G.

(a) H is finite and is the only subgroup of G of its order.
(b) [G : H] is finite, and H is the only subgroup of G having this index

in G.

Exercise  (I.., ). (a) Show that the relation C of being a nor-
mal subgroup is not transitive. You can use subgroups of Dih(4)
for an example.

(b) Show that if K < H and H C G and H is cyclic, then K C G.

Exercise  (I..). Show Sym(n) = 〈(0 1 · · · n− 1), (0 1)〉.

Exercise  (I..). Find all normal subgroups of Dih(n).

Exercise . Suppose (Gi : i ∈ I) is a family of groups, and for each i
in I, Hi C Gi. Show

∏
i∈I

Hi C
∏
i∈I

Gi,
∏
i∈I

Gi

/∏
i∈I

Hi
∼=
∏
i∈I

Gi

Hi
.

Exercise  (I..). For any set A, let F(A) be the free group on A. If
A ⊆ B, show that F(B)/〈〈A〉〉 is a free group.

Exercise . Describe the groups

(a) 〈a, b | a7, b3, a2ba6b2〉,

(b) 〈a, b | a7, b3, a3ba6b2〉.

Exercise  (II..). Show that (Q+, ·) is a free abelian group.

Exercise . How many nonisomorphic abelian groups have order pn?

Exercise  (II..). If G is not abelian, then G/C(G) is not cyclic.





Exercise  (II..). If p is a prime dividing |G|, and

1 <
|G|
p

6 p,

then G is not simple.

Exercise  (II..). In a simple group of order 168, how many ele-
ments have order 7?

Exercise .

(a) Find the smallest nonabelian group.
(b) Find the smallest nonabelian soluble group.
(c) Find the smallest nonabelian soluble group that is not nilpotent.

Exercise  (II..).

(a) Find all n such that Dih(n) is nilpotent.
(b) For such n, find the groups Ck(Dih(n)).
(c) Find all m such that Dih(m) is soluble.
(d) For such m, find the groups (Dih(m))

(k).

Exercise . In a commutative ring, by definition, a proper ideal P is
prime if and only if, for all x and y in the ring,

xy ∈ P & x /∈ P =⇒ y ∈ P.

Prove that the proper ideal P is prime if and only if, for all all ideals I
and J ,

IJ ⊆ P & I * P =⇒ J ⊆ P.
Here

IJ = ({xy : x ∈ I & y ∈ J}).

Proof. The sufficiency of the given condition follows because

(xy) = (x)(y),

x ∈ P ⇐⇒ (x) ⊆ P.

For necessity, suppose P is prime, and IJ ⊆ P , but I * P . Then some
element x of I is not in P . For all y in J , we have xy ∈ IJ , so xy ∈ P ,
and therefore y ∈ P . Thus J ⊆ P .





Exercise . Given a commutative ring R with an ideal I, show that
every ideal of R/I is of the form J/I for some ideal J of I.

Proof. Say K is an ideal of R/I. Let J = {x ∈ R : x + I ∈ K}. For all
x, y, and r in R, if x+ I and y + I are in K, then

(x+ I)− (y + I) ∈ K, (r + I)(x+ I) ∈ K,

and therefore x− y ∈ J and rx ∈ J . Thus J is an ideal of R. Moreover,
since x + I ∈ K ⇐⇒ x ∈ J , and x ∈ J ⇐⇒ x + I ∈ J/I, we have
K = J/I.

Exercise . Let R be a commutative ring with proper ideal I.

(a) If R is an integral domain, must R/I be an integral domain?
(b) If R is a unique factorization domain (ufd) and R/I is an integral

domain, must R/I be a ufd?
(c) If R is a principal ideal domain (pid) and R/I is a unique factor-

ization domain, must R/I be a pid?
(d) If R is a field, must R/I be a field?

Note: Z[
√
−5] is not a ufd.

Exercise  (III..). If n ∈ N, find all prime ideals and all maximal
ideals of Zn.

Proof. By Exercise , Zn is a pid. Every ideal (k) of Zn is equal to (d),
where d = gcd(k, n): this is because the equation kx+ ny = d is soluble.
Thus every quotient of Zn is Zn/(d) for some divisor d of n; and this
quotient is isomorphic to Zd. This is an integral domain if and only if d
is prime, and in this case the domain is a field. Thus the prime ideals
of Zn are the ideals (p), where p is a prime factor of n; and these prime
ideals are all maximal.

Exercise  (III.., .).

(a) Prove the Binomial Theorem: In every commutative ring, for every
n in ω,

(x+ y)n =

n∑
i=0

(
n

i

)
xn−iyi,





where (
n

i

)
=

n!

i! · (n− i)!
.

(b) Let R be an integral domain with quotient field K. Thus, if a ∈ R
and b ∈ R r (0), then a/b ∈ K. Assume a/b is an element c of R,
and π is an irreducible of R such that π | a, but π - b. Can you
conclude that p | c?

(c) Let p be a prime number. If 0 < i < p, prove

p

∣∣∣∣ (pi
)
.

(d) Prove the indentity
(x+ y)p = xp + yp

in all commutative rings having characteristic p.
(e) Prove that x 7→ xp is an endomorphism of every commutative ring

having characteristic p.
(f) For all n in ω, prove that x 7→ xp

n

is an endomorphism of every
commutative ring having characteristic p.

(g) For all n in ω, prove the indentity

(x+ y)p
n

= xp
n

+ yp
n

in all commutative rings having characteristic p.
(h) If n ∈ N and 0 < i < pn, prove

p

∣∣∣∣ (pni
)
.

(i) Prove the irreducibility over Q of the polynomial

1 +X + · · ·+Xp−1.
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