Algebra I exercises

David Pierce

January 2, 2014 Matematik Bölümü Mimar Sinan Güzel Sanatlar Üniversitesi http://mat.msgsu.edu.tr/

Many exercises here are adaptations of exercises from Hungerford [3]. In that case, a reference is given.

The notation $\mathbb{N} = \{1, 2, 3, ...\}$ and $\omega = \{0, 1, 2, ...\}$ is used. If A and B are sets, then the set of functions from A to B is denoted by B^A .

Unless otherwise noted, the signature of groups is $\{e, ^{-1}, \cdot\}$. Thus, if \mathfrak{G} is a group, this means \mathfrak{G} is the structure $(G, e^{\mathfrak{G}}, ^{-1^{\mathfrak{G}}}, ^{\mathfrak{G}})$. Usually we can abbreviate this as $(G, e, ^{-1}, \cdot)$. This group is an expansion of the monoid (G, e, \cdot) and the semigroup (G, \cdot) .

Exercise 1 (I.1.2). If A is a set and \mathfrak{G} is a group, show that the set G^A expands to a group in which \cdot is given by

$$(f \cdot g)(x) = f(x) \cdot g(x).$$

Exercise 2 (I.1.3). (a) Find a set A and a subset B of A^A such that

- [i] B is closed under functional composition,
- [ii] B contains a right identity with respect to composition,
- [iii] every element of B has a left inverse with respect to this right identity, but
- [iv] the semigroup (B, \circ) does not expand to a group.

(b) Same problem, with "left" and "right" interchanged.

Exercise 3 (I.1.7). The Euclidean Algorithm is a way to find the greatest common divisor gcd(a, b) of two integers a and b, not both 0; it is established in the first two propositions of Book VII of Euclid's *Elements* [1]. By means of the algorithm, we can find integral solutions to the equation

$$ax + by = \gcd(a, b).$$

Given a positive integer n, we let $\mathbb{Z}/n\mathbb{Z}$ denote the set of congruenceclasses of integers *modulo* n. In the first section of his *Disquisitiones Arithmeticae* (published when he was 23), Gauss [2] shows in effect that

- the map taking an integer to its congruence-class is a bijection from $\{0, \ldots, n-1\}$ to $\mathbb{Z}/n\mathbb{Z}$, and
- the usual ring-structure on \mathbb{Z} induces a ring-structure on $\mathbb{Z}/n\mathbb{Z}$.

Let us take all of the foregoing as proved.

- (a) Prove **Euclid's Lemma** (which is Proposition VII.30 of the *Elements*): If p is prime, and $p \mid ab$, show that p divides a or b.
- (b) Show that n is prime if and only if the set Z/nZ \ {0} is closed under multiplication. (Of course 0 here means literally the set of multiples of n.)
- (c) If p is prime, show that the semigroup $(\mathbb{Z}/p\mathbb{Z}\smallsetminus\{0\},\cdot)$ expands to a group.

Exercise 4 (I.1.14). Let p be a prime number, and let $\mathbb{Z}/p\mathbb{Z} \setminus \{0\}$ be denoted by \mathbb{Z}_p^{\times} . We may identify this set with $\{1, \ldots, p-1\}$.

- (a) Prove that 1 and p-1 are the only solutions of $x^2 = 1$ in \mathbb{Z}_p^{\times} .
- (b) Prove (p-2)! = 1 in \mathbb{Z}_p^{\times} .
- (c) Obtain Wilson's Theorem, namely $(p-1)! \equiv -1 \pmod{p}$.
- (d) Let \mathfrak{G} be a finite group. Cauchy's Theorem is that, if |G| is a multiple of p, then G contains a nontrivial solution (that is, a solution other than e) of $x^p = e$. Prove this in case p = 2. (Use the idea of the proof of Wilson's Theorem. In fact our proof of Cauchy's Theorem is going to use a generalization of this idea.)

Exercise 5 (I.1.9). Let p be a prime.

(a) Show that $\{x/y : p \nmid y\}$ is the universe of a subgroup of $(\mathbb{Q}, +)$.

(b) Show that $\{x/p^n : n \in \omega\}$ is the universe of a subgroup of $(\mathbb{Q}, +)$.

Exercise 6 (I.1.11). (a) Show that each of the following conditions defines the same class of groups:

- [i] xy = yx (that is, the group is abelian).
- [ii] $(xy)^2 = x^2 y^2$.
- [iii] $(xy)^{-1} = x^{-1}y^{-1}$.
- [iv] $(xy)^n = x^n y^n$ for all n in \mathbb{Z} .
- $[v] \bigwedge_{i \in \mathcal{X}} (xy)^{n+i} = x^{n+i}y^{n+i} \text{ for some } n \text{ in } \mathbb{Z}.$
- (b) Show that possibly $(xy)^n = x^n y^n$ and $(xy)^{n+1} = x^{n+1} y^{n+1}$, although xy = yx may fail.

Exercise 7 (I.1.13). Every group satisfying the identity $x^2 = e$ is abelian.

Exercise 8 (I.1.15). Prove:

- (a) Every *finite* semigroup with left and right cancellation $(xy = xz \Rightarrow y = z \text{ and } yx = zx \Rightarrow y = z)$ expands to a group.
- (b) There is an infinite semigroup with left and right cancellation that does not expand to a group.
- **Exercise 9.** (a) Show that semigroup may have a left identity that is not a right identity.
 - (b) If a semigroup has a left identity and a right identity, show that they are equal.
 - (c) In a monoid, show that there is exactly one left identity, and this is a right identity.
 - (d) Find monoids \mathfrak{M} and \mathfrak{N} such that

 $(M, \cdot) \subseteq (N, \cdot),$ but $(M, \mathbf{e}, \cdot) \not\subseteq (N, \mathbf{e}, \cdot).$

(e) Find a chain $\mathfrak{M}_0 \subseteq \mathfrak{M}_1 \subseteq \mathfrak{M}_2 \subseteq \cdots$ of semigroups that expand to monoids, although the union $\bigcup_{k \in \omega} \mathfrak{M}_k$ does not.

Remark. This problem yields the following model-theoretic conclusions. A monoid is a structure (M, \mathbf{e}, \cdot) such that

• (M, \cdot) is a semigroup satisfying the axiom

$$\exists x \; \forall y \; (x \cdot y = y \land y \cdot x = y),$$

• e satisfies the formula

$$\forall y \ x \cdot y = y.$$

In this case e is the *only* element of M that satisfies this formula. Thus for every formula $\varphi(\vec{x})$ in the signature $\{e, \cdot\}$ of monoids, there is a formula $\varphi^*(\vec{x})$ in the signature $\{\cdot\}$ of semigroups such that every monoid satisfies

$$\forall \vec{x} \ (\varphi(\vec{x}) \Leftrightarrow \varphi^*(\vec{x})).$$

One obtains φ^* from φ by replacing every equation $e \cdot x = y$ with the formula $\exists z \ (z \cdot x = y \land \forall u \ z \cdot u = u)$, and so forth. However:

- Not every function from one monoid to another that is a homomorphism of semigroups is a homomorphism of monoids.
- The theory of semigroups that expand to monoids cannot be axiomatized by ∀∃ sentences.

Exercise 10 (I.2.9). If f is a homomorphism from a group \mathfrak{G} to a group \mathfrak{H} , and $\mathfrak{K} < \mathfrak{H}$, show that

- (a) $\operatorname{im}(f)$ is the universe of a subgroup of \mathfrak{H} (briefly, $\operatorname{im}(f) < H$),
- (b) $f^{-1}(K)$ is the universe of a subgroup of \mathfrak{G} (*i.e.* $f^{-1}(K) < G$),
- (c) $\ker(f)$ is the universe of a subgroup of \mathfrak{G} (*i.e.* $\ker(f) < G$),
- (d) f is injective if and only if $\ker(f) = \{e^{\mathfrak{G}}\}.$

Exercise 11 (I.2.2). Show that a group \mathfrak{G} is abelian if and only if the permutation $x \mapsto x^{-1}$ of G is an automorphism of \mathfrak{G} .

Exercise 12. In a monoid, show that, if an element has a left inverse and a right inverse, then these are equal.

Exercise 13. Let \mathbb{H} be the abelian group $\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$. We use the notation

$$(1,0,0,0) = 1, (0,1,0,0) = \mathbf{i}, (0,0,1,0) = \mathbf{j}, (0,0,0,1) = \mathbf{k}.$$

More generally, we let

$$\begin{aligned} &(x,0,0,0) = x, &(0,x,0,0) = x\mathbf{i}, \\ &(0,0,x,0) = x\mathbf{j}, &(0,0,0,x) = x\mathbf{k}. \end{aligned}$$

Thus every element (x, y, z, w) of \mathbb{H} can be written as $x + y\mathbf{i} + z\mathbf{j} + w\mathbf{k}$. We define a *multiplication* (that is, an operation that distributes in both senses over addition) by these rules:

$$\begin{split} \mathbf{i} \cdot x &= x\mathbf{i}, & \mathbf{j} \cdot x = x\mathbf{j}, & \mathbf{k} \cdot x = x\mathbf{k}, \\ \mathbf{i}^2 &= -1, & \mathbf{j}^2 = -1, & \mathbf{k}^2 = -1, \\ \mathbf{i} \cdot \mathbf{j} &= \mathbf{k}, & \mathbf{j} \cdot \mathbf{k} = \mathbf{i}, & \mathbf{k} \cdot \mathbf{i} = \mathbf{j}, \\ \mathbf{j} \cdot \mathbf{i} &= -\mathbf{k}, & \mathbf{k} \cdot \mathbf{j} = -\mathbf{i}, & \mathbf{i} \cdot \mathbf{k} = -\mathbf{j}. \end{split}$$

So now \mathbb{H} is a (possibly non-associative) ring.

- (a) Show that multiplication on H is associative, so that (H, 1, ·) is a monoid. There are several possible approaches to this, including the following. (So the real challenge of this problem is to find the most efficient approach to it.)
 - [i] One can show directly

$$((x_0 + x_1\mathbf{i} + x_2\mathbf{j} + x_3\mathbf{k}) \cdot (y_0 + y_1\mathbf{i} + y_2\mathbf{j} + y_3\mathbf{k})) \cdot \cdot (z_0 + z_1\mathbf{i} + z_2\mathbf{j} + z_3\mathbf{k}) = (x_0 + x_1\mathbf{i} + x_2\mathbf{j} + x_3\mathbf{k}) \cdot \cdot ((y_0 + y_1\mathbf{i} + y_2\mathbf{j} + y_3\mathbf{k}) \cdot (z_0 + z_1\mathbf{i} + z_2\mathbf{j} + z_3\mathbf{k})).$$

[ii] Letting $\mathbf{e}_0 = 1$, $\mathbf{e}_1 = \mathbf{i}$, $\mathbf{e}_2 = \mathbf{j}$, and $\mathbf{e}_3 = \mathbf{k}$, one can first observe that

$$\left(\left(\sum_{n<4} x_n \mathbf{e}_n\right) \cdot \sum_{n<4} x_n \mathbf{e}_n\right) \cdot \sum_{n<4} x_n \mathbf{e}_n$$
$$= \sum_{m<4} \sum_{n<4} \sum_{r<4} x_m y_n z_r \left((\mathbf{e}_m \cdot \mathbf{e}_n) \cdot \mathbf{e}_r\right)$$

and

$$\left(\sum_{n<4} x_n \mathbf{e}_n\right) \cdot \left(\left(\sum_{n<4} x_n \mathbf{e}_n\right) \cdot \sum_{n<4} x_n \mathbf{e}_n\right)$$
$$= \sum_{m<4} \sum_{n<4} \sum_{n<4} x_m y_n z_r \left(\mathbf{e}_m \cdot (\mathbf{e}_n \cdot \mathbf{e}_r)\right).$$

Also, the definition of multiplication is unaffected by the permutations (1 2 3) and (1 3 2) of the set $\{1, 2, 3\}$ of indices of the \mathbf{e}_n .

- [iii] One can observe $x + y\mathbf{i} + z\mathbf{j} + w\mathbf{k} = x + y\mathbf{i} + (z + w\mathbf{i}) \cdot \mathbf{j}$, and the elements $x + y\mathbf{i}$ can be considered as elements of the field \mathbb{C} . If now $z \in \mathbb{C}$, we have $\mathbf{j} \cdot z = \overline{z}\mathbf{j}$.
- [iv] As a ring, \mathbb{H} embeds in the associative ring of 2×2 matrices over \mathbb{C} under the map

$$x + y\mathbf{i} + z\mathbf{j} + w\mathbf{k} \mapsto \begin{pmatrix} x + y\mathbf{i} & z + w\mathbf{i} \\ -z + w\mathbf{i} & x - y\mathbf{i} \end{pmatrix}$$

[v] As a ring, \mathbb{H} embeds in the associative ring of 4×4 matrices over \mathbb{R} under the map

$$x + y\mathbf{i} + z\mathbf{j} + w\mathbf{k} \mapsto \begin{pmatrix} x & y & z & w \\ -y & x & -w & z \\ -z & w & x & -y \\ -w & -z & y & x \end{pmatrix}.$$

(b) The semigroup $(\mathbb{C} \smallsetminus \{0\}, \cdot)$ is a group because

$$(x+y\mathbf{i})(x-y\mathbf{i}) = x^2 + y^2,$$

so that (assuming $x + y\mathbf{i} \neq 0$)

$$(x+y\mathbf{i})\left(\frac{x}{x^2+y^2}-\frac{y}{x^2+y^2}\mathbf{i}\right)=1.$$

Find an operation $h \mapsto \overline{h}$ on \mathbb{H} such that

$$h \mapsto h \cdot \bar{h} \colon \mathbb{H} \setminus \{0\} \to \mathbb{R} \setminus \{0\}.$$

Then show that $(\mathbb{H} \setminus \{0\}, \cdot)$ is a group.

Remark. Consequently \mathbb{H} (as a structure in the signature $\{0, -, +, 1, \cdot\}$) is a **division ring.**

- **Exercise 14** (I.2.4). (a) Show that the elements (0 1 2 3) and (0 3) generate a subgroup, called Dih(4), of Sym(3) of order 8. One way to do this is to consider the given elements as permutations of the vertices of a square.
 - (b) Show that Dih(4) is not isomorphic to the subgroup Q_8 of $\mathbb{H} \setminus \{0\}$ generated by **i** and **j**.

Exercise 15 (I.2.12). Find all (a, b) in $\mathbb{Z} \oplus \mathbb{Z}$ such that, for some (c, d) in $\mathbb{Z} \oplus \mathbb{Z}$,

$$\mathbb{Z} \oplus \mathbb{Z} = \langle (a, b), (c, d) \rangle.$$

It may be useful to consider x(a, b) + y(c, d) as the matrix product

$$(x \ y) \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Then the information in Exercise 3 will be useful.

Exercise 16. In the most general sense, an **algebra** is a structure with no distinguished relations, but only operations. Suppose \mathfrak{A} is an algebra with universe A. A **congruence-relation** on \mathfrak{A} is an equivalence-relation \sim on A such that for all n in ω , for all distinguished n-ary operations f of \mathfrak{A} ,

$$x_0 \sim y_0 \wedge \cdots \wedge x_{n-1} \sim y_{n-1} \implies f(\vec{x}) = f(\vec{y}).$$

In this case there is an *n*-ary operation \tilde{f} on A/\sim given by

$$\hat{f}([x_0], \dots, [x_{n-1}]) = f(x_0, \dots, x_{n-1}).$$

(In particular, \tilde{f} exists automatically when n = 0.) If indeed \sim is a congruence-relation on \mathfrak{A} , then there is a quotient algebra \mathfrak{A}/\sim whose universe is A/\sim and whose distinguished operations are just these \tilde{f} .

Suppose ~ is a congruence-relation on a semigroup (G, \cdot) , so that there is an operation on G/\sim given by

$$[x][y] = [xy].$$

(a) Show that $(G, \cdot)/\sim$ is a semigroup.

- (b) If (G, \cdot) expands to a group, show that \sim is a congruence-relation on this group, and the quotient of the group by \sim is a group.
- (c) If $n \in \mathbb{N}$, we define \equiv on \mathbb{Z} by

$$x \equiv y \iff n \mid x - y$$

Show that \equiv is a congruence-relation on \mathbb{Z} as a ring. (This was taken for granted in Exercise 3.)

Exercise 17 (I.3.3). The only big theorem used by this exercise is the Lagrange Theorem, that the order of a subgroup divides the order of the group. Suppose G is a group of order pq, where p and q are distinct prime numbers. Prove the following.

- (a) If a and b are in G and $\operatorname{ord}(a) = p = \operatorname{ord}(b)$, then either $\langle a \rangle = \langle b \rangle$ or $\langle a \rangle \cap \langle b \rangle = \langle \rangle$.
- (b) G has an element of order p or q.
- (c) $G = \langle a, b \rangle$ for some a and b in G.
- (d) If G is abelian, then G is cyclic.
- **Exercise 18** (I.3.5, 9). (a) Find an infinite group generated by two elements, each of which has finite order. You can use the example of the subgroup of $Sym(\mathbb{C}^{\times})$ generated by the elements

$$\tau \mapsto \frac{-1}{\tau}, \qquad \qquad \tau \mapsto \frac{-1}{\tau+1}.$$

- (b) Show that no group as in (a) can be abelian.
- (c) Find an infinite group containing nontrivial elements of finite order, but generated by two elements, each having infinite order. You can let Z/2Z ⊕ Z be the group.

Exercise 19 (I.3.6). Given n in \mathbb{N} , describe all subgroups of $\mathbb{Z}/n\mathbb{Z}$. (What are their orders? What are their generators? Are they cyclic?)

Exercise 20 (I.4.2). Find all cosets (in terms of their elements) of $\langle (0 1) \rangle$ and of $\langle (0 1 2) \rangle$ in Sym(3).

Exercise 21 (I.4.5). Find all groups of order 4 (up to isomorphism). Lagrange's Theorem and Exercise 7 may be useful.

Exercise 22. An **automorphism** of a group is an isomorphism from the group to itself. The set of automorphisms of a group G can be denoted by Aut(G).

- (a) Show that $\operatorname{Aut}(G) < \operatorname{Sym}(G)$. (The first G is the group; the second, the set. Strictly one would write $\operatorname{Aut}(G, \cdot) < \operatorname{Sym}(G)$.)
- (b) Find $\operatorname{Aut}(\mathbb{Z}/4\mathbb{Z})$.
- (c) Find Aut $(\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z})$.

Exercise 23 (I.5.6). Show that there is a homomorphism $x \mapsto f_x$ from a group G to Aut(G) given by

$$f_x(y) = xyx^{-1}$$

Exercise 24 (I.5.7). If H < G, show that, under either of the following two conditions, $H \lhd G$.

- (a) H is finite and is the only subgroup of G of its order.
- (b) [G: H] is finite, and H is the only subgroup of G having this index in G.
- **Exercise 25** (I.5.10, 11). (a) Show that the relation \triangleleft of being a normal subgroup is not transitive. You can use subgroups of Dih(4) for an example.
 - (b) Show that if K < H and $H \lhd G$ and H is cyclic, then $K \lhd G$.

Exercise 26 (I.6.4). Show $Sym(n) = \langle (0 \ 1 \ \cdots \ n-1), (0 \ 1) \rangle$.

Exercise 27 (I.6.11). Find all normal subgroups of Dih(n).

Exercise 28. Suppose $(G_i : i \in I)$ is a family of groups, and for each i in $I, H_i \triangleleft G_i$. Show

$$\prod_{i \in I} H_i \lhd \prod_{i \in I} G_i, \qquad \qquad \prod_{i \in I} G_i / \prod_{i \in I} H_i \cong \prod_{i \in I} \frac{G_i}{H_i}.$$

Exercise 29 (I.9.3). For any set A, let F(A) be the free group on A. If $A \subseteq B$, show that $F(B)/\langle\langle A \rangle\rangle$ is a free group.

Exercise 30. Describe the groups

- (a) $\langle a, b \mid a^7, b^3, a^2 b a^6 b^2 \rangle$,
- (b) $\langle a, b \mid a^7, b^3, a^3 b a^6 b^2 \rangle$.

Exercise 31 (II.1.11). Show that (\mathbb{Q}^+, \cdot) is a free abelian group.

Exercise 32. How many nonisomorphic abelian groups have order p^n ?

Exercise 33 (II.4.9). If G is not abelian, then G/C(G) is not cyclic.

Exercise 34 (II.4.14). If p is a prime dividing |G|, and

$$1 < \frac{|G|}{p} \leqslant p,$$

then G is not simple.

Exercise 35 (II.5.11). In a simple group of order 168, how many elements have order 7?

Exercise 36.

- (a) Find the smallest nonabelian group.
- (b) Find the smallest nonabelian soluble group.
- (c) Find the smallest nonabelian soluble group that is not nilpotent.

Exercise 37 (II.7.8).

- (a) Find all n such that Dih(n) is nilpotent.
- (b) For such n, find the groups $C_k(Dih(n))$.
- (c) Find all m such that Dih(m) is soluble.
- (d) For such m, find the groups $(\text{Dih}(m))^{(k)}$.

Exercise 38. In a commutative ring, by definition, a proper ideal P is prime if and only if, for all x and y in the ring,

$$xy \in P \& x \notin P \implies y \in P.$$

Prove that the proper ideal P is prime if and only if, for all all ideals I and J,

$$IJ \subseteq P \& I \nsubseteq P \implies J \subseteq P$$

Here

$$IJ = (\{xy \colon x \in I \& y \in J\}).$$

Proof. The sufficiency of the given condition follows because

$$(xy) = (x)(y),$$
$$x \in P \iff (x) \subseteq P.$$

For necessity, suppose P is prime, and $IJ \subseteq P$, but $I \notin P$. Then some element x of I is not in P. For all y in J, we have $xy \in IJ$, so $xy \in P$, and therefore $y \in P$. Thus $J \subseteq P$.

Exercise 39. Given a commutative ring R with an ideal I, show that every ideal of R/I is of the form J/I for some ideal J of I.

Proof. Say K is an ideal of R/I. Let $J = \{x \in R : x + I \in K\}$. For all x, y, and r in R, if x + I and y + I are in K, then

$$(x+I) - (y+I) \in K, \qquad (r+I)(x+I) \in K,$$

and therefore $x - y \in J$ and $rx \in J$. Thus J is an ideal of R. Moreover, since $x + I \in K \iff x \in J$, and $x \in J \iff x + I \in J/I$, we have K = J/I.

Exercise 40. Let R be a commutative ring with proper ideal I.

- (a) If R is an integral domain, must R/I be an integral domain?
- (b) If R is a unique factorization domain (UFD) and R/I is an integral domain, must R/I be a UFD?
- (c) If R is a principal ideal domain (PID) and R/I is a unique factorization domain, must R/I be a PID?
- (d) If R is a field, must R/I be a field?

Note: $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.

Exercise 41 (III.2.21). If $n \in \mathbb{N}$, find all prime ideals and all maximal ideals of \mathbb{Z}_n .

Proof. By Exercise 40, \mathbb{Z}_n is a PID. Every ideal (k) of \mathbb{Z}_n is equal to (d), where $d = \gcd(k, n)$: this is because the equation kx + ny = d is soluble. Thus every quotient of \mathbb{Z}_n is $\mathbb{Z}_n/(d)$ for some divisor d of n; and this quotient is isomorphic to \mathbb{Z}_d . This is an integral domain if and only if d is prime, and in this case the domain is a field. Thus the prime ideals of \mathbb{Z}_n are the ideals (p), where p is a prime factor of n; and these prime ideals are all maximal.

Exercise 42 (III.1.11, 6.10).

(a) Prove the Binomial Theorem: In every commutative ring, for every n in ω ,

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i,$$

where

$$\binom{n}{i} = \frac{n!}{i! \cdot (n-i)!}.$$

- (b) Let R be an integral domain with quotient field K. Thus, if $a \in R$ and $b \in R \setminus (0)$, then $a/b \in K$. Assume a/b is an element c of R, and π is an irreducible of R such that $\pi \mid a$, but $\pi \nmid b$. Can you conclude that $p \mid c$?
- (c) Let p be a prime number. If 0 < i < p, prove

$$p \mid \begin{pmatrix} p \\ i \end{pmatrix}$$
.

(d) Prove the indentity

$$(x+y)^p = x^p + y^p$$

in all commutative rings having characteristic p.

- (e) Prove that $x \mapsto x^p$ is an endomorphism of every commutative ring having characteristic p.
- (f) For all n in ω , prove that $x \mapsto x^{p^n}$ is an endomorphism of every commutative ring having characteristic p.
- (g) For all n in ω , prove the indentity

$$(x+y)^{p^n} = x^{p^n} + y^{p^n}$$

in all commutative rings having characteristic p.

(h) If $n \in \mathbb{N}$ and $0 < i < p^n$, prove

$$p \mid \binom{p^n}{i}$$
.

(i) Prove the irreducibility over \mathbb{Q} of the polynomial

$$1 + X + \dots + X^{p-1}.$$

References

[1] Euclid. *Euclid's Elements*. Green Lion Press, Santa Fe, NM, 2002. All thirteen books complete in one volume, the Thomas L. Heath translation, edited by Dana Densmore.

- [2] Carl Friedrich Gauss. Disquisitiones Arithmeticae. Springer-Verlag, New York, 1986. Translated into English by Arthur A. Clarke, revised by William C. Waterhouse.
- [3] Thomas W. Hungerford. Algebra, volume 73 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1980. Reprint of the 1974 original.