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Part . Preface

As an undergraduate, I attended a college where Euclid and Apollonius were used as
textbooks. They were so used, not because they were considered to be the best textbooks,
but simply because they had been textbooks for countless generations of mathematicians:
therefore (the idea was), one might gain some understanding of humanity and oneself by
reading these books. (The same is true for Homer, Aeschylus, Plato, and the other great
books read at the college.)

Now, having become a professional mathematician, I ask what Euclid and Apollonius
have to offer the mathematician of today. It is in pursuit of an answer to this question
that I prepare these notes—which therefore are part of an ongoing project.

I prepare these notes also for the sake of honesty about what students are asked to
learn. The conic sections are a standard part of an elementary course of mathematics.
But the sections are usually given as the curves defined by certain equations, such as
ay = x2 or (x/a)2 ± (y/b)2 = 1. Or perhaps the curves are given in terms of foci and
directrices. A textbook may assert that the curves so defined can indeed by obtained as
sections of cones; but it is rare that this assertion is justified.

Date: December , .
St. John’s College, with campuses in Annapolis, Maryland, and Santa Fe, New Mexico, USA.
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One calculus textbook writes at the beginning of a section:

In this section we give geometric definitions of parabolas, ellipses, and
hyperbolas and derive their standard equations. They are called conic
sections, or conics, because they result from intersecting a cone with
a plane as shown in Figure .

I omit the book’s Figure . The text continues under the heading Parabolas:

A parabola is the set of points in a plane that are equidistant from
a fixed point F (called the focus) and a fixed line (called the direc-
trix). . . In the th century Galileo showed that the path of a projec-
tile that is shot into the air at an angle to the ground is a parabola.
Since then, parabolic shapes have been used in designing automobile
headlights, reflecting telescopes, and suspension bridges. . . We obtain a
particularly simple equation for a parabola if we place its vertex at the
origin O. . .

Is the parabola obtained from a cone, or is it obtained from a focus and a directrix? It
can be obtained in either way, but the author does not say so. The author need not
prove the equivalence of the two constructions; but at least he ought to state that he is
not going to prove it.

Perhaps the author expects the reader to infer the equivalence of the two definitions
of a parabola. But this is not like the author, who is otherwise eager to give the reader
every assistance that he can think of. He apparently does not think the reader can be
left to infer that parabolas are worth studying. Before concluding anything from the
definition, the author feels the need to tell the reader how useful parabolas are.

Another textbook follows a similar procedure, first defining the conic sections as
such, then defining them in terms of foci and directrices. Between the two definitions,
the writer observes that the intersection of a cone and a plane will be given by a second-
degree equation. This suggests that the quadratic equations to be derived presently in
the book may indeed define conic sections. However, no attempt is made to prove that
every curve defined by a quadratic equation can be obtained as the section of a cone.
The author observes:

After straight lines the conic sections are the simplest of plane curves.
They have many properties that make them useful in applications of
mathematics; that is why we include a discussion of them here. Much
of this material is optional from the point of view of a calculus course,
but familiarity with the properties of conics can be very important in
some applications. Most of the properties of conics were discovered by
the Greek geometer, Apollonius of Perga, about  BC. It is remark-
able that he was able to obtain these properties using only the tech-
niques of classical Euclidean geometry; today most of these properties
are expressed more conveniently using analytic geometry and specific
coordinate systems.

James Stewart, Calculus, fifth edition, p. . This text is currently in use at Middle East Technical
University.

Robert A. Adams, Calculus: a complete course, fourth edition, p. . This text was formerly used
at METU.
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Again, the justification offered for the study of the conic sections is their usefulness. But
as for ‘expressing’ the properties of conic sections, which of the following expresses better
what a conic section is?

(i) It is the intersection of a cone and a plane.
(ii) It is the intersection of two surfaces defined by equations ax + by + cz + d = 0

and (x − ez)2 + y2 = fz2 respectively.

What the author means, I think, is that it is convenient to define certain curves analyti-
cally and obtain their properties by further analysis. But showing that those curves are
conic sections is a whole other problem, not addressed in the book.

By the way, despite what the last quotation suggests, I am not sure that obtaining nice
results with limited mathematical tools is remarkable in itself. The tools of an artisan
depend on what is available in the physical environment; but the tools of a mathematician
depend only on imagination. A mathematician without the imagination to come up with
the best tool for the job would seem to be an unremarkable mathematician.

The first chapter of Hilbert and Cohn-Vossen’s Geometry and the Imagination []
contains a beautiful account of how various properties of the conic sections arise from
consideration of the cones from which the sections are obtained. However, the cones
considered by the authors are all right cones. Apollonius does not make this restriction.
Hilbert and Cohn-Vossen give an etymology for the names of the ellipse, the hyperbola,
and the parabola: it involves eccentricity. The etymology is plausible, but it appears to
be literally incorrect, as a reading of Book I of Apollonius would show.

Mathematics reveals underlying correspondences between seemingly dissimilar things.
Sometimes we treat these correspondences as identities. This can be a mistake. There is
a correspondence between conic sections and quadratic equations. But are the sections
really the equations? One cannot answer the question without considering conic sections
as such.

Part . Introduction

Some time in the rd century b.c.e., Apollonius of Perga wrote eight books on conic
sections. We have the first four books [, ] in the original Greek; the next three books
survive in Arabic translation []; the eighth book is lost.

As Apollonius tells us in an introductory letter, his first four books are part of an
elementary course on the conic sections. The present notes are for use in such a course.

Before Apollonius, around  b.c.e., Euclid published the thirteen books of the
Elements, a work of mathematics of which some of the parts could well be used as a
textbook today. The Elements provide a good example of mathematical exposition and
of what it means to prove something.

Apollonius assumes some of the concepts and theorems found in Euclid. Before getting
into Apollonius then, I shall in §  have a look at the Elements, and specifically at the
theory of proportion developed there.

Before that, in §§  and , I look at some general features of ancient mathematics as
I understand it. Meanwhile, in § , I jump forward in history to Descartes, in order to
have in mind the sorts of improvements that he thought he was making to mathematical
practice.
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Because I shall occasionally refer to some Greek words, I review the Greek alphabet
in Table . (I have heard a rumor that students can improve their mathematics simply

Α α alpha Η η ēta Ν ν nu Τ τ tau
Β β beta Θ θ theta Ξ ξ xi Υ υ upsilon
Γ γ gamma Ι ι iota Ο ο omicron Φ φ phi
∆ δ delta Κ κ kappa Π π pi Χ χ chi
Ε ε epsilon Λ λ lambda Ρ ρ rho Ψ ψ psi
Ζ ζ zeta Μ µ mu Σ σ,ς sigma Ω ω ōmega

Table . The first letter or two of the (Latin) name for a Greek letter
provides a transliteration for that letter. However, upsilon is also translit-
erated by y. The diphthong αι often comes into English (via Latin) as ae,
while οι may come as oe. The second form of the small sigma is used at
the ends of words. In texts, the rough-breathing mark (`) over an initial
vowel (or ρ) is transcribed as a preceeding (or following) h (as in Ð ·όµβος
ho rhombos ‘the rhombus’). The smooth-breathing mark (') and the three
tonal accents (ά, ©, ¦) can be ignored. Especially in the dative case (the
Turkish -e hali), some long vowels may be given the iota subscript (v, V,
J), representing what was once a following iota (αι, ηι, ωι).

by learning this alphabet, assuming they didn’t grow up knowing it.)

. Theorems and problems

The text of Apollonius as we have it consists almost entirely of theorems and problems.
There are some introductory remarks, some definitions, but nothing else. The theorems
and problems can be analyzed in a way described by Proclus, in the fifth century c.e.,

in his commentaries on Euclid [, p. ]:

Every problem and every theorem that is furnished with all its parts
should contain the following elements: an enunciation (πρότασις), an
exposition (�κθεσις), a specification (διορισµός), a construction (κατα-
σκευή), a proof (¢πόδειξις), and a conclusion (συµπέρασµα). Of these,
the enunciation states what is given and what is being sought from it,
for a perfect enunciation consists of both these parts. The exposition
takes separately what is given and prepares it in advance for use in
the investigation. The specification takes separately the thing that is
sought and makes clear precisely what it is. The construction adds
what is lacking in the given for finding what is sought. The proof draws
the proposed inference by reasoning scientifically from the propositions
that have been admitted. The conclusion reverts to the enunciation,
confirming what has been proved.

Proclus was born in Byzantium (Constantinople, İstanbul), but his parents were from Lycia (Likya),
and he was educated first in Xanthus. He moved to Alexandria, then Athens, to study philosophy [,
p. xxxix].
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So many are the parts of a problem or a theorem. The most essential
ones, and those which are always present, are enunciation, proof, and
conclusion.

More is said in §  about the distinction between a theorem and a problem. In § ,
I label the parts of a theorem with the terminology of Proclus. But what I present in
§  are merely enunciations in the sense of Proclus. They do not use any special math-
ematical notation, although they may involve technical terms. Sometimes I incorporate
the definitions of technical terms in these enunciations. While each of Apollonius’s own
enunciations tends to consist of a single long sentence, I use several sentences. So these
notes should not be considered as an English translation of Apollonius. The point here
is to do mathematics, not history.

. Synthesis and analysis

We may however be aided in our own mathematics by trying to understand how others
have done it. It may be said that we are going to do pre-Cartesian mathematics:
mathematics as done before (well before) the time of René Descartes (–).

The geometry pioneered by René Descartes is called analytic geometry; by contrast,
the geometry of ancient mathematicians like Euclid and Apollonius is sometimes called
synthetic geometry. But what does this mean? The word synthetic comes from
the Greek συνθετικός, meaning skilled in putting together or constructive. This Greek
adjective derives from the verb συντίθηµι put together, construct (from συν together and
τίθηµι put). The word analytic is the English form of ¢ναλυτικός, which derives from
the verb ¢ναλύω undo, set free, dissolve (from ¢να up, λύω loose). Although we refer
to ancient geometry as synthetic, the Ancients evidently recognize both analytic and
synthetic methods. Around  c.e., Pappus of Alexandria writes [, p. ]:

Now analysis (¢νάλυσις) is a method of taking that which is sought as
though it were admitted and passing from it through its consequences
in order to something which is admitted as a result of synthesis; for in
analysis we suppose that which is sought to be already done, and we
inquire what it is from which this comes about, and again what is the
antecedent cause of the latter, and so on until, by retracing our steps, we
light upon something already known or ranking as a first principle; and
such a method we call analysis, as being a reverse solution (¢νάπαλιν
λύσις).

But in synthesis (συνθέσις), proceeding in the opposite way, we sup-
pose to be already done that which was last reached in the analysis,
and arranging in their natural order as consequents what were formerly
antecedents and linking them one with another, we finally arrive at the
construction of what was sought; and this we call synthesis.

Now analysis is of two kinds, one, whose object is to seek the truth,
being called theoretical (θεωρητικός), and the other, whose object is
to find something set for finding, being called problematical (προβλη-
µατικός).
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This passage is not very useful without examples: I shall propose one presently. Mean-
while, I note by the way that Pappus elsewhere [, pp. –] says more about the
distinction between theorems and problems:

Those who favor a more technical terminology in geometrical research
use problem (πρόβληµα) to mean a [proposition] in which it is pro-
posed to do or construct [something]; and theorem (θεώρηµα), a [propo-
sition] in which the consequences and necessary implications of certain
hypotheses are investigated; but among the ancients some described
them all as problems, some as theorems.

What really distinguishes Cartesian geometry from what came before is perhaps sug-
gested by the first sentence of Descartes’s Geometry [, p. ]:

Any problem in geometry can easily be reduced to such terms that a
knowledge of the lengths of certain straight lines is sufficient for its
construction.

From a straight line, Descartes abstracts something called length. A length is something
that we might today call a positive real number.

Descartes takes the edifice of geometry that has been built up or ‘synthesized’ over the
centuries, and reduces or ‘analyzes’ its study into the manipulation of numbers. To be
more precise, he ‘takes that which is sought as though it were admitted’ in the following
way. In Figure , straight lines BE, DR, and FS are given in position (meaning their

A B

C

D

E

F

R

S

Figure 

endpoints themselves are not fixed); and the sizes of angles ABC, ADC, and CFE are
given. It is required to find the point C so that the rectangle with sides BC and BD

Ivor Thomas [, p. ] uses inquiry here in his translation; but there is no word in the Greek
original corresponding to this or to proposition.
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has a given ratio to the square on CF . (This is a simplified version of the problem that
Descartes takes up in the Geometry.)

In his analytic approach, Descartes assumes that C has already been found, as in the
figure. We denote AB by x, and BC by y. The ratio AB : BR is given; call it z : b.
Then

RB =
bx

z
, CR = y +

bx

z
=

zy + bx

z
.

But CR : CD is given; call it z : c. Then

CD =
czy + bcx

z2
.

Also AE is given; call it k. And let BE : BS = z : d. Then

BE = k + x, BS =
dk + dx

z
, CS =

zy + dk + dx

z
.

Finally, if CS : CF = z : e, then

CF =
ezy + dek + dex

z2
.

So it is given that the ratio

y ·
czy + bcx

z2
:

(

ezy + dek + dex

z2

)

2

is constant. This gives us a quadratic equation in the unknowns x and y.
Descartes’s method does not use explicitly drawn axes with respect to which x and y

are measured. Also, the straight lines called x and y are not required to be perpendicular:
they are merely not parallel.

Through analysis, we have found an equation that determines the point C. Since the
equation is quadratic, the point C lies on a curve known as a conic section. When there
are more straight lines in the problem, then the resulting equation may have a higher
degree.

We do not get any sense here for what the curve of C looks like. We might get some
sense by analyzing the equation for C. Apollonius will give us a sense for what conic
sections look like by showing how they are related to the cones that they come from.

. Conversational implicature

One apparent difference between the ancient and modern approaches to mathematics
may result from a modern habit that is exemplified in a Russian textbook of the Soviet
period [, pp.  f.]:

The student of mathematics must at all times have a clear-cut under-
standing of all fundamental mathematical concepts. . . The student will
also recall the signs of weak inequalities: 6 (less than or equal to) and >

(greater than or equal to). The student usually finds no difficulty when
using them in formal transformations, but examinations have shown
that many students do not fully comprehend their meaning.

To illustrate, a frequent answer to: “Is the inequality 2 6 3 true? ” is
“No, since the number 2 is less than 3.” Or, say, “Is the inequality 3 6 3
true? ” the answer is often “No, since 3 is equal to 3.” Nevertheless,
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students who answer in this fashion are often found to write the result
of a problem as x 6 3. Yet their understanding of the sign 6 between
concrete numbers signifies that not a single specific number can be sub-
stituted in place of x in the inequality x 6 3, which is to say that the
sign 6 cannot be used to relate any numbers whatsoever.

The students referred to, who will not allow that 2 6 3, are following a habit of ordinary
language, whereby the whole truth must be told. According to this habit, one does not
say 2 6 3, because one can make a stronger, more informative statement, namely 2 < 3.
This habit would appear to be an instance of conversational implicature: this is the
ability of people to convey or implicate statements that are not logically implied by their
words [, ch. , §, pp. –]. In saying A or B [is true], one usually ‘implicates’ that
one does not know which is true.

This habit of implicature may be reflected in the ancient understanding, according to
which one (�ν) is not a number (¢ριθµός). In Book VII of the Elements, Euclid somewhat
obscurely defines a unit (µονάς) as that by virtue of which each being is called ‘one’.
(This English version of the definition is based on the Greek text supplied in [, Vol. ,
p.].) Then a number is defined as a multitude (πλÁθος) composed of units. In
particular, a unit is not a number, because it is not a multitude: it is one. Euclid does
not bother to state explicitly this distinction between units and numbers, but it can be
inferred, for example, from his presentation of what we now call the Euclidean algorithm.
Proposition VII. of the Elements involves a pair of numbers such that the algorithm,
when applied to them, yields a unit (µονάς). Then this unit is not considered as a greatest
common divisor of the numbers; the numbers do not have a greatest common divisor;
the numbers are simply relatively prime. If the numbers are not relatively prime, then
the same algorithm yields their greatest common divisor. This observation appears to
be the contrapositive of the first, but Euclid distinguishes it as Proposition VII. of the
Elements.

Conversational implicature may be seen in Apollonius’s treating of the circle as differ-
ent from an ellipse.

. Lines

I follow the old understanding whereby a line need not be straight. A line may have
endpoints, or it may be, for example, the circumference of a circle. Indeed, according to
the definition in Euclid’s Elements [, , ],

A circle is a plane figure contained by one line such that all the straight
lines falling upon it from one point among those lying within the figure
are equal to one another.

A straight line does have endpoints; but the straight line may be produced (extended)
beyond these endpoints, as far as desired.

. Magnitudes and proportions

The things with size are magnitudes. These may be straight lines; they may be
plane figures like rectangles; they may perhaps be other things (solids, angles, . . . ).
With Descartes, we freely turned straight lines into numbers, with which we could do
arithmetic. Henceforth, I want to be more careful. Here I shall attempt to suggest a



CONIC SECTIONS AS SUCH (SECOND DRAFT ) 

theory of magnitudes based what is found in Books V and VI of Euclid. However, I
shall use modern terminology, with abbreviative notation that is apparently foreign to
Euclid’s style.

The class of magnitudes is equipped with a binary relation, which I shall denote by
<, so that A < B is to be read as ‘A is less than B’.

Axiom . The relation < is a strict partial ordering: we never have A < A; we never
have both A < B and B < A; but if A < B, and B < C, then A < C.

The reflexive partial ordering corresponding to < is 6. That is, A 6 B if and only if
A < B or A = B. I shall refer to this relation as inclusion.

Let us say that two magnitudes are comparable if they are equal, or if one is less
than the other. Let us denote the relation of comparability by ∼.

Theorem . Comparability of magnitudes is an equivalence: always A ∼ A; if A ∼ B,
then B ∼ A; if A ∼ B and B ∼ C, then A ∼ C.

On every class of comparable magnitudes, there is an operation of addition, which
we may denote by +. If A ∼ B, then the two magnitudes have a sum, A + B.

Axiom . On every class of comparable magnitudes, addition is associative and commu-
tative: A + (B + C) = (A + B) + C, and A + B = B + A.

Axiom . If A ∼ B, then A < A + B.

Axiom . If A < B and A ∼ C, then (B ∼ C and) A + C < B + C.

Theorem . If A + B = A + C, then B = C.

Axiom . If A < B, then there is C such that A + C = B.

By Theorem  then, if A < B, then there is exactly one magnitude C such that
A + C = B. We may write C as B − A, calling it the excess of B over A.

If two magnitudes are comparable, then it may happen that the lesser measures the
greater. If A measures B, let us denote this by A | B. In this case, we may say that B
is a multiple of A.

Axiom . Measurement is a reflexive partial order.

Axiom . Measurement refines inclusion: if A | B, then A 6 B.

It is not clear (to me) whether Euclid allows a magnitude to be a multiple of itself;
but he does allow a magnitude to measure itself: see his Proposition X..

Axiom . A | A.

Axiom . If A | B, then A | A + B.

Axiom . If A ∼ B, then there is C such that B | C and A < C.

We need not talk about how many times a magnitude measures another; but we need
to be able to say whether A measures B as many times as C measures D. If it does, I
propose to write

A | B : : C | D;

we may say also, with Euclid, that B and D are equimultiples of A and C. Implicit in
this notation is that, if A | B : : C | D, then A | B.
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Axiom .

(i) If A | B, then A | B : : A | B.
(ii) A | B : : C | D if and only if C | D : : A | B.
(iii) If A | B : : C | D and C | D : : E | F , then A | B : : E | F .

Axiom . Suppose A | B : : C | D. then A < C if and only if B < D.

Theorem . Suppose A | B : : C | D. Then A = C if and only if B = D.

Axiom . If A | B, and D is arbitrary, then there are magnitudes C and E such that
A | B : : C | D and A | B : : D | E.

In Propositions V., , and , Euclid offers proofs of the following three axioms.

Axiom . If A | B : : C | D, then A | B : : A + C | B + D.

Axiom . If A | B : : D | E and A | C : : D | F , then A | B + C : : D | E + F .

Axiom . If A | B : : D | E and B | C : : E | F , then A | C : : D | F .

The quaternary relation of equimultiplicity is a special case of proportion, which we
can now define. This relation holds amongst the magnitudes A, B, C, and D, and we
write

A : B : : C : D,

saying ‘A is to B as C is to D,’ or ‘A has the same ratio to B that C has to D,’ provided
A ∼ B and C ∼ D, and moreover, whenever A | E : : C | F and B | G : : D | H, we have

E < G if and only if F < H.

Theorem . Having the same ratio is an equivalence, that is:

(i) If A ∼ B, then A : B : : A : B.
(ii) A : B : : C : D if and only if C : D : : A : B.
(iii) If A : B : : C : D and C : D : : E : F , then A : B : : E : F .

Here are Euclid’s next three propositions (V., , and ):

Theorem . If A : B : : C : D and A | E : : C | F and B | G : : D | H, then
E : G : : F : H.

Proof. Suppose A : B : : C : D and A | E : : C | F and B | G : : D | H. Let E | K : : F | L
and G | M : : H | N . By Axiom , we have A | K : : C | L and B | M : : D | N . By
definition of proportionality, we have K < M if and only if L < N . Therefore, by this
definition again, E : G : : F : H. ¤

How can this theory of proportion be used to prove the proportionality of corresponding
sides of similar triangles? The following theorems are found in Euclid. I state them in
my own words, and analyze the first theorem according to the terminology of Proclus
given in § . That part which is labelled ‘theorem’ is just the enunciation.

Theorem  (Elements I.). If two parallelograms have a common base, and the sides
opposite this base are part of a common straight line, then the parallelograms are equal.

Exposition. Suppose ABCD and ABEF are parallelograms, with the common base AB,
such that the sides CD and EF lie in a common straight line.
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A B

CD EF

Specification. Then ABCD is equal to ABEF .

Construction. We may assume that C and F are on the same side of D. If C is between
D and F , then let G be the intersection of AF and BC.

A B

CD EF

G

Proof. The triangle ADF is equal to BCE. If C is not between D and F , then ABEF
is obtained from ABCD by removing triangle ADF and adding the equal triangle BCE.
On the other hand, if C is between D and F , then the quadrilaterals ADCG and BEFG
are equal, being obtained from the equal triangles ADF and BCE respectively be sub-
traction of the common triangle CFG. Then ABEF is obtained from ABCD by remov-
ing the quadrilateral ADCG and adding the equal quadrilateral BEFG. ¤

Conclusion. Therefore, if two parallelograms have a common base, and the sides opposite
this base are part of a common line, then the parallelograms are equal.

The conclusion repeats the enunciation. The construction is not always needed, even
in principle. Henceforth I shall follow the usual custom of treating what is not part of
the enunciation as part of the proof. I omit some proofs, as being clear from the picture.

Theorem  (I.). A diagonal divides a parallelogram into two equal triangles.

A B

CD

Proof. Let ABCD be a parallelogram, with diagonal AC. Then angle BAC equals angle
ACD, and angle BCA equals angle CAD, and the side AC is common: so triangle ABC
equals triangle CDA. ¤

Theorem  (I.). Parallelograms between the same parallel straight lines and with equal
bases are equal.
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D H C G

A B E F

Proof. Let ABCD and EFGH be parallelograms such that the bases AB and EF are
equal and are part of the same straight line; and suppose CD and GH are in the same
straight line. Draw the straight lines CF and DE. Then CDEF is a parallelogram equal
to both ABCD and EFGH, by Theorem . ¤

Theorem  (VI.). Parallelograms drawn between the same parallel straight lines are to
one another as their bases.

D HC G

A B E FK

L

Proof. Suppose ABCD and EFGH are parallelograms such that the bases AB and EF
are part of the same straight line, and also CD and GH are in the same straight line.
We may assume that EF is greater than AB. Between E and F , let K be chosen so
that EF is equal to AB. Through K, a straight line drawn parallel to EH meets GH at
a point L. Then parallelograms ABCD and EKLH are equal. And EFGH is greater
than EKLH; therefore it is greater than ABCD. In short, for parallelograms between
the same parallels, the parallelogram with the greater base is the greater. A multiple
of ABCD is equal to another parallelogram between the same parallels; likewise for a
multiple of EFGH; and the greater multiple corresponds to the greater base. Therefore
ABCD is to EFGH as AB is to EF . ¤

Theorem  (VI.). Triangles drawn between the same parallel straight lines are to one
another as their bases.

D HC G

A B E F

Proof. Let ABC and EFG be triangles whose bases AB and EF are in a straight line,
and whose apices C and G are in a straight line DG parallel to the bases. Through A
draw straight line AD parallel to BC and meeting DG at D; likewise, through E, draw
straight line EH parallel to FG and meeting DG at H. Then parallelograms ABCD and
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EFGH are to one another as their bases AB and EF , which are the bases of ABC and
EFG; and these triangles are half of the corresponding parallelograms, by Theorem .
Therefore the triangles are to one another as their bases. ¤

Theorem  (VI.). A straight line drawn parallel to the base of a triangle cuts the two
sides in proportion.

A B

C

D E

Proof. Let ABC be a triangle, and on sides AC and BC respectively let D and E be
chosen so that DE is parallel to BC. Let straight lines AE and BD be drawn. Then
triangles ADE and BDE are equal, by Theorem . Add to these the common part
CDE: then the triangles ACE and BCD are equal. Therefore CD is to CA as CDE
is to ACE, that is, as CDE is to BCD. But also CDE is to BCD as CE is to CB.
Therefore CD is to CA as CE is to CB. Hence also CD is to DA as CE is to EB. ¤

Theorem  (VI.). If two triangles have corresponding angles equal, then the triangles
are to one another as their corresponding sides.

Part . Conic Sections

. Definitions

A cone (κîνος) has, and is determined by:

(i) a base (βάσις), which is a circle;
(ii) an apex (κορυφής), which is a point not in the plane of the base.

Indeed, the base and the apex determine a conic surface (κωνικ¾ �πιφάνεια): this com-
prises every point of every straight line that passes through both the apex and the
circumference of the base. One conceives of the cone as obtained by taking a straight
line from the apex to the circumference of the base, then moving the line around this
circumference. The cone itself is the solid figure bounded by the base and the conic
surface.

The straight line through the apex and the center of the base is the axis (¥ξων) of the
cone. If this is perpendicular to the base, then the cone is right (ορθός); otherwise, the
cone is oblique (σκαληνός). We shall work with arbitrary cones: they may be right or
oblique.

A conic surface really comprises two surfaces, on opposite sides of the apex. We shall
just call these opposite surfaces. Each of these has an inside and an outside.
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. Propositions

Proposition . Pick a point on a conic surface. Draw a straight line from the apex to
this point. Then this line lies on the conic surface.

Proposition . Pick one of two opposite surfaces. Pick two points on it. Join them
with a straight line. Either this line falls within the surface, and outside when produced;
or else, when produced, the straight line meets the apex.

Proposition . Let a cone be cut by a plane that contains the apex. The resulting
section of the cone is a triangle. If the cutting plane contains the axis of the cone, then
the section is called an axial triangle.

Proposition . Let either of two opposite surfaces be cut by a plane parallel to the base
of the cone. The resulting section is the circumference of a circle. This circle is the base
of a new cone with the same apex and axis as the original cone.

Proposition . In an oblique cone, suppose an axial triangle is perpendicular to the
base. (How is this possible?) Cut the cone by a plane that:

(i) is not parallel to the base, but
(ii) is perpendicular to the axial triangle, and
(iii) cuts off from the axial triangle, on the side of the apex, another triangle.

This new triangle may still be similar to the axial triangle, while lying ‘subcontrariwise’
to it (about the apex). In this case, the section of the cone is a circle. This section may
be called a subcontrary section.

In a cone, suppose a particular axial triangle is chosen. In the base of the cone, suppose
a straight line is drawn perpendicular to the base of the axial triangle. Straight lines
drawn parallel to this straight line will be said to be drawn ordinate-wise.

Henceforth, cones will implicitly have distinguished axial triangles.

Proposition . On the surface of a cone, pick a point that is not on a side of the axial
triangle. From this point, draw a straight line ordinate-wise towards the axial triangle.
This straight line will meet the conic surface again, on the other side of the axial triangle;
and the axial triangle will bisect the straight line between the two points on the conic
surface.

In the plane of the base of a cone, let a straight line be drawn perpendicular to the
base of the axial triangle, or to this base produced. Let a plane containing this straight
line cut the cone. This plane cuts the conic surface in a line called a conic section.

Proposition . Choose a point on a conic section that is not on the axial triangle. A
straight line drawn ordinate-wise from this point meets the conic section again. The
resulting chord of the conic section is bisected by the axial triangle. The intersection of
the axial triangle and the plane of the conic section is therefore a diameter of the conic
section. A point where the diameter meets the conic section is a vertex of the section.
A straight line drawn ordinatewise from the conic section to the diameter is an called an
ordinate. So an ordinate meets the diameter at some point. The part of the diameter
between this point and a vertex is the corresponding abscissa (Latin: [line] cut off ). In
a right cone, ordinates are perpendicular to abscissas. In an oblique cone, they are not,
unless the axial triangle is perpendicular to the base of the cone.
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Proposition . Suppose the diameter of a conic section, when extended beyond a vertex,
meets the extension of a side of the axial triangle beyond the apex. Then, for every
straight line, there is an abscissa equal to that straight line. The same is true if the
diameter is parallel to a side of the axial triangle.

Proposition . Suppose a conic section has two vertices. If the plane of the conic
section is not parallel to the base of the cone, and if the conic section is not subcontrary,
then the conic section is not a circle.

Proposition . A chord of a conic section falls inside the section (that is, inside the
conic surface of which the section is a section); produced, the chord falls outside.

Proposition . Suppose the diameter of a conic section is parallel to a side of the
axial triangle. From the vertex of the conic section, we shall draw a certain straight
line perpendicular to the plane of the conic section. This straight line will be called the
upright side (Ñρθία πλευρά; in Latin, latus rectum). It is drawn so as to have the same
ratio to the part of the side of the axial triangle between the vertex of the conic section
and the apex of the triangle that the square on the base of the axial triangle has to the
rectangle whose sides are the sides of the axial triangle. The square on any ordinate is
then equal to the rectangle whose sides are the abscissa and the upright side. The conic
section is therefore called a parabola (παραβολή juxtaposition, comparison, application,
from the verb παραβάλλω throw beside, from παρά beside, βάλλω throw.)

Proposition . Suppose the diameter of a conic section, produced, meets a side of
the axial triangle produced beyond the apex. The segment of the diameter produced,
between the two points where it meets the sides of the axial triangle, is the transverse
side of the conic section. An upright side is constructed, as for the parabola; but now the
upright side is to the transverse side as a certain square is to a certain rectangle. Namely,
the square is on the straight line drawn from the apex of the cone to the base, parallel to
the diameter of the conic section; this straight line cuts the base into two segments, and
these are the sides of the rectangle. Then the square on an ordinate exceeds the rectangle
whose sides are the abscissa and the upright side: the excess is the rectangle whose base
is the abscissa, and whose height is to its base as the upright side of the conic section
is to its transverse side. The conic section is therefore called a hyperbola (Øπερβολή
excess, pre-eminence, throwing beyond, from Øπερβάλλω throw beyond).
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