
Introduction to Model-Theory

and Mathematical Logic

David Pierce

2006.01.03

Preface

These notes started out as transcriptions of lectures given for Math 406, ‘Intro-
duction to Mathematical Logic and Model-theory’, at METU in 2004. I have
expanded on some points and rearranging some topics.

I assume that the reader already knows something of certain topics, as covered
in Math 111, ‘Fundamentals of Mathematics’:

(∗) formal logic (predicate and first-order);

(†) sets, relations, and functions;

(‡) induction and recursion on the set of natural numbers.

In writing these notes, I attempt to distinguish notationally between constants
and variables. However, what is a constant in one context is a variable in
another.

In a tradition at least as old as Descartes’s Geometry [4], originally published
in French in 1637), letters from the beginning of the Latin alphabet stand for
known quantities; letters from the end, unknown. Hence, if we are asked to
solve the equation

ax2 + bx+ c = 0, (1)

we know that we are expected to come up with the equation

x =
−b±

√
b2 − 4ac

2a
,

rather than, say,

a = −bx+ c

x2
.

In Equation (1), the letters a, b, and c, are understood to stand for particular
numbers; the letter x does not stand for a particular number, but for the ‘possi-
bility’ of a number. Grammatically, Equation (1) is ‘incomplete’ or ‘elliptical’.
The equation might stand for the instructions,

Find every number d such that Equation (1) becomes a true state-
ment when d replaces x.

Alternatively, the equation stands for the set

{x : ax2 + bx+ c = 0}, (2)

whose members would be obtained by following the instructions.

i

ii

The expression on Line (2) is grammatically a noun. It represents a sort of
‘completion’ of Equation (1) by means of an additional use of the letter x. A
different letter, such as z, could be used in place of x in Line (2) without changing
the set indicated. Such an observation identifies the letter x in Equation (1) as
a variable.

Contents

1 Introduction 1

1.0 Building-blocks . 1

1.1 Structures . 3

1.2 Propositional logic . 5

1.3 Syntax and semantics . 8

2 Propositional model-theory 11

2.0 Propositional formulas . 11

2.1 Induction . 14

2.2 Recursion . 16

2.3 Syntactic entailment . 20

2.4 Notation . 22

2.5 Theorems . 24

2.6 Logical entailment . 26

2.7 Compactness . 29

2.8 Generalizations . 31

2.9 Completeness . 32

3 First-order logic 35

3.1 Terms . 35

3.2 Formulas . 39

3.3 Logical consequence . 44

3.4 Additional exercises . 47

4 Quantifier-elimination 48

iii

iv CONTENTS

5 Relations between structures 53

5.1 Fundamental definitions . 53

5.2 Additional definitions . 54

5.3 Implications . 55

5.4 Categoricity . 57

6 Compactness 60

6.1 Additional exercises . 66

7 Completeness 67

7.1 Logic in general . 67

7.2 Propositional logic . 69

7.3 First-order logic . 70

7.4 Tautological completeness . 71

7.5 Deductive completeness . 73

7.6 Completeness . 74

8 Numbers of countable models 79

8.1 Three models . 79

8.2 Omitting types . 82

8.3 Prime structures . 84

8.4 Saturated structures . 86

8.5 One model . 87

8.6 Not two models . 88

Chapter 1

Introduction

{ch:intro}

1.0 Building-blocks

This first section reviews some basic definitions and conventions to be followed
in these notes.

An ordered pair is a set
{{a}, {a, b}},

which is denoted
(a, b).

The sole purpose of the definition is to ensure that

(a, b) = (x, y) ⇐⇒ a = x & b = y.

The Cartesian product of sets A and B is the set

{(x, y) : x ∈ A ∧ y ∈ B},

denoted
A×B.

To express that some set f is a function from A to B, we can just write

f : A −→ B.

This means f is a subset of A×B with a certain property, namely, for every a
in A, there is a unique b in B such that (a, b) ∈ f ; then we write

f(a) = b.

The function f can also be written as

x 7−→ f(x).

The set of all functions from A to B can be denoted

BA. (1.1)

1

2 CHAPTER 1. INTRODUCTION

(Some people write AB instead.)

Let ω be the set of natural numbers:

ω = {0, 1, 2, 3, . . .} = {0, 0′, 0′′, 0′′′, . . . }.

It is notationally convenient to treat 0 as ∅, and n′ as n ∪ {n}. Then

n = {0, . . . , n− 1}

for all n in ω. Under this understanding of the natural numbers, the nth
Cartesian power of A is precisely

An,

in the notation introduced on Line (1.1) above. Thus, the nth Cartesian power
of A is the set of functions from n to A. An element of An can be written as
any one of

(a0, . . . , an−1), i 7−→ ai, ~a ;

it can be called an (ordered) n-tuple from A. Note well that

A0 = {∅} = {0} = 1;

this is true even if A is empty. Also, every element of A1 is {(0, a)} for some a
in A. So we have a bijection

x 7−→ {(0, x)} (1.2)

from A to A1. We may sometimes treat this bijection as an identification:
that is, we may neglect to distinguish between a and {(0, a)}.

For any m and n in ω, we have a bijection

(~x , ~y) 7−→ ~x ̂~y (1.3)

from Am ×An to Am+n. In this notation, ~a ̂~b is the (m+ n)-tuple

(a0, . . . , am−1, b0, . . . , bn−1);

this is the (m+ n)-tuple ~c such that

ck =

{
ak, if k < m;

bk−m, if m 6 k < m+ n.

We shall always treat the bijection on Line (1.3) as an identification; in partic-

ular, we shall always write (~a ,~b) instead of ~a ̂~b .

An n-ary operation on A is a function from An to A. The set of these can
be denoted

AAn

.

In particular, a 0-ary or nullary operation on A is an element of A1; by the
bijection in Line (1.2) then, we may identify a nullary operation on A with an
element of A.

1.1. STRUCTURES 3

An n-ary relation on A is a subset of An; the set of these is

P(An).

In particular, a nullary operation is a subset of A0, that is, of 1 (or {0}); so the
nullary operation is 0 or 1.

An n-ary operation on A is then a (certain kind of) subset of An × A, and
this product can be identified with An ×A1 and hence with An+1; so an n-ary
operation on A can be thought of as an (n+1)-ary relation on A. More precisely,
if f : An → A, then one may refer to the (n+ 1)-ary relation

{(~x , f(~x)) : ~x ∈ An}

as the graph of f ; but there is a bijection between graphs in this sense and
functions.

1.1 Structures
{S:structures}

Our fundamental object of study will be structures. The notion of a structure
provides a way to unify the treatment of many mathematical ideas. By our
official definition, a structure is an ordered pair (A, I), also referred to as A,
where:

(∗) A is a non-empty set, called the universe of the structure;

(†) I is a function, written also
s 7−→ sA,

whose domain L is called the signature of the structure;

(‡) sA is either an element of A or an n-ary operation or relation on A for
some positive n, for each s in L.

If L = {s0, s1, . . . }, then A can be written

(A, sA
0 , s

A
1 , . . .).

Examples 1.1.1. The following are structures: {examples:structures}

(1) (ω, ′, 0);

(2) a group G, or (G, ·,−1, 1);

(3) an abelian group G, or (G,+,−, 0);

(4) a unital ring R, or (R,+,−, ·, 0, 1);

(5) the ring Z, or (Z,+,−, ·, 0, 1);

(6) the field R, or (R,+,−, ·, 0, 1);

(7) the two-element field F2, or (F2,+,−, ·, 0, 1); see § 1.2;

(8) a partial order (Ω,6);

(9) the ordered field R, or (R,+,−, ·, 0, 1,6);

(10) a vector-space V over a field K; here the signature of V is

{+,−, 0} ∪ {a · : a ∈ K},

where a · is the singulary operation of multiplying by a;

4 CHAPTER 1. INTRODUCTION

(11) the power-set structure on a non-empty set Ω, namely

(P(Ω),∩,∪, c,∅,Ω,⊆);

(12) the truth-structure

(B,∧,∨,¬, 0, 1,�),

where B = {0, 1}, and � is the binary relation {(0, 0), (0, 1), (1, 1)}. (The
name ‘truth-structure’ is not standard, as far as I know.) •

Note well that B = {∅, {∅}} = P({∅}) = P(1), and the truth-structure is
the power-set structure on 1. Propositional logic studies the truth-structure;
model-theory studies all structures.

With I as above in the structure (A, I):

(∗) sA is the interpretation in A of s;

(†) s is a symbol for sA.

So s is one of the following:

(∗) a constant;

(†) an n-ary function-symbol for some positive n in ω;

(‡) an n-ary predicate1 for some positive n in ω.

Since nullary operations on A can be considered as elements of A, a constant
can be considered as a nullary function-symbol.

Here are some observations about our definition of structure:

(∗) I am following the old convention (used for example in [2]) of denoting
the universe of a structure by a Roman letter, and the structure itself by
the corresponding Fraktur letter. Recent writers (as in [9] or [12]) use
‘calligraphic’ letters, not Fraktur:

For a structure with universe: A B C . . . M N . . .

I write: A B C . . . M N . . .

Others may write: A B C . . . M N . . .

Another option (taken in [7]) is to use an ordinary letter like A for a struc-
ture, and then dom(A) for its universe. (Here ‘dom’ stands for domain.)
Finally, one might not bother to make a typographical distinction between
a structure and its universe. Indeed, as suggested in the examples, the
distinction is not easy to make with standard structures like Z or R.

(†) Similarly, it is not always easy or convenient to distinguish between a
symbol and its interpretation. A homomorphism from a group G to a
group H is usually described as a function f from G to H such that

f(g0 · g1) = f(g0) · f(g1)

for all ge in G. If we are trying to be precise, we should call the groups G

and H, with group-operations ·G and ·H respectively, and we should say
that f is such that

f(g0 ·G g1) = f(g0) ·H f(g1)

1Or relation-symbol.

1.2. PROPOSITIONAL LOGIC 5

for all g0 and g1 in G. But writing this way soon becomes tedious.

(‡) In a structure (A, I), the universe A and the interpretation-function I

work together to provide interpretations of the symbols in L as elements
of, or operations or relations on, a certain set, namely A itself. That’s
all a structure is: something that provides a mathematical interpreta-
tion for certain symbols. We shall develop this idea later. What makes
model-theory interesting is that the same symbols can have different in-
terpretions. For example, · in Z has different properties from · in R. Here
begins the distinction between syntax (abstract rules for working with{syntax}
symbols) and semantics (the meaning of the symbols; see also Chap-
ter 2).

1.2 Propositional logic
{sect:prop}

This section reviews propositional logic; but the subject will be treated more
deeply in Chapter 2.

Of the so-called truth-structure given among the Examples 1.1.1, the signature
is {∧,∨,¬, 0, 1,�}. The symbol � is here a binary predicate (later it will also
have other uses). The other symbols are function-symbols; we shall call them
propositional connectives.2 We may use additional propositional connec-
tives. For example:

(0) 0 and 1 are nullary connectives;

(1) ¬ is a singulary3 connective;

(2) ∧, ∨, →, ↔, and = are binary connectives.

Each of these has a standard interpretation as an operation on B. These inter-
pretations can be given by truth-tables:

P Q 0 1 ¬P P ∧ Q P ∨Q P → Q P ↔ Q P = Q
0 0 0 1 1 0 0 1 1 0
1 0 0 0 1 0 0 1
0 1 0 1 1 0 1
1 1 1 1 1 1 0

Alternatively, we can first understand B as a two-element unital ring with
addition- and multiplication-tables

+ 0 1
0 0 1
1 1 0

,
· 0 1
0 0 0
1 0 1

.

Then B is the ring sometimes denoted Z2; it is a field, and as such can be
denoted F2. Then

(∗) 0 and 1 are symbols for themselves;

(†) = is another symbol for addition;

2Or Boolean connectives.
3This word is more etymologically correct than the more common unary.

6 CHAPTER 1. INTRODUCTION

(‡) ∧ is another symbol for multiplication;

(§) the remaining connectives are thus:

symbol interpretation
¬ x 7→ x+ 1
∨ (x, y) 7→ x · y + x+ y
→ (x, y) 7→ x · y + x+ 1
↔ (x, y) 7→ x+ y + 1

In general, a signature for propositional logic is a set of propositional connec-
tives. Let L be such. The (propositional) formulas of L are certain strings
composed of:

(∗) symbols from L;

(†) propositional variables P0, P1, P2, . . .

In particular:

(∗) each variable is a formula.

(†) ∗F0 · · ·Fn−1 is a formula, if ∗ is an n-ary connective from L, and the Fi

are formulas. (If n = 0, then ∗ by itself is a formula.)

(Why we can define a set of propositional formulas this way will be indicated
in § 2.0.) Usually, if ∗ is binary, then, instead of ∗F0F1, we write

(F0 ∗ F1) (1.4)

(thus introducing new symbols: the two parentheses; but we usually do not
write the outermost set of parentheses in a formula). A formula is n-ary if4 its
variables belong to the set {P0, . . . , Pn−1}. If a formula is n-ary, then its arity
is n. An n-ary formula F can be written as

F(P0, . . . , Pn−1).

As each propositional connective has a standard interpretation as an operation
on B, so every n-ary formula has a standard interpretation as such an operation,
in an obvious way. We can say then that the n-ary formula represents the n-
ary operation that is its standard interpretation. Notationally, an n-ary formula
F will represent the function

~x 7−→ F̂(~x)

from Bn to B. Then the standard interpretations of formulas can be defined as
follows:

(∗) If k < n, then the formula Pk is an n-ary formula and, as such, represents
the operation

~x 7−→ xk

from Bn to B. (This operation can be denoted P̂k.)

(†) If {F0, . . . ,Fn−1} is a set of n formulas, each of them k-ary, and if ∗
is an n-ary propositional connective in L, then the formula ∗F0 · · ·Fn−1

represents the function

~x 7−→ g(F̂0(~x), . . . , F̂n−1(~x))

4Alternatively, one may want to refer to a formula as n-ary if it contains no more than n

distinct variables, without worrying about which variables those are.

1.2. PROPOSITIONAL LOGIC 7

from Bk to B, where g is the standard interpretation of ∗.

In particular, if ∗ is n-ary, then its standard interpretation is Ĝ, where G is the
formula ∗P0 · · ·Pn−1. When formulas are written with the notation of Line (1.4),
then their interpretations can be given by truth-tables in the style shown in the
proof of Theorem 1.2.2 below.

The notion that a propositional formula represents an operation will be devel-
oped further in the next chapter in case L is {¬,→}. We shall be able to restrict
ourselves to this signature, because it is adequate. In general, a signature for
propositional logic is adequate if, for each n-ary operation g on B, there is an
(n+ k)-ary formula F of L (for some k) such that

g(~e) = F̂(~e , ~f)

for all ~e in Bn and ~f in Bk: that is, every operation on B is represented in
L by some formula. We allow the arity of F here to be larger than that of g,
since we want it to be possible for signatures without nullary connectives to be
adequate.

The following basic tool for establishing adequacy of a signature was proved by
Emil Post in 1921 [11]:

{lem:Post}

Lemma 1.2.1. A signature of propositional logic is adequate, provided that, in
this signature, the following operations are represented:

(∗) the constant functions 0 and 1;

(†) the ternary function f given by

e0 e1 e2 f(~e)
0 0 0 0
1 0 0 1
0 1 0 0
1 1 0 1
0 0 1 0
1 0 1 0
0 1 1 1
1 1 1 1

.

Proof. We use induction on the arity of operations. The nullary operations
are represented in the signature by assumption. Suppose all n-ary operations
are represented, and g is (n + 1)-ary. If e ∈ B, let he be the n-ary operation
~x 7→ g(~x , e). By definition,

f(e0, e1, e2) =

{
e0, if e2 = 0;

e1, if e2 = 1.

Then for all ~d in Bn, we have

g(~d , e) = he(~d) = f(h0(~d), h1(~d), e).

Thus the function g is

(~x , y) 7−→ f(h0(~x), h1(~x), y).

8 CHAPTER 1. INTRODUCTION

By inductive hypothesis, each of the functions he is represented by some formula

He(P0, . . . , Pn−1, . . .);

by assumption, f is represented by some function F(P0, P1, P2, . . .). Hence g is
represented by

F(H0(P0, . . . , Pn−1, . . .),H1(P0, . . . , Pn−1, . . .), Pn, . . .).

By induction, the operations of all arities are represented.
{thm:to-not}

Theorem 1.2.2. The propositional signature {→,¬} is adequate.

Proof. By the lemma, it is enough to observe:

(∗) P0 → P0 represents 1;

(†) ¬(P0 → P0) represents 0;

(‡) the operation f as in the lemma is represented by the formula

¬((¬P2 → P0) → ¬(P2 → P1)),

since its truth-table is

¬ ((¬ P2 → P0) → ¬ (P2 → P1))
0 1 0 0 0 1 0 0 1 0
1 1 0 1 1 0 0 0 1 0
0 1 0 0 0 1 0 0 1 1
1 1 0 1 1 0 0 0 1 1
0 0 1 1 0 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0
1 0 1 1 0 0 0 1 1 1
1 0 1 1 1 0 0 1 1 1

.

(Note that the last formula is equivalent to (¬P2 → P0) ∧ (P2 → P1).)

1.3 Syntax and semantics

We introduce propositional connectives as a way to understand, and to make
precise, certains parts of ordinary language: namely, conjunctions and other
‘structural’ words like and, or, not, and if. . . then. For example, we interpret
the connectives ¬ and → as in the truth-tables

¬ P0

1 0
0 1

P0 → P1

0 1 0
1 0 0
0 1 1
1 1 1

because:

(∗) we think5 of 0 as falsity and 1 as truth;

5It is possible to think the other way, where 0 is truth and 1 is falsity; this is done, for
example, in [14, Ch. 4, Exercise 3.7, p. 178].

1.3. SYNTAX AND SEMANTICS 9

(†) we take ¬ to stand for a word like not that negates sentences, and we
take → to stand for the locution if. . . then;

(‡) in our mathematical writing at any rate,

• a claim will be true if and only if its negation is false, and

• an implication If A, then B will be false if and only if A is true, but
B is false.

A tautology will be a propositional formula that is ‘always true’; that is, the
interpretation of an n-ary tautology will be the constant n-ary function ~x 7→ 1.
In particular, the propositional formula P0 → P0 will be a tautology. This
will be so, because the sentence If A, then A is always true; also, from the
truth-table for P0 → P1 given above, we can construct the truth-table

P0 → P0

0 1 0
1 1 1

In short, tautology is a semantic notion: it concerns the ‘meaning’ of formulas.
At least, the notion of tautology concerns the meaning of formulas when they
are thought of as forms of sentences of ordinary language. (The etymology of
semantic is discussed below). To express that a formula is a tautology, we
shall write in front of it the symbol

� .

Whenever a notion is based directly on truth-tables, we shall consider it to be
semantic.

Gottlob Frege is credited with the first precise formulation of an alternative to
the truth-table method for establishing tautologies. This formulation is given
in the Begriffsschift [15] of 1879. A bit of Frege’s peculiar notation (discussed
below in § 2.4) survives: To express that a formula is a tautology found by
Frege’s method, we shall write in front of it the symbol

` .

We shall refer to this method as syntactic, because it directly involves the
way that symbols are arranged into formulas, without consideration of their
possible interpretations. (Again, etymology is discussed below.) Forty-two years
later, in 1921, in the same paper cited in the last section as the source of
Lemma 1.2.1, Emil Post published a proof [11, p. 169] that the syntactical
method can establish all tautologies:

` F ⇐⇒ � F.

The syntactical method is the method of formal proof. It is a mechanical
method, in the sense that a machine can recognize when the method has been
applied successfully.

The method of formal proof does have its foundation in semantic considerations,
if only because it is designed to establish semantic facts. Also, the truth-table
method itself is mechanical, so it too seems to have a right to be called syntac-
tic. Thus, our distinction between the syntactic and the semantic is somewhat

10 CHAPTER 1. INTRODUCTION

arbitrary. The distinction will be more profound in the context of first-order
logic.

The remainder of this section treats6 the Greek origins of our words syntax

and semantics.

The Greek etymon for syntax, namely ���������
	 ����������� refers originally to an
arranging, a putting together in order, especially of soldiers. In one passage of
Plato’s Republic [10, 591d], it is wealth that may be arranged. In that passage,
the character of Socrates describes the wise man:

����� ������� � ��� � ����������� �"!$#�%�&'���(� � ���)�*	���������+� ��� � �'��,�&-�
. �(�/�$��0 � � �1�32 ��� �4� � �6587 � ,9� �4�3� �65�%��$�:&;��� � �<�=� � �>�
� � 5�5 ��&;� � �$#�	?�)& � �6�*	@# � ���A�B�)�*	C�1�B#
�$����� � � � !$�(��0

And will it not also be so, I said, with the arranging and harmonizing
of his possessions? He will not let himself be dazzled by the felici-
tations of the multitude and pile up the mass of his wealth without
measure, involving himself in measureless ills, will he?7

The arranging implied by ���������
	 � can also be grammatical, a putting together
of words.

The source of semantics is the Greek adjective �)%�&D�$����	 � ���:���E��� meaning
significant or meaningful. Related words include the verb �)%�&D�F��� (signify) and
the noun �G�)%)&H� � � (sign). In On Interpretation [1, 16a19, b5], Aristotle defines
nouns and verbs:

� � � &;�I&�� � �J��� . �(�K��%)&;���L��	 � � ���M�),L�N7 � %)�>�N��,O!�#P� � ,$�Q�"&H%��
R �O&�# � �S���8��%)&;���L��	 � � � �*!$�(#N	T�)&�� � ��U
V W &;� R ����	X�Y��# � ��)%)&;�F� � � !$#P� � ��� � &�# � � � R �Z�)%)&;�F���*	 !$�(#��[�
� �\����	?� �]� � � ��7
^_�P# � ,`5��*2 � &1�N�O�a��%)&H� � ��b

A noun is a sound, meaningful by convention, without [grammatical]
tense, of which no part separately is meaningful.

A verb is [a sound] signifying a tense besides; no part of it is mean-
ingful separately; it is always a sign of things said of something.

The more basic �Y�8&;�H���9��� � �[� meaning sign, mark, token, appears in Homer
(Iliad, X.465–468):

c �d#�^ . ��%�)����� � � � 7e�*�gf8�D^h��#
�i�
7 � �*�K�j&H,L# � %���U R ��5 � � R�k �l�8& �H^_7e% � �
��,�&H&J#�fX�L� R �N� � �i�I&H,L# � %N�a�H^m#�	T7e%�5]�i�on � ,9�[�
&p587 � 	[�A��	 �q�L���r7 � � R 	8� � ���s&�5)�$?�N�$��b

With these words, he took the spoils and set them upon a tamarisk
tree, and they make a mark at the place by pulling up reeds and
gathering boughs of tamarisk, that they might not miss it as they
came back through the fleeting hours of darkness.8

6With the help of the Liddell–Scott lexicon [8].
7The translation is adapted from Shorey’s [10].
8Text and Samuel Butler’s translation are from http://www.perseus.tufts.edu.

Chapter 2

Propositional model-theory

{ch:prop}

2.0 Propositional formulas
{sect:prop-form}

This chapter is inspired in part by Chang and Kiesler [2, § 1.2], who describe
the subject to be discussed here as ‘“toy” model theory’.

Usually, the term model-theory refers to first-order model-theory, because the
logic it uses is first-order logic. The notion of structure defined above in § 1.1
is the notion as used in first-order model-theory. A structure provides an inter-
pretation for certain symbols; also, as we shall see, a structure can be a model
for sets of sentences.

The concepts of structure, interpretation, model, and sentence, have analogues
in the simpler context of propositional logic. In this logic, a truth-assignment
will take the place of a structure. A truth-assignment will provide an interpreta-
tion for propositional formulas, and will serve as a model for sets of propositional
formulas.

Our official signature for propositional logic will be

{→,¬},

although we may introduce other connectives as abbreviations. With the ele-
ments of our signature, along with parentheses, we shall build up propositional
formulas from a countably infinite set

V

of propositional variables. For us, this set will be

{Pk : k ∈ ω};

however, we establish:

Notational Convention 2.0.1. Bold-face letters P, Q, and R, will stand for
members of the set V .

11

12 CHAPTER 2. PROPOSITIONAL MODEL-THEORY

The set of propositional formulas will be called

PF;

we shall give a set-theoretic definition this set.

A formula is a certain string of symbols. A string is just a function on some n
in ω. So, a string is just an n-tuple; but we shall generally write a string as

s0s1 · · · sn−1

instead of (s0, s1, . . . , sn−1). Each of the expressions sk here stands for an entry
in the string. The length of the string is n: we may write

`n(s0s1 · · · sn−1) = n.

The string begins with s0 and ends with sn−1. (The unique string of length 0
has no entries, and no beginning or ending.) If the string s0s1 · · · sn−1 is in PF,
then each entry si in the string will be:

(∗) an element of the set V of variables, or

(†) one of the connectives → and ¬, or

(‡) one of the parentheses (or).

We shall want to refer to strings by single letters, such as A and B. As such,
these letters are strings of length 1; but they stand for strings of other lengths.
I am writing the letters in boldface as a reminder that they are not literally
strings of symbols in our propositional logic.1 For the same reason, P, Q, and
R, are written in bold face; they are not variables in PF, but they stand for
variables.

For the moment, let S be the set of all strings of entries from the set{strings}

V ∪ {→,¬, (,)}.
That is, let

S =
⋃

n∈ω

(V ∪ {→,¬, (,)})n.

We shall define PF as a subset of S. To do so, we let U be the set of all subsets
N of S such that:

(∗) each variable (considered as a string of length 1) is in N ;

(†) if A is in N , then ¬A is in N ;

(‡) if A and B are in N , then (A → B) is in N .

To put this another way,2 for the moment, let f be the singulary operation such
that f(A) is the string ¬A, and let g be the binary operation such that g(A,B)
is the string (A → B), for all A and B in S. Then

U = {Ξ ∈ P(S) : V ⊆ Ξ ∧ ∀X (X ∈ Ξ → f(X) ∈ Ξ) ∧
∧ ∀X ∀Y (X ∈ Ξ ∧ Y ∈ Ξ → g(X,Y) ∈ Ξ)}.

1In technical terms, they are syntactical variables: they are certain symbols of the syntax

language. The latter is the language that we our using to talk about the object language,

which in this case is the language of propositional logic, which uses the symbols just listed
above. See [3, § 8].

2And in a way that uses the formal symbolism of propositional and first-order logic!

2.0. PROPOSITIONAL FORMULAS 13

Now we can define
PF =

⋂
U .

This is an inductive definition, as will be discussed further in the next section.
In particular, it means that every element of PF can be displayed as the ‘trunk’
or ‘root’ of a tree whose ‘leaves’ are variables: {example:tree}

Example 2.0.2. The string (P0 → (¬P0 → P1)) belongs to PF, because it is
constructed from the variables P0 and P1 in a way permitted by the conditions
for being an element of PF. This is suggested by the following picture:

76540123P0

??
??

¬P0
??

?
76540123P1

��
�

76540123P0
??

? (¬P0 → P1)

jjjjjj

(P0 → (¬P0 → P1))

One might draw this picture upside down:

(P0 → (¬P0 → P1))

(¬P0 → P1)

TTTTTT

¬P0

���

76540123P0

������������� 76540123P0

���� 76540123P1

////////

Thus one can depict a formula as being built up from the variables, rather than
down from them. •

In this context, a tree is a set T equipped with a partial ordering 6 such that,
for each a in T , the set {x : x 6 a} is finite and is totally ordered by 6. (Here
a partial ordering is just a reflexive, antisymmetric, and transitive relation. In
a more general definition of tree, each set {x : x 6 a} is only required to be
well-ordered by 6; the set may be infinite.)

Exercises

(1) As in Example 2.0.2, draw trees for some formulas, such as

(∗) (P0 → (P1 → P0)),

(†) ((P0 → (P1 → P2)) → ((P0 → P1) → (P0 → P2))),

(‡) ((¬P0 → ¬P1) → (P1 → P0)).

(2) Show that the binary relation

{(A,B) ∈ PF2 : `n(A) 6 `n(B)}

on PF is a partial ordering R such that

14 CHAPTER 2. PROPOSITIONAL MODEL-THEORY

• A R ¬A,

• A R (A → B), and

• B R (A → B),

for all A and B in PF.{exercise:sub-f}

(3) The sub-formulas of a formula are the formulas that appear in the tree
for that formula. Give a precise definition of the notion of sub-formula:
that is, define a partial ordering 6 of PF such that A 6 B if and only if
A is a sub-formula of B. (Your answer may be that 6 is the intersection
of a family of partial orderings of PF.)

2.1 Induction
{sect:induction}

The definition of PF is inductive, because it makes the next theorem possible.
Recall that, to prove by induction that a certain set A of natural numbers
contains all natural numbers, one proves two things:

(∗) that A contains 0, and

(†) that if A contains n, then A contains n + 1 (no matter which natural
number n is).

With the following theorem, a similar method will be available for showing that
a certain set of propositional formulas contains all propositional formulas. This
method can be called induction on (the complexity of) formulas. The
proof that the method works is almost immediate from the definition of PF:

{thm:induction}

Theorem 2.1.1 (Induction on Formulas). Suppose N is a set of propositional
formulas such that:

(∗) each variable (considered as a string of length 1) is in N ;

(†) if F is in N , then ¬F is in N ;

(‡) if F and G are in N , then (F → G) is in N .

Then N = PF.

Proof. Let N be as supposed. Then, in particular, N ⊆ PF. Moreover, N is a
member of the set U given in the definition of PF; so

⋂U ⊆ N . But PF =
⋂U .

Therefore N ⊆ PF and PF ⊆ N ; so N = PF.

Notational Convention 2.1.2. Bold-face letters F, G, and H, (and variants
like F′ and Gk,) will always stand for formulas (that is, elements of PF).

Suppose g : V → PF. Then g determines a certain function, to be denoted

F 7−→ F(g),

with domain PF. This function can be called substitution with respect to
g. The reason for the unusual way of denoting the function will become clear.
Suppose g(Pk) is Gk for each k in ω. If exactly m entries in F are variables, so
that F can be written as

. . . Pk0
. . . Pk1

. . . · · · . . . Pkm−1
. . . ,

2.1. INDUCTION 15

then the formula F(g) is

. . .Gk0
. . .Gk1

. . . · · · . . .Gkm−1
. . .

If the variables that appear in F belong to the set {P0, . . . , Pn−1}, then F can
be denoted

F(P0, . . . , Pn−1),

and F(g) can be denoted

F(G0, . . . ,Gn−1).

It would be a tedious exercise, but a practicable one, to write down an expression
for the kth entry in F(G0, . . . ,Gn−1), for arbitrary k. That F(G0, . . . ,Gn−1)
is actually in PF is a consequence of the following:

Theorem 2.1.3. Let g : V → PF. Then the function F 7→ F(g) on PF has
co-domain PF.

Proof. We use induction on formulas to prove

{F : F(g) ∈ PF} = PF.

The argument has three parts:

(∗) By assumption, P(g), which is g(P), is in PF.

(†) Suppose F(g) is a formula H. Then substitution with respect to g in
¬F results in ¬H, which is in PF by definition (of PF).

(‡) Suppose F(g) and G(g) are formulas H and H′ respectively. Then
(F → G)(g) is (H → H′), which again is in PF by definition.

This completes the induction and the proof.

If the foregoing discussion of substitution seems too informal or imprecise, let
it be noted that the operation F 7→ F(g) can be defined recursively, by means
of Theorem 2.2.5 below. However, substitution makes sense for sets of strings
that do not admit definition by recursion or even proof by induction.

Exercises

(1) Prove by induction that every formula has as many left as right parenthe-
ses.

(2) Prove by induction that an entry ¬ is never preceded by a variable in any
formula.

(3) For each k in ω, there is a function hk from PF to ω such that hk(F) is
the number of times that Pk appears in F. Using this, find the length of
F(G0, . . . ,Gn−1) in terms of `n(F) and the `n(Gk).

(4) Supposing F(G0, . . . ,Gn−1) is s0s1 · · · sM−1, what is sk?

16 CHAPTER 2. PROPOSITIONAL MODEL-THEORY

2.2 Recursion

Recall that functions from ω into an arbitrary set B can be defined by recur-
sion: If

(∗) c ∈ B, and

(†) f : B → B,

then there is exactly one function g from ω to B such that

(∗) g(0) = c, and

(†) g(n+ 1) = f(g(n)) for all n in ω.

That there is exactly one such function g means:

(∗) there is at most one such function, and

(†) there is at least one such function.

The first of these claims can be proved by induction; the second requires more.
Similarly, induction on formulas gives us the following:

{lem:uniqueness}

Lemma 2.2.1. Suppose A is a set, and

(∗) h0 : V → A,

(†) h1 is a singulary operation on A, and

(‡) h2 a binary operation on A.

Then there is at most one function h on PF such that

(∗) h agrees with h0 on V ;

(†) h(¬F) = h1(h(F)), for all F;

(‡) h((F → G)) = h2(h(F), h(G)), for all F and G.

Proof. Suppose h′ and h′′ are such functions h. Let D consist of those formulas
F such that h′(F) = h′′(F). Then D contains the variables; and if D contains
F and G, then D contains ¬F and (F → G). By induction, D is PF, so
h′ = h′′.

If there is a function h as described in the Lemma, then it is said to be defined
by recursion. To prove that recursively defined functions exist at all, we shall
use the following.

{lem:formulas}

Lemma 2.2.2. Every formula in PF meets the following conditions:

(∗) it has positive length;

(†) if it has length 1, then it is a variable;

(‡) if it has length greater than 1, then it begins with ¬ or (;

(§) if it begins with ¬, then it is ¬F for some formula F;

(¶) if it begins with (, then it is (F → G) for some formulas F and G.

2.2. RECURSION 17

Proof. We use induction on formulas. Let N be the subset of PF containing
every formula that meets the given conditions.

We first show that N contains the variables. Let P be a variable. Then P has
length 1, which is positive; so P meets the first two conditions. Since P does
not have length greater than 1, it trivially meets the third condition. Since P
begins with a variable, it does not begin with (or ¬; hence P trivially meets
the remaining two conditions. Therefore P is in N .

Suppose N contains F. Then F has positive length, so ¬F is a formula that has
length greater than 1 and satisfies the five conditions. Hence ¬F is in N .

Suppose finally that N contains F and G. Then (F → G) is a formula that
meets the five conditions, so it is in N .

Hence N = PF by Theorem 2.1.1.

So that we can talk clearly about formulas, we declare that:

(∗) every formula ¬F is a negation;

(†) every formula (F → G) is an implication, with antecedent F and
consequent G.

The last lemma formalizes the straightforward observation that every formula
is a variable, a negation, or an implication, and is only one of these. To prove
that recursively defined functions on PF exist, we shall need to know that every
implication has a unique antecedent and consequent. To prove this, it will
be useful to have the following definitions. An initial segment of the string
s0s1 · · · sn−1 is one of the strings s0s1 · · · sk−1, where k 6 n. This initial segment
is proper if k < n.

The proof of the following lemma requires strong induction on the lengths of
formulas. Recall that, to prove by strong induction that a subset A of ω is
ω, one proves that, for all n in ω, if A contains every natural number that is
less than n, then A contains n.

{lem:no-pis}

Lemma 2.2.3. No proper initial segment of a formula is a formula.

Proof. Let N be the set of formulas of which no proper initial segment is a
formula. We shall prove by strong induction on the lengths of formulas that
N = PF. Suppose N contains all formulas shorter than a formula F. By
Lemma 2.2.2, we know that F is a variable P or a formula ¬G or (G → H).
The only proper initial segment of P is the empty string, which is not a formula.
Any proper initial segment of ¬G is ¬A for some proper initial segment A of
G; so A is not a formula, by our strong inductive hypothesis; hence ¬A is not
a formula, again by Lemma 2.2.2. Finally, say F is (G → H). Any initial
segment of F that is a formula is (G′ → H′) for some formulas G′ and H′ (by
Lemma 2.2.2). Then one of G and G′ is an initial segment of the other. But
each one is shorter than F; so by strong inductive hypothesis, G and G′ are the
same formula. Then H′ is an initial segment of H; so these formulas must be
the same. Thus, in all cases, F is in N . By strong induction, N = PF.

{thm:urf}

Theorem 2.2.4 (Unique Readability of Formulas). Every formula is a variable,
a negation, or an implication, but only one of these; and every implication has
a unique antecedent and consequent.

18 CHAPTER 2. PROPOSITIONAL MODEL-THEORY

Proof. We know the first part by Lemma 2.2.2. For the second part, suppose
(F → G) and (F′ → G′) are the same formula. Then one of F and F′ is an
initial segment of the other, so they are the same by Lemma 2.2.3; hence G and
G′ are the same.

Now we can prove that recursively defined functions on PF exist. Note carefully
how the proof relies on the previous theorem.

{thm:recursion}

Theorem 2.2.5 (Recursion on Formulas). Suppose A is a set, and

(∗) h0 : V → A,

(†) h1 is a singulary operation on A, and

(‡) h2 a binary operation on A.

Then there is a unique function h on PF such that

(∗) h agrees with h0 on V ;

(†) h(¬F) = h1(h(F)), for all F;

(‡) h((F → G)) = h2(h(F), h(G)), for all F and G.

Proof. By Lemma 2.2.1, we now need only prove that a function h does exist
as desired. Let U be the set of all subsets R of PF ×A such that:

(∗) (P, h0(P)) ∈ R for all variables P;

(†) if (F, b) ∈ R, then (¬F, h1(b)) ∈ R;

(‡) if (F, b) ∈ R and (G, c) ∈ R, then ((F → G), h2(b, c)) ∈ R.

Let S =
⋂U . Then S ∈ U , so S has the properties desired of h, except perhaps

for being a function. To prove that S is a function on PF, let D be the set of
formulas F for which there is a unique b in A such that (F, b) ∈ S. We proceed
again by induction on formulas:

(∗) By its definition, S contains every ordered pair (P, h0(P)). If b 6=
h0(P), then Sr{(P, b)} ∈ U , so S ⊆ Sr{(P, b)}, which means (P, b) /∈ S.
Hence P ∈ D.

(†) Suppose F ∈ D. Then (F, b) ∈ S for some unique b. Hence S contains
(¬F, h1(b)), but if c 6= h1(b), then S r {(¬F, c)} ∈ U , so (¬F, c) /∈ S.
Therefore ¬F ∈ D.

(‡) Suppose finally that F and G are in D, and (F, b) and (G, c) are in S.
By Theorem 2.2.4, if (F′ → G′) is the same formula as (F → G), then F′

is F, and G′ is G. Hence, if d 6= h2(b, c), then S r {(F → G), d)} ∈ U , so
((F → G), d) /∈ S. Therefore (F → G) ∈ D.

We can conclude that D = PF, so S is a function h as desired.

Example 2.2.6. There is a unique singulary operation F 7→ F∗ on PF such
that

(∗) P∗ = P for each P;

(†) (¬F)∗ = ¬G, where G is F∗, for each formula F;

(‡) (F → G)∗ = ¬(G∗ → F∗) for all formulas F and G.

2.2. RECURSION 19

In the notation of the Recursion Theorem, F 7→ F∗ is the function h when h0

is idV , and h1 is F 7→ ¬F, and h2 is (F,G) 7→ ¬(G → F). Hence, for example,

(P → (¬Q → R))∗ = ¬((¬Q → R)∗ → P∗)

= ¬(¬(R∗ → ¬Q∗) → P)

= ¬(¬(R → ¬Q) → P),

whereas ((P → ¬Q) → R)∗ is the formula ¬(R → ¬(¬Q → P)). •

The proof of the Recursion Theorem can be modified so as to yield the following
more general result. (The reader should check the details.)

{por:recursion}

Porism 2.2.7. Suppose

• h0 : V → A,

• h1 : PF ×A→ A, and

• h2 : (PF ×A)2 → A.

Then there is a unique function h on PF such that

(∗) h agrees with h0 on V ;

(†) h(¬F) = h1(F, h(F)) for all F;

(‡) h((F → G)) = h2((F, h(F)), (G, h(G))) for all F and G.

We used Unique Readability (Theorem 2.2.4) to prove the Recursion Theo-
rem, 2.2.5; conversely, Unique Readability follows from Porism 2.2.7. Indeed,
using the notation of the Porism, let A be PF, let h0 and h1 be chosen arbitrarily,
and let h2 be

((F,F′), (G,G′)) 7−→ (F,G).

Let h be the function guaranteed by the Porism. Then h((F → G)) = (F,G).
Thus h selects, from an implication, its antecedent and consequent. Since h is
a function, the antecedent and consequent are unique.

Note well that the Recursion Theorem is not a consequence of the Induction
Theorem: {example:no-recursion}

Example 2.2.8. Suppose we define PF without using parentheses. We shall
still be able to use induction, but if we are not careful, we shall not have defi-
nitions by recursion. Indeed, say we define nPF (for ‘not PF’) so that:

(∗) each variable is in nPF;

(†) if A is in nPF, then so is ¬A;

(‡) if A and B are in nPF, then so is A → B.

Then proof by induction in nPF is possible. However, suppose we try to define
a function f from nPF into PF so as to send every element of the former to its
‘equivalent’ in the latter:

(∗) f(P) = P;

(†) f(¬F) = ¬f(F);

(‡) f(F → G) = (f(F) → f(G)).

20 CHAPTER 2. PROPOSITIONAL MODEL-THEORY

Then f(P → Q) = (P → Q) for all variables P and Q; but f(P0 → P1 → P2)
must be both (P0 → (P1 → P2)) and ((P0 → P1) → P2), which is absurd, since
these are different formulas, and f is a function.

A correct way to avoid using parentheses is to use Lukasiewicz- or Polish nota-
tion, writing → F G instead of (F → G). Details are left to the reader. See
also § 2.4 below. •

Exercises

(1) Give a recursive definition of the set of sub-formulas of a formula. (See
§ 2.0, Exercise 3.)

(2) Prove Porism 2.2.7.

(3) Prove the Recursion Theorem, 2.2.5, in case all formulas are written in
 Lukasiewicz-notation (see Example 2.2.8).

2.3 Syntactic entailment
{sect:syn-entail}

Now suppose Σ is a subset of PF. We shall define, on PF, a singulary relation
called syntactic entailment by Σ. We shall denote the relation by

Σ ` .

If F satisfies the relation, we shall write

Σ ` F.

This can be read as Σ syntactically entails F, or F is a syntactic conse-

quence of Σ. The relation is defined by the following conditions:

(∗) Σ ` (F → (G → F));

(†) Σ ` ((F → (G → H)) → ((F → G) → (F → H)));

(‡) Σ ` ((¬F → ¬G) → (G → F));

(§) if F ∈ Σ, then Σ ` F;

(¶) if Σ ` F, and Σ ` (F → G), then Σ ` G.

Thus the set of syntactic consequences of Σ is defined inductively; that is, a
claim analogous to Theorem 2.1.1 can be proved (just as easily). Looking ahead
to their semantics, we can name the three families of formulas just given:

(∗) (F → (G → F)) is Affirmation of the Consequent;

(†) ((F → (G → H)) → ((F → G) → (F → H))) is Self-Distribution of
Implication;

(‡) ((¬F → ¬G) → (G → F)) is Contraposition.

Every such formula will be called an Axiom. The rule that Σ ` G, if Σ ` F
and Σ ` (F → G), is the Rule of Detachment (or Modus Ponens); in
particular, G can be ‘detached’ from (F → G) by means of F. So the set of
syntactic consequences of Σ is the smallest set of formulas that contains the
elements of Σ and the Axioms and is closed under application of the Rule of
Detachment.

2.3. SYNTACTIC ENTAILMENT 21

{lem:immediate}

Lemma 2.3.1. If Σ ` F, and Σ ⊆ T, then T ` F.

Proof. Immediate.3

Syntactic entailment of a formula is established fundamentally by the presence
of the formula at the root of an appropriate tree; but the essential information in
such a tree can be expressed as a deduction or formal proof. First, an example
of a syntactic entailment:

{lem:FtoF}

Lemma 2.3.2. ∅ ` (F → F).

Proof. We have the following sequence of observations:

(1) ∅ ` (F → ((F → F) → F)) [by Affirmation of the Consequent];

(2) ∅ ` ((F → ((F → F) → F)) → ((F → (F → F)) → (F → F))) [by
Self-Distribution of Implication];

(3) ∅ ` ((F → (F → F)) → (F → F)) [by Detachment from (2) by (1)];

(4) ∅ ` (F → (F → F)) [by Affirmation of the Consequent];

(5) ∅ ` (F → F) [by Detachment from (3) by (4)].

This completes the proof.

By the last two lemmas, we have Σ ` (F → F) always.

The preceding proof can be written as a tree, thus:

�� ��
�� ��((F → ((F → F) → F)) → ((F → (F → F)) → (F → F)))

�� ��

�� ��(F → ((F → F) → F))

::
::

::
::

:
�� ��
�� ��(F → (F → F))

::
::

::
::

:

((F → (F → F)) → (F → F))

iiiiiii

(F → F)

Stripped further of explanatory details, the proof can be written as the follow-
ing string of length 5 (the entries of the string are themselves strings, namely,
formulas):

(F → ((F → F) → F)), (2.1)

((F → ((F → F) → F)) → ((F → (F → F)) → (F → F))), (2.2)

((F → (F → F)) → (F → F)), (2.3)

(F → (F → F)), (2.4)

(F → F). (2.5)

This string is a deduction of (F → F) from ∅ (or any other set of formulas).

3For the typographically minded: The letter T in the statement of the theorem is a Greek
capital tau, in upright font, rather than a Latin T , in italic font.

22 CHAPTER 2. PROPOSITIONAL MODEL-THEORY

By definition, a (formal) proof or deduction of H from Σ is a string of
formulas, ending with H, such that each entry G in the string

(∗) is an Axiom, or

(†) is an element of Σ, or

(‡) is preceded (somewhere in the string) by formulas F and (F → G).{lem:pis-proof}

Lemma 2.3.3. Every initial segment of a formal proof from a set of formulas
is itself a formal proof from that set.

Proof. Immediate.
{thm:proves}

Theorem 2.3.4. A formula G has a formal proof from Σ if and only if Σ ` G.

Proof. By strong induction on the lengths of formal proofs, we first show that
every formula with a formal proof from Σ is a syntactic consequence of Σ.
Suppose the claim is true for all formulas with proofs of length less than n, and
now G has a formal proof of length n. If G is an Axiom or an element of Σ, then
Σ ` G. If, in its proof, G is preceded by F and (F → G), then, by inductive
hypothesis and Lemma 2.3.3, Σ ` F and Σ ` (F → G), hence Σ ` G. Hence
Σ ` H for all formulas H that are formally provable from Σ.

We prove the converse by induction on syntactic consequences. Every Axiom,
and every element of Σ, is a formal proof of itself from Σ. Suppose F has formal
proof A, and (F → G) has formal proof B, from Σ. Then A B G is a formal
proof of G from Σ. Hence every syntactic consequence of Σ is formally provable
from it.

Establishing syntactic entailment by means of the original definition or by formal
proof is usually quite tedious. We shall develop short-cuts. First, let us develop
a simpler notation for formulas, in the next section.

2.4 Notation
{sect:notation}

We have chosen a signature for our propositional formulas, namely {→,¬}.
We have also chosen a ‘style’ of notation, namely infix notation. There are
alternatives (as mentioned in Example 2.2.8).

What we are calling syntactic consequence seems to have its origin in the Be-
griffsschrift [15] of Gottlob Frege, published in 1879. (The title can be rendered
as ‘ideography’ or ‘concept writing’). In Frege’s work, what we call formulas
appear not as strings, but as two-dimensional figures. For example, our three
Axioms correspond to Frege’s Judgments (1), (2), and—almost—(28); he writes
them as follows:

F
G
F

H
F
G
F
H
G
F

F
G
G
F

2.4. NOTATION 23

This style of writing formulas never caught on, except in the following sense:
To assert a judgment whose content is A, Frege writes

A

The vertical bar here is the judgment stroke, while the horizontal is merely
the content stroke. Frege’s notation appears to be the origin of our own
symbol `.

I propose to modify our own style of writing parentheses by removing excess
parentheses. When this is done, for example, our three Axioms become

F → G → F,

(F → G → H) → (F → G) → F → H,

(¬F → ¬G) → G → F.

In this abbreviated system, we can again define formulas inductively, albeit in
a more complicated way. The set of these formulas can be called PF′. Every
formula in PF′ will be a variable, a negation, or an implication. Then:

(∗) V is the set of variables in PF′.

(†) If F is a variable or a negation in PF′, then ¬F is a negation in PF′.

(‡) If F is an implication in PF′, then ¬(F) is a negation in PF.

(§) If F is a variable or a negation in PF′, and G is in PF′, then F → G is
an implication in PF′.

(¶) If F is an implication in PF′, and G is in PF′, then (F) → G is an
implication in PF′.

Thus, no formula by itself will be enclosed in parentheses; but an implication
must be so enclosed when it is negated or used as the antecedent of another
implication. It is left to the reader to formulate PF′ as an intersection of sets,
so that the analogue of Theorem 2.1.1 follows. Written as a string of elements
of PF′, the deduction given earlier as Lines (2.1–2.5) becomes

F → (F → F) → F,

(F → (F → F) → F) → (F → F → F) → F → F,

(F → F → F) → F → F,

F → F → F,

F → F.

It is also left to the reader to formulate and prove an analogue of Theorem 2.2.5,
so that the following can then be proved:

{thm:simpler}

Theorem 2.4.1. There is a unique bijection F 7→ F from PF to PF′ such that

(∗) P = P for all variables P;

(†) ¬F =

{
¬F, if F is a variable or negation;

¬(F), if F is an implication;

(‡) (F → G) =

{
F → G, if F is a variable or negation;

(F) → G, if F is an implication.

24 CHAPTER 2. PROPOSITIONAL MODEL-THEORY

The inverse of this map is a function F 7→ F from PF′ to PF such that

(∗) P = P for all variables P;

(†) ¬F = ¬F;

(‡) ¬(F) = ¬F;

(§) F → G = (F → G);

(¶) (F) → G = (F → G).

Proof. In the notation of Porism 2.2.7, let A be the set of strings of the symbols
in V ∪ {→,¬, (,)}, let h0 be the inclusion of V in A, and let

h1(F,A) =

{
¬A, if F is a variable or negation;

¬(A), if F is an implication;

h2((F,A), (G,B)) =

{
A → B, if F is a variable or negation;

(A) → B, if F is an implication.

Then the function from PF to PF′ exists uniquely as desired, by the Porism.
This function is bijective, with inverse as claimed (details are left to the reader).

Exercises

(1) Give a precise definition of PF′. (One way to proceed might be as follows:
Let S be as defined on p. 12, and let U comprise the subsets N of S × 2
such that

(∗) (P, 0) ∈ N ;

(†) if (A, 0) ∈ N , then (¬A, 0) ∈ N ;

(‡) if (A, 1) ∈ N , then (¬(A), 0) ∈ N ;

(§) if (F, 0) ∈ N , and (G, e) ∈ N , then (F → G, 1) ∈ N ;

(¶) if (F, 1) ∈ N , and (G, e) ∈ N , then ((F) → G, 1) ∈ N .

Now extract PF′.)

(2) Complete the proof of Theorem 2.4.1.

2.5 Theorems

Henceforth, let us write propositional formulas in the style of PF′ established
in the previous section.

A syntactical consequence of ∅ can be called a Theorem. To express that a
formula is a Theorem, we can write

`
in front of it, instead of ∅ ` . Thus, by Lemma 2.3.2, we have

` F → F.

As promised at the end of § 2.3, we now start to develop more efficient methods
of establishing Theorems and other instances of syntactic entailment.

2.5. THEOREMS 25

{thm:deduction}

Theorem 2.5.1 (Deduction). Σ ` F → G ⇐⇒ Σ ∪ {F} ` G.

Proof. The easy direction is (⇒), which is left to the reader. The other direction
uses strong induction on the lengths of formal proofs.

Suppose Σ ∪ {F} ` G, so that, by Theorem 2.3.4, there is a formal proof of G
from Σ ∪ {F}. With respect to this proof, there are three possibilities for G:

If G is an Axiom, or is one of the formulas in Σ, then Σ ` G; but G → F → G
is an Axiom in any case, so also Σ ` G → F → G; hence Σ ` F → G by
Detachment.

If G is F, then ` F → G by Lemma 2.3.2, so Σ ` F → G by Lemma 2.3.1.

Finally, suppose that, in its formal proof, G is preceded by H and H → G. If
Σ ` F → H and Σ ` F → H → G, then by Self-Distributivity of Implication,
and the Rule of Detachment, Σ ` F → G, and we are done. Thus, if Σ does not
syntactically entail F → G, then it also fails to entail F → H → G or F → H.
But each of the formulas H → G and H has a shorter proof from Σ∪ {F} than
G does, by Lemma 2.3.3. By strong induction, we are done.

{lem:several}

Lemma 2.5.2. The following formulas are Theorems: {item:contrad}

(∗) ¬G → G → F; {item:double-neg}

(†) ¬¬F → F; {item:other-way}

(‡) F → ¬¬F; {item:other-contrap}

(§) (F → G) → ¬G → ¬F; {item:imp}

(¶) F → ¬G → ¬(F → G). {item:two-cases}

(‖) (F → G) → (¬F → G) → G.

Proof. The following is a formal proof from ¬G:

¬G, ¬G → ¬F → ¬G, ¬F → ¬G, (¬F → ¬G) → G → F, G → F.

So ¬G ` G → F. By the Deduction Theorem, ` ¬G → G → F.

As a special case of what we have just shown, we have ¬¬F ` ¬F → ¬¬¬F.
From Contraposition, we get ¬¬F ` ¬¬F → F; then, by both directions of the
Deduction Theorem, we get ¬¬F ` F, then ` ¬¬F → F.

The remaining parts are left to the reader.

Exercises

(1) Prove the easy direction of the Deduction Theorem, 2.5.1, and supply
missing details of the proof of the other direction.

(2) Prove the remainder of Lemma 2.5.2.

26 CHAPTER 2. PROPOSITIONAL MODEL-THEORY

2.6 Logical entailment
{sect:logical}

A truth-assignment is a function from V to 2. Let ε be such a function.
It determines a substitution F 7→ F(ε) as in § 2.1, although 0 and 1 are not
formulas in PF. By recursion, the truth-assignment ε uniquely determines a
function F 7→ F̂(ε) as follows (where + and · are as in F2):

F̂(ε) =

ε(P), if F is P;

1 + Ĝ(ε), if F is ¬G;

1 + Ĝ(ε) + Ĝ(ε) · Ĥ(ε), if F is G → H.

A formula F can be called n-ary if each variable that is an entry in F be-
longs to the set {Pk : k < n}. In this case, F̂(ε) depends only on the n-tuple
(ε(P0), . . . , ε(Pn−1)). (This is obvious, but can be confirmed by induction on
formulas.) Denoting this n-tuple more briefly by ~e , we may write

F̂(~e)

instead of F̂(ε). We may then refer to ~e as an n-ary truth-assignment. The

number F̂(~e) is the truth-value of F with respect to ε or ~e . In particular, F

is true in ε (or ~e) if F̂(ε) = 1; otherwise, F is false in ε.

The truth-values of F with respect to all truth-assignments can be given in a
truth-table with 2n rows.

The following may seem obvious, once it is understood:{thm:associativity}

Theorem 2.6.1 (Associativity). Suppose F is an n-ary formula, and H is a

formula F(G0, . . . ,Gn−1), and ~e and ~f are truth-assignments (of appropriate
arity) such that

Ĝk(~e) = fk

for each k in n. Then
F̂(~f) = Ĥ(~e).

Proof. We use induction on F. If F is a variable, then it is Pk for some k in n,
so H is Gk, and

Ĥ(~e) = Ĝk(~e) = fk = P̂k(~f) = F̂(~f).

Suppose the claim is true when F is F0 or F1. If now F is ¬F0, then H is
¬F0(G0, . . . ,Gn−1), which we can write as ¬H0, so that

Ĥ(e) = 1 + Ĥ0(~e)

= 1 + F̂0(~f) [by inductive hypothesis]

= F̂(~f).

The remaining case, where F is (F0 → F1), is left to the reader.

In the present context, we can think of truth as a relation from 2V to PF,
namely the relation

{(ξ,X) ∈ 2V × PF : X̂(ξ) = 1}.

2.6. LOGICAL ENTAILMENT 27

We may denote this relation by
� .

Hence, instead of F̂(ε) = 1, we may write

ε � F. (2.6)

The complement of the truth-relation can be denoted

2 .

Hence we can express a fundamental fact as follows: {lem:tf}

Lemma 2.6.2. For all truth-assignments ε and formulas F, we have

ε � F ⇐⇒ ε 2 ¬F; (2.7)

likewise,
ε 2 F ⇐⇒ ε � ¬F. (2.8)

Proof. Suppose e ∈ 2. Then e = 1 ⇐⇒ e 6= 0 ⇐⇒ e+ 1 = 0. Let G be ¬F.
Then

ε � F ⇐⇒ F̂(ε) = 1

⇐⇒ 1 + F̂(ε) = 0

⇐⇒ Ĝ(ε) = 0

⇐⇒ Ĝ(ε) 6= 1

⇐⇒ ε 2 G

⇐⇒ ε 2 ¬F.

The other equivalence follows immediately.

From the truth-relation, we obtain three new functions, as follows.

(∗) A model of a set of formulas is a truth-assignment in which every element
of the set is true. If Σ is a set of formulas, let

Mod(Σ)

be the set of its models. This is the set
⋂

X∈Σ

{ξ ∈ 2V : ξ � X}.

We now have a function Ξ 7→ Mod(Ξ) from P(PF) to P(2V).

(†) The theory of a set of truth-assignments is the set of formulas that are
true in all of the truth-assignments. If A is a set of truth-assignments, let

Th(A)

be its theory. This is the set
⋂

ξ∈A

{X ∈ PF : ξ � X}.

So we have a function Ξ 7→ Th(Ξ) from P(2V) to P(PF).

28 CHAPTER 2. PROPOSITIONAL MODEL-THEORY

(‡) The logical consequences of a set of formulas are the formulas that are
true in every model of the original set. The logical consequences of Σ
compose a set

Con(Σ).

This is the set
⋂

ξ∈Mod(Σ){X ∈ PF : ξ � X}, which is

Th(Mod(Σ)).

So we have a singulary operation Ξ 7→ Con(Ξ) on P(PF).

We shall not study the operation Ξ 7→ Mod(Th(Ξ)) on P(2V).

If T is a set of formulas that is the theory of some set of truth-assignments,
then T can be called a theory, simply.

If F is a logical consequence of Σ, we may say also that Σ logically entails F.
So we have several ways of saying the same thing:

(∗) F is a logical consequence of Σ;

(†) Σ logically entails F;

(‡) F ∈ Con(Σ).

A fourth way is Σ � F; but I shall avoid this notation, lest it be confused with
the notation introduced on Line (2.6), which has a different meaning.

The logical consequences of ∅ are called tautologies; these are the formulas
that are true in every truth-assignment.

Note well that the definition of logical entailment is not inductive: there is (at
the moment) no obvious way to prove by induction that a given set of formulas
contains all logical consequences of Σ (or even all tautologies).

{lem:reversing}

Lemma 2.6.3. The operations Ξ 7→ Mod(Ξ) and Ξ 7→ Th(Ξ) are inclusion-
reversing, that is,

(∗) Σ ⊆ T =⇒ Mod(T) ⊆ Mod(Σ), and

(†) A ⊆ B =⇒ Th(B) ⊆ Th(A),

for all sets Σ and T of formulas, and all sets A and B of truth-assignments.

Proof. This is a purely set-theoretic fact, as the reader should check.
{thm:closure}

Theorem 2.6.4. Let Σ and T be subsets of PF.

(∗) Σ ⊆ Con(Σ).

(†) If Σ ⊆ T, then Con(Σ) ⊆ Con(T).

(‡) Con(Con(Σ)) = Con(Σ).

Proof. In a model of Σ, every element of Σ is true by definition. This proves
the first claim.

For the second claim, use Lemma 2.6.3 twice.

For the last claim, we have Con(Σ) ⊆ Con(Con(Σ)) by the first claim. Suppose
now F ∈ Con(Con(Σ)), and ε is a model of Σ. Then ε is a model of Con(Σ), so
ε � F. Thus F ∈ Con(Σ).

2.7. COMPACTNESS 29

Exercises

(1) Complete the proof of Theorem 2.6.1.

(2) Use Lemma 2.6.2 to show ε � F ⇐⇒ ε � ¬¬F.

(3) Prove Lemma 2.6.3.

(4) Prove that Σ is a theory if and only if Con(Σ) = Σ.

(5) Can you find a formula F such that Con({F}) = PF?

(6) Can you find a formula G such that Con({G}) = ∅?

(7) Suppose H ∈ Con({F → G}). Does it follow that H is a logical conse-
quence of ¬F or of G?

(8) Suppose H logically entails either ¬F or G; does it entail F → G?

(9) If H ∈ Con({¬F}) ∪ Con({G}), must H ∈ Con({F → G})?

(10) If H ∈ Con({¬F}) ∩ Con({G}), must H ∈ Con({F → G})?
{exercise:caps}

(11) Show that Mod(
⋃

i∈I Σi) =
⋂

i∈I Mod(Σi).
{exercise:cups}

(12) Show that Mod({F}) ∪ Mod({G}) = Mod({¬F → G}).

(13) Show that Mod({F})c = Mod({¬F}).

2.7 Compactness

A set of formulas with a model can be called satisfiable. {lem:sat}

Lemma 2.7.1. Σ logically entails F if and only if Σ ∪ {¬F} is not satisfiable.

Proof. Suppose Σ does not logically entail F. Then Σ has a model ε in which
F is false. Hence ε � ¬F by Lemma 2.6.2, (2.8), so ε is a model of Σ ∪ {¬F}.

Suppose conversely that Σ ∪ {¬F} has a model. Then F is false in this model,
again by Lemma 2.6.2, (2.8), so F is not a logical consequence of Σ.

A set of formulas whose every finite subset has a model can be called finitely
satisfiable.

Lemma 2.7.2. If Σ is finitely satisfiable, then the same is true of Σ ∪ {F} or
Σ ∪ {¬F}.

Proof. Suppose neither Σ∪{F} nor Σ∪{¬F} is finitely satisfiable. Then Σ has
finite subsets T0 and T1 such that neither T0∪{F} nor T1∪{¬F} is satisfiable.
Then also T0 ∪ {¬¬F} is not satisfiable (why?); hence ¬F ∈ Con(T0) and
F ∈ Con(T1), by Lemma 2.7.1. Therefore, every model ε of T0 ∪ T1 is a model
of T0 and T1 (by Lemma 2.6.3), hence ε is a model of {F,¬F}. There can be
no such models ε (why not?); so T0 ∪ T1 is not satisfiable. But this is a finite
subset of Σ; hence Σ is not finitely satisfiable.

30 CHAPTER 2. PROPOSITIONAL MODEL-THEORY

Theorem 2.7.3 (Compactness). Every finitely satisfiable set of formulas is
satisfiable.

Proof. Let Σ be finitely satisfiable. By strong recursion, we first define a func-
tion n 7→ Fn from ω into PF. Suppose {Fk : k < n} has been defined. We then
let Fn be Pn, if Σ ∪ {Fk : k < n} ∪ {Pn} is finitely satisfiable; otherwise, Fn is
¬Pn. This completes the recursive definition.

We now observe by induction that every set Σ ∪ {Fk : k < n} is finitely satisfi-
able. Indeed, it is true by assumption when n = 0; and if it is true when n = m,
then it is true when n = m+ 1, by the last lemma and the definition of the Fk.

Every finite subset of Σ∪ {Fk : k ∈ ω} is a finite subset of Σ∪ {Fk : k < n} for
some n. We have just seen that Σ∪{Fk : k < n} is finitely satisfiable; therefore
the whole set Σ ∪ {Fk : k ∈ ω} is finitely satisfiable.

Now let ε be the truth-assignment given by

ε(Pk) =

{
1, if Fk = Pk;

0, if Fk = ¬Pk.
(2.9)

This is a model of Σ. Indeed, suppose G ∈ Σ. Then G is n-ary for some n.
The finite set {G} ∪ {Fk : k < n} has a model ζ. In particular, ζ must agree
with ε on {Pk : k < n} (why?); so ε � G.

There are sets Σ of formulas such that every finite subset of Σ has a model that
is not a model of Σ itself.{example:compactness}

Example 2.7.4. Let Σn comprise the formulas

P0 → P1 → · · · → Pk,

where k < n. So Σ0 is empty, and Σ1 = {P0}, and we have a chain

Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ · · · .

Let Σ =
⋃

n∈ω Σn. Then every finite subset of Σ is a subset of some Σn. Let εn

be the truth-assignment such that

εn(Pk) = 1 ⇐⇒ k < n.

Then εn is a model of Σn, but not of Σn+1 (why?), hence not of Σ. •

If a set A is a finite subset of a set B, we may denote this by

A ⊆f B.

Now one consequence of the Compactness Theorem can be expressed as follows:
{cor:finitary}

Corollary 2.7.5. Con(Σ) =
⋃

Ξ⊆fΣ

Con(Ξ).

2.8. GENERALIZATIONS 31

Proof. By Theorem 2.6.4, it is enough to show that

Con(Σ) ⊆
⋃

Ξ⊆fΣ

Con(Ξ).

Suppose F is not a member of the union. Then, for each finite subset T of Σ,
the set Con(T) does not contain F, and so the set T ∪ {¬F} is satisfiable, by
Lemma 2.7.1. This means Σ∪ {¬F} is finitely satisfiable; so it is satisfiable, by
the Compactness Theorem. Therefore ¬F /∈ Con(Σ), again by Lemma 2.7.1.

Exercises

(1) If T ∪ {F} is not satisfiable, why is T ∪ {¬¬F} not satisfiable?

(2) Why has the set {F,¬F} no models?

(3) In the proof of the Compactness Theorem, why does ζ agree with ε on
{Pk : k < n}?

(4) In Example 2.7.4, prove by induction that εn ∈ Mod(Σn) r Mod(Σn+1).

(5) Suppose I is a set, and there is a function i 7→ Fi from I into PF, such
that ⋃

i∈I

Mod({Fi}) = 2V .

Prove that I has a finite subset J such that
⋃

i∈J Mod({Fi}) = 2V .

2.8 Generalizations

The concepts of the previous section are instances of more general concepts.

For an arbitrary set Ω, a singulary operation X 7→ cl(X) on P(Ω) is called a
closure-operator on Ω if it is:

(∗) increasing (that is, A ⊆ cl(A) for all subsets A of Ω);

(†) monotone (that is, cl(A) ⊆ cl(B) whenever A ⊆ B ⊆ Ω); and

(‡) idempotent (that is, cl(cl(A)) = cl(A) for all A in P(Ω)).

The terminology is potentially confusing: a closure-operator on Ω is an operation
on P(Ω) (not on Ω).

The closure-operator X 7→ cl(X) is called finitary if

cl(A) =
⋃

X⊆fA

cl(X)

for all A in P(Ω).

Examples 2.8.1.

(1) If Ω is a topological space, the function taking a subset of Ω to its
topological closure is a closure-operator on Ω (usually not finitary).

32 CHAPTER 2. PROPOSITIONAL MODEL-THEORY

(2) If G is a group, the function X 7→ 〈X〉 taking a subset of G to the
group that it generates is a finitary closure-operator on G.

(3) On PF, the function Ξ 7→ Con(Ξ) is a closure-operator, by Theo-
rem 2.6.4; it is finitary, by Corollary 2.7.5.

(4) On any set, the identity-function X 7→ X is trivially a finitary closure-
operator. •

Closure-operators can arise from a Galois correspondence between two sets.
Suppose A and B are sets, and R is a relation from A to B. If C ⊆ A, and
D ⊆ B, let

C ′ =
⋂

x∈C

{y ∈ B : x R y} = {y ∈ B : ∀x (x ∈ C → x R y)}

D′ =
⋂

y∈D

{x ∈ A : x R y} = {x ∈ A : ∀y (y ∈ D → x R y)}.

So we have functions X 7→ X ′ from P(A) to P(B), and from P(B) to P(A).
These functions are inclusion-reversing; so the functions X 7→ X ′′ are inclusion-
preserving (monotone). Moreover,

C ′′ = {x ∈ A : ∀y (y ∈ C ′ → x R y)}
= {x ∈ A : ∀y (∀z (z ∈ C → z R y) → x R y)},

so C ⊆ C ′′; similarly, D ⊆ D′′. Replacing C with D′, we get D′ ⊆ D′′′; but
since D ⊆ D′′, we get also D′′′ ⊆ D′; thus, D′ = D′′′. Similarly, C ′ = C ′′′.
Therefore the functions X 7→ X ′′ are closure-operators on A and B. Also,
the functions X 7→ X ′ are bijections—each the inverse of the other—between
{X ′ : X ⊆ B} and {X ′ : X ⊆ A}; the existence of such functions is a Galois
correspondence.

Exercises 11 and 12 in § 2.6 show that the sets Mod(Σ) are the closed sets in
a topology on 2V . Then the Compactness Theorem can be understood as the
topological statement that this topology is compact.

2.9 Completeness

An arbitrary singulary operation Ξ 7→ Π(Ξ) on P(PF) can be called

(∗) sound, if always Π(Σ) ⊆ Con(Σ);

(†) complete, if always Con(Σ) ⊆ Π(Σ).

We shall show that logical entailment is the same relation as syntactic entail-
ment; that is, the operation

Ξ 7−→ {X ∈ PF : Ξ ` X}

on P(PF) is sound and complete.

Theorem 2.9.1 (Soundness). If Σ ` F, then F ∈ Con(Σ).

2.9. COMPLETENESS 33

Proof. We use induction on the set of syntactic consequences of Σ to show that
it is a subset of Con(Σ). All axioms are tautologies; hence they are logical
consequences of Σ by Theorem 2.6.4. By the same theorem, all elements of
Σ are logical consequences of Σ. Finally, suppose F and F → G are logical
consequences of Σ, and ε is a model of Σ. Then F̂(ε) = 1. Also, writing H for
F → G, we have

1 = Ĥ(ε) = 1 + F̂(ε) + F̂(ε) · Ĝ(ε) = 1 + 1 + 1 · Ĝ(ε) = Ĝ(ε),

so ε � G. This completes the induction and the proof.

Proving completeness will take more work.4
{lem:eval}

Lemma 2.9.2. Suppose ~e is an n-ary truth-assignment, and suppose Σ is a set

of formulas that, for each k in n, contains

{
Pk, if ek = 1;

¬Pk , if ek = 0.
Then

Σ ` F′

for all n-ary formulas F, where F′ is the formula

{
F, if F̂(~e) = 1;

¬F, if F̂(~e) = 0.

Proof. When k < n, let P′
k =

{
Pk, if ek = 1;

¬Pk , if ek = 0.
Suppose {P′

k : k < n} ⊆ Σ.

Let F′ be defined as in the statement of the theorem. We proceed by induction
on n-ary formulas.

If F is a variable Pk , where k < n, then F′ is P′
k, which is in Σ, so Σ ` F′.

Suppose Σ ` G′, and F is ¬G. There are two cases to consider.

(∗) If F̂(~e) = 1, then Ĝ(~e) = 0, so F′ is F, but G′ is ¬G, which is F, that
is, F′.

(†) If F̂(~e) = 0, then Ĝ(~e) = 1, so G′ is G, but F′ is ¬F, which is ¬¬G,
that is, ¬¬G′.

In either case, we have ` G′ → F′, by Lemmas 2.3.2 and 2.5.2; hence Σ ` F′

by inductive hypothesis and Detachment.

Suppose finally that Σ ` G′ and Σ ` H′, and F is G → H. There are three
cases to consider:

(∗) Ĝ(~e) = 0;

(†) Ĥ(~e) = 1;

(‡) Ĝ(~e) = 1 and Ĥ(ε) = 0.

Details are left to the reader. This completes the proof.

Theorem 2.9.3 (Completeness). If F ∈ Con(Σ), then Σ ` F.

4The following lemma corresponds to one found in Church [3, *151, p. 98]; the origin is
not clear.

34 CHAPTER 2. PROPOSITIONAL MODEL-THEORY

Proof. Suppose F ∈ Con(Σ). By Compactness (rather, Corollary 2.7.5), Σ has
a finite subset T such that F ∈ Con(Σ). Write T as {F0, . . . ,Fm−1}, and F as
Fm. Then the formula

F0 → · · · → Fm

is a tautology (the proof of this is left to the reader). Call this tautology G,
and suppose it is n-ary. We shall show by induction on n that G is a Theorem.

Let P′
k ∈ {Pk,¬Pk} for each k in n. By the previous lemma, we have

P′
0 . . . ,P

′
n−1 ` G. (2.10)

If n = 0, we are done. (However, there are no nullary formulas.) Suppose that G
is a Theorem under the assumption that n = `; but now suppose n = `+1. From
Entailment (2.10) in this case, by the Deduction Theorem (2.5.1), remembering
that P′

` can be either P` or ¬P`, we have

P′
0 . . . ,P

′
`−1 ` P` → G,

P′
0 . . . ,P

′
`−1 ` ¬P` → G.

so P′
0 . . . ,P

′
`−1 ` G by Lemma 2.5.2. By inductive hypothesis, G is a Theorem.

Exercises

(1) Complete the proof of Lemma 2.9.2.

(2) Prove by induction that, if Fm ∈ Con({F0, . . . ,Fm−1}), then the formula
F0 → · · · → Fm is a tautology.

Chapter 3

First-order logic

Recall from § 1.1 the definitions and examples involving structures; these are
the kinds of structures that we shall now be dealing with.

Throughout this chapter, we shall let A stand for an arbitrary structure; its
signature will be L. So A has universe A, which is just a non-empty set. We
shall use c, R and f to stand for arbitrary constants, predicates and relations
of L, respectively. We shall use n for the arity of R and f .

Instead of propositional variables, we shall use a set of individual variables,
namely

{xk : k ∈ ω}.

The structure A, as such, comes equipped with the operations fA and the
relations RA. We can combine these, in the ways to be described below, so as
to obtain new operations and relations. These new operations and relations will
be symbolized by certain strings:

(∗) operations will be symbolized by terms;

(†) relations will be symbolized by formulas.

3.1 Terms

If k < n, then there is an n-ary operation

~a 7−→ ak (3.1)

on A. This operation is projection onto the kth coordinate.

Each element b in A determines, for each positive n, the constant n-ary operation

~a 7−→ b. (3.2)

If b is cA, then we have the n-ary operation ~a 7→ cA.

More generally, if α is an n-ary operation on A, then there is an (n + k)-ary
operation on A, namely

(~x , ~y) 7−→ α(~x).

35

36 CHAPTER 3. FIRST-ORDER LOGIC

All operations on A can be composed with one another: If α is an n-ary opera-
tion on A, and (βk : k < n) is an n-tuple of

, and with projections, to give other operations on A. The terms of L symbolize
these possibilities. The symbols used in terms of L are:

(∗) the function-symbols f of L;

(†) the constants c of L;

(‡) (individual) variables, say from the set {xk : k ∈ ω}; these will sym-
bolize the projections.

Then the terms of L are defined inductively thus:

(∗) Each individual variable is a term of L.

(†) Each constant in L is a term of L.

(‡) If f is an n-ary function-symbol of L, and t0, . . . , tn−1 are terms of L,
then the string

ft0 · · · fn−1

is a term of L. (This is not generally a string of length n+ 1; it is a string
whose length is 1 more than the sum of the lengths of the strings tk. If f
is binary, then we may unofficially write the term as (t0 f t1) instead of
ft0t1.)

Let the set of terms of L be denoted

TmL .

As in propositional logic, so here, definition by recursion is possible, because of
the following:

Theorem 3.1.1 (Unique Readability). Every term of L is uniquely

st0 · · · tn−1

for some n in ω, some terms tk of L (if n 6= 0), and some s in L. If n 6= 0,
then s is an n-ary function-symbol of L; if n = 0, then s is a constant of L or
a variable.

Proof. Exercise. (The proof can be developed as for [a Theorem].)

Note well that, by our definition, none of the symbols used in terms is a bracket.

If the variables in a term t come from {xk : k < n}, then t is n-ary; the set of
n-ary terms of L can be denoted

Tmn
L .

Note then
Tm0

L ⊆ Tm1
L ⊆ Tm2

L ⊆ · · · .
An n-ary term t of L determines an n-ary operation tA on A. The formal
definition is recursive:

(∗) xk
A is ~a 7→ ak, if k < n (as in (3.1)).

3.1. TERMS 37

(†) cA is ~a 7→ cA (as in (3.2); here c is understood respectively as term and
constant).

(‡) (ft0 · · · tn−1)A is

~a 7−→ fA(t0
A(~a), . . . , tk−1

A(~a)),

that is, fA ◦ (t0
A, . . . , tk−1

A).

We have just extended the interpretation-function I of A so as to include a
function

t 7−→ tA : Tmn
L −→ AAn

. (3.3)

If t ∈ Tm0
L, then tA = {(0, a)} for some a in A; but (as in ch. 1) we can then

identify tA with a, and we can call t a constant term.

Suppose L ⊆ L′. An expansion of A to L′ is a structure A′ whose signature is
L′, and whose universe is A, such that

sA
′

= sA

for all s in L. Then A is the reduct of A′ to L.

Example 3.1.2. The ring (Z,+,−, ·, 0, 1) is an expansion of the abelian group
(Z,+,−, 0); the latter is a reduct of the former. •

We can treat the elements of A as new constants (not belonging to L); adding
these to L gives the signature L(A). Then A has a natural expansion AA to this
signature, so that

aAA = a

for all a in A. (Some writers prefer to define L(A) as L∪{ca : a ∈ A}, and then
to define ca

AA = a.)

In fact, when it comes to interpreting terms (and, later, formulas), we always
treat A as if it were AA. This means that every n-ary term t of L(A) has an
interpretation tA in A according to the definition above, provided we understand
aA as a itself when a ∈ A. In other contexts, however, it will be important to
distinguish clearly between A and AA. We shall also want to speak of expansions
AX of A, where X is an arbitrary subset of A.

If t is an n-ary term of L (or L(A)), and ~a ∈ An, then the result of replacing
each xk in t with ak, for each k in n, can be written

t(~a);

this is a constant term of L(A). For a recursive definition, we have that t(~a) is:

(∗) ak, if t is xk;

(†) c, if t is c;

(‡) ft0(~a) · · · tk−1(~a), if t is ft0 · · · fk−1.

Thus we have defined a function

t 7−→ t(~a) : Tmn
L −→ Tm0

L(A) . (3.4)

38 CHAPTER 3. FIRST-ORDER LOGIC

The tuple ~a also determines the function

g 7−→ g(~a) : AAn −→ A. (3.5)

We now have several functions, in (3.3), (3.4) and (3.5), fitting together into a
square:

Tmn
L

~a−−−−→ Tm0
L(A)

I

y
yI

AAn −−−−→
~a

A

.

It doesn’t matter which way you go around:

Lemma 3.1.3. tA(~a) = t(~a)AA for all n-ary terms of L, all L-structures A,
and all n-tuples ~a from A.

Proof. The claim is perhaps obvious; but there is a proof by induction:

If t is xk, then tA(~a) = ak, and t(~a)AA = ak
AA = ak.

If t is c, then tA(~a) = cA, while t(~a)AA = cAA = cA.

Finally, if the claim holds when t is any of terms ti, and now t is ft0 · · · fk−1,
then we have

tA(~a) = fA(t0
A(~a), . . . , tk−1

A(~a))

= fA(t0(~a)AA , . . . , tk−1(~a)AA)

= (ft0(~a) · · · tk−1(~a))AA

= t(~a)AA .

This completes the induction.

As an exercise, you can give a recursive definition of

t(u0, . . . , un−1),

where t is an n-ary term, and the uk are terms. What is the arity of the
resulting term? Show that

t(u0, . . . , un−1)A(~a) = tA(u0
A(~a), . . . , un−1

A(~a)).

Note then that, if t is n-ary, then t is precisely the term denoted

t(x0, . . . , xn−1).

Example 3.1.4. Let L be the signature of rings (with identity), and let A be
Z (or Q or R or C or some other infinite integral domain or field). If t is a term
of L(A), then tA is a polynomial over A. What if A is finite, say the 2-element
field F2? In that case, if t is x0 · (x0 + 1) or 0, then tA(a) = 0 for all a in A.
However, x0 · (x0 + 1) and 0 do not represent the same polynomial, since they
have different interpretations in fields (like F4) that properly include F2. (Here,
F4 can be defined as F2[X]/(X2 + 1).) •

3.2. FORMULAS 39

3.2 Formulas

As terms symbolize operations, so formulas will symbolize relations. Each for-
mula ϕ of L will have an interpretation ϕA that is a relation on A. When this
relation is nullary and is in fact {∅}, that is, 1, then ϕ will be called true in A,
and we shall write

A � ϕ.

Conversely, it is possible to define truth in structures first, and then interpreta-
tions. We shall look at both approaches.

So-called polynomial equations are examples of atomic formulas, which are the
first kinds of formulas to be defined. From these, we shall define open formulas,
and then arbitrary formulas.

Atomic formulas and their interpretations

The atomic formulas of L are of two kinds:

(∗) If t0 and t1 are terms of L, then t0 = t1 is an atomic formula of L. (Some
writers prefer to use a symbol like ≡ instead of =.)

(†) If R is an n-ary predicate of L, and t0, . . . , tn−1 are terms of L, then
Rt0 · · · tn−1 is an atomic formula of L. (If R is binary, then we may
unofficially write (t0 R t1) instead of Rt0t1.)

An atomic formula α can be called k-ary if the terms it is made from are k-ary.

A polynomial equation in two variables over R has a solution-set, which can
be considered as the interpretation of the equation. Likewise, arbitrary atomic
formulas have solution-sets, which are their interpretations: If α is a k-ary
atomic formula of L, then the interpretation in A of α is the k-ary relation
αA on A defined as follows. (Strictly, the validity of the definition depends on
Theorem 3.2.1 below.)

(t0 = t1)A = {~a ∈ Ak : t0
A(~a) = t1

A(~a)}; (3.6)

(Rt0 · · ·Rn−1)A = {~a ∈ Ak : (t0
A(~a), . . . , tn−1

A(~a)) ∈ RA}. (3.7)

As a special case, if k = 0, we have

(t0 = t1)A = 1 ⇐⇒ t0
A = t1

A; (3.8)

(Rt0 · · · tn−1)A = 1 ⇐⇒ (t0
A, . . . , tn−1

A) ∈ RA. (3.9)

Note that the atomic formula t0 = t1 can be considered as the special case
of Rt0 · · · tn−1 when n = 2 and R is =. We treat the special case separately
because we consider the equals-sign to be always available for use in formulas,
and we always interpret it as true equality.

Open formulas and their interpretations

We can treat atomic formulas as propositional variables, combining them to get
open (or quantifier-free) formulas:

40 CHAPTER 3. FIRST-ORDER LOGIC

(∗) atomic formulas are open formulas;

(†) if ϕ and χ are open formulas, then so are ¬ϕ and (ϕ→ χ).

As with atomic formulas, so with arbitrary open formulas: they are k-ary if
the terms they are built up from are k-ary. Hence, if ϕ and χ are k-ary open
formulas, then so are ¬ϕ and (ϕ → χ). We can now define interpretations of
k-ary open formulas by adding to (3.6) and (3.7) the following rules (again,
Theorem 3.2.1 is required):

(¬ϕ)A = Ak r ϕA = (ϕA)c; (3.10)

(ϕ→ χ)A = Ak r (ϕA r χA) = (ϕA r χA)c. (3.11)

In particular, if k = 0, then:

(¬ϕ)A = 1 ⇐⇒ ϕA = 0;

(ϕ → χ)A = 0 ⇐⇒ ϕA = 1 & χA = 0.

Formulas in general

Formulas in general may contain the existential quantifier ∃. The inductive
definition of formula is:

(∗) atomic formulas are formulas;

(†) if ϕ and χ are formulas, then so are ¬ϕ and (ϕ → χ);

(‡) if ϕ is a formula, and x is a variable, then ∃x ϕ is a formula.

The possibility of defining the foregoing interpretations of open formulas de-
pends on the following:

{thm:UR-formulas}

Theorem 3.2.1 (Unique Readability). Every formula of L is uniquely one of
the following:

(∗) an equation t0 = t1, for some terms te of L;

(†) a relational formula Rt0 · · · tn−1 for some terms tk and n-ary predicate
R of L, for some positive n;

(‡) a negation ¬ϕ for some formula ϕ;

(§) an implication (ϕ → χ) for some formulas ϕ and χ;

(¶) an existential formula ∃x ϕ for some formula ϕ and some variable x.

Proof. Exercise.

Towards interpretations in general

In order to define interpretations of arbitrary formulas, we can still use (3.10)
and (3.11) above to define (¬ϕ)A and (ϕ → χ)A in terms of ϕA and χA.
However, we also must define (∃x ϕ)A in terms of ϕA; and we must first define
the arity ∃x ϕ in terms of the arity of ϕ. This is not quite so easy. We shall do
it presently. When we are done, then, for every n-ary formula ϕ of L, there will
be an n-ary relation ϕA on A; this relation is defined by ϕ, and the relation

3.2. FORMULAS 41

can be called a 0-definable relation of A. The definable relations are those
defined by formulas of L(A); more generally, if X ⊆ A, then the X-definable
relations are those defined by formulas of L(X). (Singulary definable relations
can just be called definable sets.)

If X and Y are k-ary definable relations of A, then so are Xc, X ∩ Y , X ∪ Y ,
&c. In short, all Boolean combinations of definable relations are definable,
since {¬,→} is an adequate signature for propositional logic.

Now, if ϕ is an n-ary formula, defining as such the n-ary relation X , then we
can also treat ϕ as (n+ 1)-ary, defining the relation X ×A on A. This relation
is the set

{(~a , b) ∈ An+1 : ~a ∈ X}.

This set is also π−1(X), where π is the function

(~a , b) 7−→ ~a : An+1 −→ An; (3.12)

this map is projection onto the first n coordinates. In short then, inverse
images of definable sets under projections are definable. Using the quantifier ∃
in formulas will allow images under projections to be definable.

Indeed, suppose ϕ is an (n + 1)-ary formula. Then we can define (∃xn ϕ)A to
consist of those ~a in An such that there exists b in A such that (~a , b) ∈ ϕA.
Hence (∃xn ϕ)A is π′′(ϕA), the image of ϕA, where π is the projection in (3.12).

But what is (∃xi ϕ)A here, if i < n? Defining this takes a bit more work;
see Remark 3.2.4 below. Meanwhile, we can give an alternative approach to
interpreting formulas:

Truth

Let Fm L be the set of formulas of L. We recursively define a function

ϕ 7−→ fv(ϕ) : Fm L −→ P({xk : k ∈ ω})

as follows:

(∗) fv(α) is the set of variables in α, if α is atomic (for an exercise, this can
be given a recursive definition);

(†) fv(ϕ → χ) = fv(ϕ) ∪ fv(χ);

(‡) fv(∃x ϕ) = fv(ϕ) r {x}.

Then fv(ϕ) is the set of free variables of ϕ.

If fv(ϕ) = ∅, then ϕ is a sentence. So an atomic sentence α is a nullary atomic
formula; in this case, we can define

A � α ⇐⇒ αA = 1; (3.13)

in either case, α is true in A. Otherwise, α is false in A, and we can write

A 2 α.

42 CHAPTER 3. FIRST-ORDER LOGIC

We can also define

A � ¬σ ⇐⇒ A 2 σ; (3.14)

A 2 (σ → τ) ⇐⇒ A � σ & A � ¬τ ; (3.15)

provided σ and τ are sentences for which truth and falsity in A have been
defined. To define A � ∃v ϕ, we should assume that we have been working with
formulas of L(A) all along, and we should define a kind of substitution:

For formulas ϕ, if x is a variable and t is a term, we define the formula

ϕx
t

recursively:

(∗) If α is atomic, then αx
t is the result of replacing each occurrence of x in α

with t (as an exercise, you can define this recursively);

(†) (¬ϕ)x
t is ¬(ϕx

t);

(‡) (ϕ → χ)x
t is (ϕx

t → χx
t);

(§) (∃x ϕ)x
t is ∃x ϕ (no change);

(¶) (∃u ϕ)x
t is ∃u ϕx

t , if u is not x.

Then ϕx
t is the result of replacing each free instance of x in ϕ with t. Now we

can define

A � ∃x ϕ ⇐⇒ A � ϕx
a for some a in A. (3.16)

We have now completed the definition of truth; it is expressed by lines (3.8),
(3.9), (3.13), (3.14), (3.15) and (3.16).

Interpretations

If fv(ϕ) ⊆ {xk : k < n}, then ϕ can be called n-ary, and we can write ϕ as

ϕ(x0, . . . , xn−1).

Then, instead of ϕx0

a0
· · ·xn−1

an−1
, we can write

ϕ(a0, . . . , an−1)

or ϕ(~a). (Here, ~a is a tuple of constants. We could let it be a tuple (t0, . . . , tn−1)
of arbitrary terms; but then we should have to ensure that ϕ(t0, . . . , tn−1) is
the result of simultaneously substituting each tk for the free instances of the
corresponding variable xk.)

Lemma 3.2.2. Let ϕ be an n-ary formula of L.

(∗) If ϕ is atomic, then ϕA = {~a ∈ An : A � ϕ(~a)}.
(†) If ϕ is ¬χ, then {~a ∈ An : A � ϕ(~a)} = {~a ∈ An : A � χ(~a)}c.

(‡) If ϕ is (χ→ ψ), then

{~a ∈ An : A � ϕ(~a)} = {~a ∈ An : A � χ(~a)}c ∪ {~a ∈ An : A � ψ(~a)}.

3.2. FORMULAS 43

(§) If ϕ is ∃xn χ, then

{~a ∈ An : A � ϕ(~a)} = π′′({(~a , b) ∈ An+1 : A � χ(~a , b)}),

where π (as in (3.12)) is projection onto the first n coordinates.

Proof. Exercise.

Now we can define
ϕA = {~a ∈ An : A � ϕ(~a)}

for all formulas ϕ.

In a formula of L(A), any constants from A can be called parameters. So the
definable relations of A are, more fully, the relations definable with parameters.

Example 3.2.3. Algebraic geometry studies the definable relations of C and
of other algebraically closed fields. It can be shown that, on C, all definable
relations are definable by open formulas. The model-theoretic expression for
this fact is that the theory of algebraically closed fields admits elimination of
quantifiers. •

As an exercise, you can think about what are the definable sets of

(1) the field C;

(2) (ω,<, 0);

(3) (ω,<);

(4) (ω, s), if s is x 7→ x+ 1;

(5) a set (that is, a structure in the empty signature).

You probably will not be able to prove your answers at this point. {rem:def}

Remark 3.2.4. To complete our first approach to definable sets, let us ignore
the ordering of ω. If I is a finite subset of ω, and if {i : xi ∈ fv(ϕ)} ⊆ I , let us
say that ϕ is I-ary. Let AI be the set of functions from I to A, a typical such
function being denoted

(ai : i ∈ I).

The definition of ϕA as a subset of AI starts out as before. To define (∃xj ϕ)A,
let πI

j be the function

(xi : i ∈ I) 7−→ (xi : i ∈ I r {j}) : AI −→ AIr{j}.

Now we can define
(∃xj ϕ)A = (πI

j)′′(ϕA).

But this doesn’t allow ∃v ϕ to be treated as J-ary when J contains j. So we
should say in addition that if ϕ is I-ary, and J is any finite subset of ω, then
the set

ϕA ×AJrI

is the interpretation of ϕ when considered as (I ∪J)-ary. Also, suppose {i : xi ∈
fv(∃xj ϕ)} ⊆ J . Then ϕ is (J ∪ {j})-ary, and we can define

(∃xj ϕ)A = (π
J∪{j}
j)′′(ϕA) ×A{j}∩J .

This formulation of definable relations is rather complicated to be useful; the
main point is that a geometric characterization of definable relations is possible:

44 CHAPTER 3. FIRST-ORDER LOGIC

Theorem 3.2.5. The family of 0-definable relations of a structure A of L is the
smallest family of relations on A that is closed under Boolean operations, Carte-
sian products, projections and permutations of coordinates; that contains the di-
agonal {(a, a) : a ∈ A}; and that contains the sets {cA}, RA and {(a0, . . . , an) :
fA(a0, . . . , an−1) = an}.

3.3 Logical consequence

Having defined truth, we can define logical consequence. Let SnL be the set
of sentences of L. The L-structure A is a model of a subset Σ of SnL if each
sentence in Σ is true in A; then we can write

A � Σ.

If a sentence σ is true in every model of Σ, then σ is a (logical) consequence
of Σ, and we can write

Σ � σ.

If ∅ � σ, then we can write just

� σ;

in this case, σ is a validity.

Two sentences are (logically) equivalent if each is a logical consequence of
the other.

Lemma 3.3.1. Let σ and τ be sentences of L.

(∗) σ � τ if and only if � (σ → τ), for all σ and τ in SnL.

(†) σ and τ are equivalent if and only if � (σ → τ) ∧ (τ → σ).

(‡) Logical equivalence is an equivalence-relation on SnL.

Proof. Exercise.

Instead of the formula (ϕ → χ) ∧ (χ→ ϕ), let us write

ϕ↔ χ.

By the lemma, σ and τ are logically equivalent if and only if (σ ↔ τ) is a
validity. We may blur the distinction between logically equivalent sentences,
identifying σ with ¬¬σ for example.

Instead of ¬∃v ¬ϕ, we may write

∀v ϕ.

Then ¬∀v ϕ is (equivalent to) ∃v ¬ϕ.
{example:entailment}

Example 3.3.2. The sentence

(∀x (Px → Qx) → (∀x Px → ∀x Qx))

3.3. LOGICAL CONSEQUENCE 45

is a validity, where P and Q are unary predicates. To prove this, note that,
by (3.15), it is enough to show that A � (∀x Px → ∀x Qx) whenever A �

∀x (Px → Qx). So suppose

A � ∀x (Px → Qx). (3.17)

It is now enough to show that, if also A � ∀x Px, then A � ∀x Qx. So suppose

A � ∀x Px. (3.18)

Let a ∈ A. Then A � Pa, by (3.18). But A � (Pa → Qa), by (3.17). Hence
A � Qa. Since a was arbitrary, we have A � ∀x Qx. •

If fv(ϕ) = {u0, . . . , un−1}, and A � ∀u0 · · · ∀un−1 ϕ, we may write just

A � ϕ.

Here, the sentence ∀u0 · · · ∀un−1 ϕ is the (universal) generalization of ϕ.
Now we can define Σ � ϕ for arbitrary formulas ϕ (although Σ should still
be a set of sentences); we can also say that arbitrary formulas ϕ and χ are
(logically) equivalent if

� (ϕ ↔ χ).

For the formula ϕ with free variables x0, . . . , xn−1, if we have

A � ∃u0 · · · ∃un−1 ϕ,

then we can say that ϕ is satisfied in A.

It can happen then that A 2 ϕ and A 2 ¬ϕ. However, if σ is a sentence, then
either σ or ¬σ is true in A.

Example 3.3.3. Each of the following formulas is true in every group:

x · (y · z) = (x · y) · z,
x · 1 = x,

1 · x = x,

x · x−1 = 1,

x−1 · x = 1.

•

If Σ ⊆ SnL, let
ConL(Σ) = {σ ∈ SnL : Σ � σ}.

Lemma 3.3.4. ConL(ConL(Σ)) = ConL(Σ).

Proof. Since Σ ⊆ ConL(Σ), we have ConL(Σ) ⊆ ConL(ConL(Σ)). Suppose
σ ∈ ConL(ConL(Σ)). Then ConL(Σ) � σ. But if A � Σ, then A � ConL(Σ), so
in this case A � σ. Thus σ ∈ ConL(Σ).

A subset T of SnL is a theory of L if ConL(T) = T . A subset Σ of a theory T
is a set of axioms for T if

T = ConL(Σ);

we may also say then that Σ axiomatizes T .

46 CHAPTER 3. FIRST-ORDER LOGIC

{examp:groups}

Example 3.3.5. The theory of groups is axiomatized by

∀x ∀y ∀z x · (y · z) = (x · y) · z,
∀x x · 1 = x,

∀x 1 · x = x,

∀x x · x−1 = 1,

∀x x−1 · x = 1.

•

If A is an L-structure, let

Th(A) = {σ ∈ SnL : A � σ}.

Lemma 3.3.6. Th(A) is a theory.

Proof. Say Th(A) � σ. Since A � Th(A), we have A � σ, so σ ∈ Th(A).

We can now call Th(A) the theory of A. Note that, if T is Th(A), then

T � σ ⇐⇒ T 2 ¬σ

for all sentences σ. An arbitrary theory T need not have this property; if it
does, then T is complete. So, the theory of a structure is always complete.
The converse holds, by the next lemma; also, the set SnL is a theory, but it is
not complete:

{lem:complete}

Lemma 3.3.7. Let T be a theory of L.

(∗) If T has no model, then T is SnL itself.

(†) If T is complete, then T is Th(A) for some structure A, which is a
model of T .

(‡) If T has a model A, then T is included in Th(A), which is a complete
theory: in particular

T � σ =⇒ T 2 ¬σ
for all σ in SnL.

(§) Hence, to prove that T is complete, it is enough to show that T has
models and

T 2 σ =⇒ T � ¬σ
for all σ in SnL.

Proof. Consider the points in order:

(∗) If T is a theory with no models, and σ is a sentence, then σ is true in
every model of T , so T � σ, whence σ ∈ T .

(†) If T is complete, then by definition it cannot contain all sentences, so
it must have a model A. Then T ⊆ Th(A). By this and completeness of
T , we have

T � σ =⇒ α � σ =⇒ α 2 ¬σ =⇒ T 2 ¬σ =⇒ T � σ

for all σ in SnL . In short, T � σ ⇐⇒ A � σ, so T = Th(A).

3.4. ADDITIONAL EXERCISES 47

(‡) The set {σ,¬σ} has no models.

(§) Obvious.

This completes the proof.

We can also speak of the theory of a class of L-structures. If K is such a class,
then Th(K) is the set of sentences of L that are true in every structure in K.

In particular, if Σ ⊆ SnL, then we can define

Mod(Σ)

to be the class of all models of Σ. Then

Th(Mod(Σ)) = ConL(Σ).

Example 3.3.8. By definition, a group is just a model of the theory of groups,
as axiomatized in Example 3.3.5. Hence this theory is Th(K), where K is the
class of all groups. •

3.4 Additional exercises

(1) Letting P and Q be unary predicates, determine, from the definition of �,
whether the following hold. (A method is shown in Example 3.3.2.)

(∗) (∃x Px→ ∃x Qx) � ∀x (Px→ Qx);

(†) (∀x Px→ ∃x Qx) � ∃x (Px→ Qx);

(‡) ∃x (Px → Qx) � (∀x Px → ∃x Qx);

(§) {∃x Px, ∃x Qx} � ∃x (Px ∧ Qx);

(¶) ∃x Px → ∃y Qy � ∀x ∃y (Px → Qy).

(2) Let L = {R}, where R is a binary predicate, and let A be the L-structure
(Z,6). Determine ϕA if ϕ is:

(∗) ∀x1 (Rx1x0 → Rx0x1);

(†) ∀x2 (Rx2x0 ∨ Rx1x2).

(3) Let L be {S, P}, where S and P are binary function-symbols. Then
(R,+, ·) is an L-structure. Show that the following sets and relations are
definable in this structure:

(∗) {0};

(†) {1};

(‡) {a ∈ R : 0 < a};

(§) {(a, b) ∈ R2 : a < b}.

(4) Show that the following sets are definable in (ω,+, ·,6, 0, 1):

(∗) the set of even numbers;

(†) the set of prime numbers.

(5) Let R be the binary relation

{(x, x+ 1) : x ∈ Z}
on Z. Show that R is 0-definable in the structure (Z, <); that is, find a
binary formula ϕ in the signature {<} such that ϕ(Z,<) = R.

Chapter 4

Quantifier-elimination

In general, if we have some sentences, how might we show that the theory that
they axiomatize is complete? If the theory is not complete, this is easy to show:

Example 4.0.1. The theory of groups is not complete, since the sentence

∀x ∀y xy = yx

is true (by definition) only in abelian groups, but there are non-abelian groups
(such as the group of permutations of three objects). The theory of abelian
groups is not complete either, since (in the signature {+,−, 0}) the sentence

∀x (x + x = 0 → x = 0)

is true in (Z,+,−, 0), but false in (Z/2Z,+,−, 0). •

Let TO be the theory of strict total orders; this is axiomatized by the universal
generalizations of:

¬(x < x),

x < y → ¬(y < x),

x < y ∧ y < z → x < z,

x < y ∨ y < x ∨ x = y.

This theory is not complete, since (ω,<) and (Z, <) are models of TO with
different complete theories (exercise).

Let TO∗ be the theory of dense total orders without endpoints, namely,
TO∗ has the axioms of TO, along with the universal generalizations of:

∃z (x < z ∧ z < y),

∃y y < x,

∃y x < y.

The theory TO∗ has a model, namely (Q, <). We shall show that TO∗ is
complete. In order to do this, we shall first show that the theory admits (full)
elimination of quantifiers.

48

49

An arbitrary theory T admits (full) elimination of quantifiers if, for every
formula ϕ of L, there is an open formula χ of L such that

T � (ϕ ↔ χ)

—in words, ϕ is equivalent to χ modulo T .
{lem:QE}

Lemma 4.0.2. An L-theory T admits quantifier-elimination, provided that, if
ϕ is an open formula, and v is a variable, then ∃v ϕ is equivalent modulo T to
an open formula.

Proof. Use induction on formulas. Specifically:

Every atomic formula is equivalent modulo T to an open formula, namely itself.

Suppose ϕ is equivalent modulo T to an open formula α. Then T � (¬ϕ ↔ ¬α);
but ¬α is open.

Suppose also χ is equivalent modulo T to an open formula β. Then

T � ((ϕ → χ) ↔ (α → β));

but (α→ β) is open.

Finally, T � (∃v ϕ ↔ ∃v α) (exercise); but by assumption, ∃v α is equivalent
to an open formula γ; so T � (∃v ϕ ↔ γ) (exercise). This completes the
induction.

The lemma can be improved slightly. Every open formula is logically equivalent
to a formula in disjunctive normal form:

∨

i<m

∧

j<n

α
(j)
i ,

where each α
(j)
i is either an atomic or a negated atomic formula. (See § 2.6 of

this year’s notes for Math 111.) This formula in disjunctive normal form can
also be written ∨

i<m

∧
Σi

where Σi = {a(j)
i : j < n}. Note that

� (∃v
∨

i<m

∧
Σi ↔

∨

i<m

∃v
∧

Σi) (4.1)

(exercise). The formulas ∃v ∧
Σi are said to be primitive. In general, a

primitive formula is a formula

∃u0 · · · ∃un−1

∧
Σ,

where Σ is a finite non-empty set of atomic and negated atomic formulas. (Re-
member that

∧
Σ is just an abbreviation for ϕ0 ∧ . . . ∧ ϕn−1, where the formulas

ϕi compose Σ; so Σ must be finite since formulas must have finite length. Also,
formulas have positive length, so Σ must be non-empty. However, the notation∧

∅ could be understood to stand for a validity.)

50 CHAPTER 4. QUANTIFIER-ELIMINATION

Using (4.1), we can adjust the induction above to show that T admits quantifier-
elimination, provided that every primitive formula with one (existential) quan-
tifier is equivalent modulo T to an open formula.

Henceforth suppose L is {<}, and TO ⊆ T ; so T is a theory of total orders.
Then we can improve Lemma 4.0.2 even more. Indeed, the atomic formulas of
L now are x = y and x < y, where x and y are variables. Moreover,

TO � (¬(x < y) ↔ (x = y ∨ y < x)),

TO � (¬(x = y) ↔ (x < y ∨ y < x)).

Hence, in L, any formula is equivalent, modulo TO, to the result of replacing
each negated atomic sub-formula with the appropriate disjunction of atomic
formulas. If this replacement is done to a formula in disjunctive normal form,
then the new formula will have a disjunctive normal form that involves no
negations. So T admits quantifier-elimination, provided that every formula

∃v
∧

Σ

is equivalent, modulo T , to an open formula, where now Σ is a set of atomic
formulas.

Using this criterion, we shall show that TO∗ admits quantifier-elimination:
{thm:TO-QE}

Theorem 4.0.3. TO∗ admits (full) elimination of quantifiers.

Proof. Let Σ be a finite, non-empty set of atomic formulas (in the signature
{<}). Let X be the set of variables appearing in formulas in Σ; that is,

X =
⋃

α∈Σ

fv(α).

Then X is a finite non-empty set; say

X = {x0, . . . , xn}.

Suppose A is an L-structure, and ~a ∈ An+1. If α is an atomic formula of L
with variables from X , we can let α(~a) be the result of replacing each xi in α
with ai. Then we can let

Σ(~a) = {α(~a) : α ∈ Σ}.

Suppose in fact

A � TO ∪ {
∧

Σ(~a)}.

Let us define Σ(A,~a) as the set of atomic formulas α such that fv(α) ⊆ X and
A � α(~a). Then

Σ ⊆ Σ(A,~a).

Moreover, once Σ has been chosen, there are only finitely many possibilities for
the set Σ(A,~a). Let us list these possibilities as

Σ0, . . . ,Σm−1.

51

Now, possibly m = 0 here. In this case,

TO � (∃v
∧

Σ ↔ v 6= v),

so we are done. Henceforth we may assume m > 0. If B � TO∪{∧ Σ(~b)}, then

B �
∧

Σi(~b)

for some i in m. Therefore

TO � (
∧

Σ ↔
∨

i<m

∧
Σi),

and hence
TO � (∃v

∧
Σ ↔

∨

i<m

∃v
∧

Σi).

Therefore, for our proof of quantifier-elimination, we may assume that Σ is one
of the sets Σ(A,~a) (so that, in particular, m = 1).

Now partition Σ as Γ ∪ ∆, where no formula in Γ, but every formula in ∆,
contains v. There are two extreme possibilities:

(∗) Suppose Γ = ∅. ThenX = {v} (since if x ∈ Xr{v}, then (x = x) ∈ Γ).
Also, Σ = ∆ = {v = v}, so

� (∃v
∧

Σ ↔ v = v),

and we are done in this case.

(†) Suppose ∆ = ∅. Then v /∈ X , and

� (∃v
∧

Σ ↔
∧

Σ),

so we are done in this case.

Henceforth, suppose neither Γ nor ∆ is empty. Then

� (∃v
∧

Σ ↔
∧

Γ ∧ ∃v
∧

∆).

We shall show that
TO∗

� (∃v
∧

Σ ↔
∧

Γ), (4.2)

which will complete the proof. To show (4.2), it is enough to show

TO∗
� (

∧
Γ → ∃v

∧
∆).

But this follows from the definition of TO∗:

Indeed, remember that Σ is Σ(A,~a). Hence, for all i and j in n+ 1, we have

ai < aj ⇐⇒ (xi < xj) ∈ Σ;

ai = aj ⇐⇒ (xi = xj) ∈ Σ.

We have v ∈ X . We can relabel the elements of X as necessary so that v is xn

and
a0 6 . . . 6 an−1.

52 CHAPTER 4. QUANTIFIER-ELIMINATION

(Here, ai 6 ai+1 means ai < ai+1 or ai = ai+1 as usual.) Suppose B � TO∗,

and Bn contains ~b such that B �
∧

Γ(~b). We have to show that there is c in B

such that B �
∧

∆(~b , c). Now, for all i and j in n, we have

bi < bj ⇐⇒ ai < aj ;

bi = bj ⇐⇒ ai = aj .

Because B is a model of TO∗ (and not just TO), we can find c as needed
according to the relation of an with the other ai:

(∗) If an = ai for some i in n, then let c = bi.

(†) If an−1 < an, then let c be greater than bn−1.

(‡) If an < a0, then let c be less than b0.

(§) If ak < an < ak+1, then we can let c be such that bk < c < bk+1.

This completes the proof that TO∗ admits quantifier-elimination.

We have proved more than quantifier-elimination: we have shown that, modulo
TO∗, the formula ∃v ∧

Σ is equivalent to v 6= v or v = v or an open formula with
the same free variables as ∃v ∧

Σ. In the proof, we introduced v 6= v simply as a
formula ϕ such that A 2 ϕ for every structure A. Such a formula corresponds to
a nullary Boolean connective, namely an absurdity (the negation of a validity).
We used 0 as such a connective; but let us now use ⊥.

Likewise, instead of v = v, we can use, as a validity, the nullary Boolean con-
nective >. From the last proof, therefore, we have:

Porism 4.0.4. In the signature {<}, with the nullary connectives ⊥ and >
allowed, every formula is equivalent modulo TO∗ to an open formula with the
same free variables.

In a signature of first-order logic without constants, an open sentence consists
entirely of Boolean connectives, with no propositional variables; so it is either
an absurdity or a validity. As a consequence, we have:

Theorem 4.0.5. TO∗ is a complete theory.

Proof. By the porism, every sentence is equivalent to an open sentence; as just
noted, such a sentence is an absurdity or a validity. Suppose TO∗

� (σ ↔ ⊥).
But � (σ ↔ ⊥) ↔ ¬σ; so TO∗

� ¬σ. Similarly, if TO∗
� (σ ↔ >), then

TO∗
� σ. Hence, for all sentences σ, if TO∗ 2 σ, then TO∗

� ¬σ. Therefore
TO∗ is complete by Lemma 3.3.7.

Chapter 5

Relations between

structures

There are several binary relations on the class of structures in a signature L.
Some relations involve universes of structures; others do not.

Let A and B be L-structures.

5.1 Fundamental definitions

The structure A is a substructure of B, or B is an extension of A, if A ⊆ B
and

(∗) cA = cB for all constants c of L;

(†) RA = An ∩ RB for all n-ary predicates R of L, for all positive n in ω;

(‡) fA = fB ◦ idAn for all n-ary function-symbols f of L, for all positive n
in ω.

In this case, we write
A ⊆ B.

Immediately, A ⊆ B if and only if A ⊆ B and

A � σ ⇐⇒ B � σ (5.1)

for all atomic sentences σ of L(A) of one of the forms

a0 = c,

Ra0 · · · an−1,

fa0 · · · an−1 = an.

The two structures A and B are called elementarily equivalent if (5.1) holds
for all sentences σ of L (not L(A)). In this case, we write

A ≡ B.

53

54 CHAPTER 5. RELATIONS BETWEEN STRUCTURES

Then the relation ≡ of elementary equivalence is in fact the equivalence-
relation induced on the class of L-structures by the function M 7→ Th(M); that
is,

A ≡ B ⇐⇒ Th(A) = Th(B).

All models of a complete theory are elementarily equivalent, and first-order logic
provides no means to distinguish between elementarily equivalent structures.
We shall see other possible ways to distinguish between them.

5.2 Additional definitions

The structure A is an elementary substructure of B, and B is an elemen-
tary extension of A, if A ⊆ B and AA ≡ BA. Then we write

A 4 B.

(Some people prefer just to write A ≺ B.) Note here that AA ≡ BA if and only
if (5.1) holds for all sentences σ of L(A). In particular, elementary substructures
are substructures.

Various functions between (universes of) structures are possible. To describe
them, it is convenient to use the following convention. If h is a function from A
to B, we also understand h as the function from An to Bn given by

h(~a) = h(a0, . . . , an−1) = (h(a0), . . . , h(an−1)), (5.2)

for each n in ω. In particular, as a function from A0 to B0, h is {(0, 0)}.

The structure A embeds in B if there is an injection h from A to B such that:

(∗) h(cA) = cB for all constants c in L;

(†) h′′(RA) = h′′(An) ∩ RB for all n-ary predicates R in L, for all positive n
in ω;

(‡) h ◦ fA = fB ◦ h for all n-ary function-symbols f in L, for all positive n
in ω.

Then h is an embedding of A in B; to express this, we can write

h : A −→ B.

Immediately, h : A → B if and only if h : A → B and

A � ϕ(~a) ⇐⇒ B � ϕ(h(~a)), for all ~a from A, (5.3)

for all atomic formulas ϕ of L of one of the forms

x0 = x1,

x0 = c,

Rx0 · · ·xn−1,

fx0 · · ·xn−1 = xn.

If (5.3) holds for all formulas ϕ of L, then h is an elementary embedding of
A in B, and we can write

h : A
≡−→ B.

5.3. IMPLICATIONS 55

Example 5.2.1. The map x 7→ x/1 is an embedding of the ring Z in the field
Q, but not an elementary embedding, since Z � ϕ(1), but Q 2 ϕ(1/1), where ϕ
is ¬∃y y + y = x. •

If h : A → B and h is a surjection onto B, then h is called an isomorphism
from A to B, and we can write

h : A
∼=−→ B.

If an isomorphism from A to B exists, then A is isomorphic to B, and we can
write

A ∼= B;

the relation ∼= can be called isomorphism.

5.3 Implications

Lemma 5.3.1. Isomorphism is an equivalence-relation. If h : A
∼=→ B, then

h−1 : B
∼=→ A.

Proof. Exercise.

Isomorphic structures are practically the same. One way to make this precise
is by means of the following: {lem:fundamental}

Lemma 5.3.2. Suppose h : A → B. Then (5.3) holds for all atomic formulas
ϕ of L. If also h is onto B, then (5.3) holds for all formulas ϕ of L.

Proof. Note that (5.3) can be re-formulated in other ways, according to taste:

~a ∈ ϕA ⇐⇒ h(~a) ∈ ϕB, for all n-tuples ~a from A, (5.4)

or more simply
h′′(ϕA) = h′′(An) ∩ ϕB.

To prove it, assuming h : A → B, we first establish by induction that

h ◦ tA = tB ◦ h (5.5)

for all terms t of L:

(∗) (5.5) is true by definition if t is a constant or variable;

(†) if (5.5) is true when t ∈ {u0, . . . , un−1}, and now t is fu0 · · ·un−1, then

h ◦ tA = h ◦ fA ◦ (u0
A, . . . , un−1

A) [by def’n of tA]

= fB ◦ h ◦ (u0
A, . . . , un−1

A) [by def’n of ⊆]

= fB ◦ (h ◦ u0
A, . . . , h ◦ un−1

A) [by (5.2)]

= fB ◦ (u0
B ◦ h, . . . , un−1

B ◦ h) [by inductive hyp.]

= fB ◦ (u0
B, . . . , un−1

B) ◦ h
= tB ◦ h. [by def’n of tA]

56 CHAPTER 5. RELATIONS BETWEEN STRUCTURES

Therefore (5.5) holds for all t. Now we turn to (5.4). To prove it for open
formulas, we observe:

(∗) If ϕ is t0 = t1 for some terms ti, then

~a ∈ ϕA ⇐⇒ t0
A(~a) = t1

A(~a) [by definition of ϕA]

⇐⇒ h(t0
A(~a)) = h(t1

A(~a)) [since h is injective]

⇐⇒ t0
B(h(~a))) = t1

B(h(~a))) [by (5.5)]

⇐⇒ h(~a) ∈ ϕB. [by definition of ϕB]

(†) If ϕ is Rt0 · · · tn−1 for some terms ti and predicate R, then:

~a ∈ ϕA ⇐⇒ (t0
A(~a), . . . , tn−1

A(~a)) ∈ RA [by def’n of ϕA]

⇐⇒ h(t0
A(~a), . . . , tn−1

A(~a)) ∈ RB [by def’n of isom.]

⇐⇒ (t0
B(h(~a)), . . . , tn−1

B(h(~a))) ∈ RB [by (5.5)]

⇐⇒ h(~a) ∈ ϕB. [by def’n of ϕB]

(‡) If (5.4) holds when ϕ is χ, and now ϕ is ¬χ, then:

~a ∈ ϕA ⇐⇒ ~a /∈ χA [by def’n of ϕA]

⇐⇒ h(~a) /∈ χB [by inductive hypothesis]

⇐⇒ h(~a) ∈ ϕB. [by def’n of ϕB]

(§) Similarly, if (5.4) holds when ϕ is χ or ψ, and now ϕ is (χ → ψ), then:

~a /∈ ϕA ⇐⇒ ~a ∈ χA & ~a /∈ ψA [by def’n of ϕA]

⇐⇒ h(~a) ∈ χB & h(~a) /∈ ψB [by inductive hypothesis]

⇐⇒ h(~a) /∈ ϕB. [by def’n of ϕB]

Finally, to establish (5.4) in case h is surjective, suppose (5.4) holds when ϕ is
an (m+ 1)-ary formula χ, and now ϕ is the m-ary ∃xm χ. We have

~a ∈ ϕA ⇐⇒ (~a , b) ∈ χA for some b in A

⇐⇒ (h(~a), h(b)) ∈ χB for some b in A

⇐⇒ (h(~a), c) ∈ χB for some c in A

⇐⇒ h(~a) ∈ ϕB

(Note how the surjectivity of h was used.) This completes the proof.

As an immediate consequence, we have:

Theorem 5.3.3. If A ∼= B, then A ≡ B.

For other consequences, we first observe:

5.4. CATEGORICITY 57

Lemma 5.3.4. If h : A → B, then h(A) is the universe of a structure h(A)

such that h : A
∼=→ h(A) and h(A) ⊆ B.

Proof. Exercise.

Theorem 5.3.5. Suppose h : A → B. Then A
≡−→ B if and only if h(A) 4 B.

Let the diagram of A be the set of open sentences of Th(AA); this set can be
denoted

diag A.

Then we can give the following characterization of the relations ⊆ and 4:
{thm:isom}{thm:elsub}

Theorem 5.3.6. Suppose h : A → B, and B∗ is the expansion of B to L(A)
such that

aB
∗

= h(a) (5.6)

for all a in A. Then

B∗ � diag A ⇐⇒ h : A → B; (5.7)

B∗ � Th(AA) ⇐⇒ h : A
≡→ B. (5.8)

In particular, if A ⊆ B, then

B � diag A ⇐⇒ A ⊆ B;

B � Th(AA) ⇐⇒ A 4 B.

Proof. Note that B∗ � ϕ(~a) ⇐⇒ B � ϕ(h(~a)). The points about elementary
embeddings and substructures follow from the definitions; about embeddings
and substructures, from Lemma 5.3.2.

{cor:QE-MC}

Corollary 5.3.7. If T is a theory admitting quantifier-elimination, then all
embeddings of models of T are elementary embeddings.

Proof. If T admits quantifier-elimination and A � T , then diag A � Th(AA).

Model-theory is interesting because not all elementarily equivalent structures
are isomorphic:

Example 5.3.8. We know that Th(Q, <) = TO∗. Since also (R, <) � TO∗, we
have (R, <) ≡ (Q, <); however, (Q, <) 6∼= (R, <), simply because R is uncount-
able, so there is no bijection at all between Q and R. •

5.4 Categoricity

The cardinality of a structure A is the cardinality |A| of its universe A. Let κ
be an infinite cardinality. A theory T is called κ-categorical if

(∗) T has a model of cardinality κ;

(†) all models of T of cardinality κ are isomorphic (to each other).

58 CHAPTER 5. RELATIONS BETWEEN STRUCTURES

{example:TO*}

Example 5.4.1. We shall prove later, in Theorem 8.1.1, that TO∗ is ω-categorical.
•

A theory is totally categorical if it is κ-categorical for each κ.
{example:empty}

Example 5.4.2. In the empty signature, structures are pure sets, and isomor-
phisms are just bijections. Hence, if L = ∅, then ConL(∅) is totally categorical.
•

There are sentences σn (where n > 0) in the empty signature such that, for all
theories T and structures A of some common signature,

A � T ∪ {σn : n > 0} ⇐⇒ A � T & |A| > ω.

Indeed, let σn be

∃x0 · · · ∃xn−1

∧

i<j<n

xi 6= xj .

Moreover, for any formula ϕ with at most one free variable, x, if n > 1, we can
form the sentence

∃x0 · · · ∃xn−1 (
∧

i<j<n

xi 6= xj ∧
∧

i<n

ϕ(xi));

this sentence can be abbreviated

∃>nx ϕ.

Then
A � ∃>nx ϕ ⇐⇒ |ϕA| > n.

Example 5.4.3. Suppose L = {E}, where E is a binary predicate, and let T
be the theory of equivalence-relations with exactly two classes, both infinite. So
T has the axioms:

∀x x E x;

∀x ∀y (x E y → y E x);

∀x ∀y ∀z (x E y ∧ y E z → x E z);

∃x ∃y ∀z (¬(x E y) ∧ (x E z ∨ y E z))

∀x ∃>ny x E y

for each n greater than 1. Then T is ω-categorical. However, if κ is an un-
countable cardinal, then T is not κ-categorical. For example, there is a model
in which both E-classes have size ω1 (that is, ℵ1), and a model in which one
class has size ω1, the other ω. •

In a countable signature, there are at most |2ω|—that is, continuum-many—
structures with a given countable universe A, because each symbol in the signa-
ture will be interpreted as a subset of some An, and there are at most continuum-
many of these.

5.4. CATEGORICITY 59

The spectrum-function is

(T, κ) 7−→ I(T, κ),

where T is a theory,κ is an infinite cardinal, and I(T, κ) is the number of non-
isomorphic models of T of size κ. A theory in a countable signature is also
called countable. If T is countable, then we have

1 6 I(T, ω) 6 |2ω|. (5.9)

We’ve seen in Examples 5.4.1 and 5.4.2 that the lower bound cannot be im-
proved. Vaught’s conjecture is that

I(T, ω) < |2ω| =⇒ I(T, ω) 6 ω.

If the Continuum Hypothesis is accepted, than this implication is trivial; the
Conjecture is that the implication holds even if the Continuum Hypothesis is
rejected.

The upper bound of (5.9) cannot be improved: {example:binary}

Example 5.4.4. Let L be {Pn : n ∈ ω}, where each Pn is a unary predicate.
Let T have the following axioms, where I and J are finite disjoint subsets of ω:

∃x (
∧

i∈I

Pix ∧
∧

j∈J

¬Pjx).

In the same way that we proved TO∗ admitted quantifier-elimination and was
complete, we can prove that T admits QE and is complete. But T has continu-
um-many countably infinite models. Indeed, T has a model A, where A = 2ω,
and

Pn
A = {σ ∈ A : s(n) = 1}.

We could replace A with the set A0 of σ in 2ω such that, for some k, if n > k,
then σ(n) = 0. This A0 is countable. In fact there is an injection from A0 into
2<ω, where

2<ω =
⋃

n∈ω

2n.

This set is partially ordered by ⊆ and is a tree. A branch of this tree is a
maximal totally ordered subset; the union of a branch is an element of 2ω. If σ
and τ are distinct elements of 2ω, then σ(n) 6= τ(n) for some n in ω, and then

σ ∈ Pn
A ⇐⇒ τ /∈ Pn

A.

Hence, if also σ and τ are not in A0, then A0 ∪ {σ} and τ ∪ {τ} determine
non-isomorphic models of T . Hence T has at least (and therefore exactly)
continuum-many countable models, since |2ω rA0| = |2ω|. •

For those who know some algebra:

Examples 5.4.5. A

s examples of complete T where I(T, ω) = ω, we have:

(∗) the theory of torsion-free divisible abelian groups;

(†) ACF0, the theory of algebraically closed fields of characteristic 0.

•

Chapter 6

Compactness

We now aim to prove compactness for first-order logic. A subset Σ of SnL is

(∗) satisfiable if it has a model;

(†) finitely satisfiable if every finite subset of Σ has a model.

Compactness is that every finitely satisfiable set is satisfiable.

Lemma 6.0.6. If Σ is finitely satisfiable, but Σ∪ {σ} is not, then Σ∪ {¬σ} is.

Proof. Say Σ0 is a finite subset of Σ such that Σ0 ∪ {σ} has no model. Then
Σ0 � ¬σ. Say Σ1 is another finite subset of Σ. Then Σ0 ∪ Σ1 has a model in
which ¬σ is true.

In proving the Completeness Theorem for propositional logic, we start from
a set Σ of propositional formulas from which a formula F cannot be derived.
Then Σ∪{¬F} is consistent. We find a maximal consistent set Σ∗ that includes
Σ∪ {¬F}. From Σ∗ we define a structure A that is a model of Σ in which F is
false.

We can try to do something similar to prove compactness for first-order logic.
Suppose Σ is a maximal finitely satisfiable set of first-order formulas in some
signature L. (In particular then, σ ∈ Σ ⇐⇒ ¬σ /∈ Σ.) We can try to define an
L-structure A by letting:

(∗) A be the set of constants in L;

(†) cA = c for every constant c in L;

(‡) fA(c0, . . . , cn−1) = d ⇐⇒ (fc0 · · · cn−1 = d) ∈ Σ;

(§) (c0, . . . , cn−1) ∈ RA ⇐⇒ Rc0 · · · cn−1 ∈ Σ.

We want A to be a model of Σ. There are three problems:

(∗) The signature L might not contain any constants.

(†) Suppose L does contain constants c and d. We have A � (c = d) ⇐⇒
cA = dA ⇐⇒ c = d. So A can’t be a model of Σ unless either Σ does not
contain (c = d), or c and d are the same symbol.

(‡) If A � ¬ϕx
c for every constant c in L, then A � ¬∃x ϕ. However, possibly

Σ contains all of the formulas ¬ϕx
c , but also ∃x ϕ.

60

61

The solution to these problems is as follows:

(∗) We expand L to a signature L′ that contains infinitely many constants.
Then we enlarge Σ to a maximal finitely satisfiable subset Σ′ of SnL′ .

(†) Letting C be the set of constants of L′, we define an equivalence-relation
E on C by

c E d ⇐⇒ (c = d) ∈ Σ′.

Then we let A be, not C, but C/E.

(‡) In enlarging Σ to Σ′, we ensure that, if ∃x ϕ ∈ Σ′, then ϕx
c ∈ Σ′ for some

c in C.

Theorem 6.0.7 (Compactness for first-order logic). Every finitely satisfiable
set of formulas (in some signature) is satisfiable.

Proof. Suppose Σ is a finitely satisfiable subset of SnL. Let C be a set of new
constants (so L ∩ C = ∅). For any L-structure A, there is some a in A; so we
can expand A to an L ∪ C-structure A′ by defining

cA
′

= a

for all c in C. In particular, Σ is still finitely satisfiable as a set of sentences of
L′.

We’ll assume that L is countable (although the general case would proceed
similarly). So we can enumerate SnL∪C as {σn : n ∈ ω}, and C as {cn : n ∈ ω}.
We shall define a chain

Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ · · · ,

where each Σk is finitely satisfiable, and only finitely many constants in C
appear in formulas in Σk. The recursive definition is the following:

(∗) Σ0 = Σ. (By assumption, Σ0 is finitely satisfiable, and it contains no
constants of C.)

(†) Assume Σ2n has been defined as required. Then define

Σ2n+1 =

{
Σ2n ∪ {σn}, if this is finitely satisfiable;

Σ2n, if not.

Then Σ2n+1 is as required.

(‡) Suppose Σ2n+1 has been defined as required. Suppose also σn ∈ Σ2n+1,
and σn is ∃x ϕ for some ϕ. The set of m such that cm does not appear
in a formula in Σ2n+1 has a least element, k. Then the set Σ2n+1 ∪ {ϕx

ck
}

is finitely satisfiable. For, if Γ is a finite subset of Σ2n+1, then it has a
model A. Then A � ϕx

a for some a in A; so we can expand A to a model
of Σ2n+1 ∪ {ϕx

ck
} by interpreting ck as a. In this case we define

Σ2n+2 = Σ2n+1 ∪ {ϕx
ck
};

otherwise, let Σ2n+2 = Σ2n+1. In either case, Σ2n+2 is as desired.

62 CHAPTER 6. COMPACTNESS

Now we define
Σ∗ =

⋃

n∈ω

Σn.

This is finitely satisfiable, since each finite subset is a subset of some Σn. Sup-
pose Σ∗ ∪ {σ} is finitely satisfiable. But σ is σn for some n, and Σ2n ∪ {σ}
is finitely satisfiable, so σ ∈ Σ2n+1, and σ ∈ Σ∗. So Σ∗ is a maximal finitely
satisfiable set.

We now define a structure A of L ∪ C that will turn out to be a model of Σ:

We first define
E = {(c, d) ∈ C2 : (c = d) ∈ Σ∗}.

Then E is an equivalence-relation on C (exercise). So, we can let

A = C/E.

Let the E-class of c be denoted [c]. We can define

cA = [c].

If R is an n-ary predicate in L, we define

RA = {([c0], . . . , [cn−1]) ∈ An : (Rc0 · · · cn−1) ∈ Σ∗}.

This means

(Rc0 · · · cn−1) ∈ Σ∗ =⇒ ([c0], . . . , [cn−1]) ∈ RA.

In fact the converse holds too; that is,

c0 E d0 & . . . & cn−1 E dn−1 & (Rc0 · · · cn−1) ∈ Σ∗ =⇒ (Rd0 · · · dn−1) ∈ Σ∗

(exercise). If f is an n-ary function-symbol in L, then (∃x fc0 · · · cn−1 = x) ∈
Σ∗ (since the sentence is true in every structure), so (fc0 · · · cn−1 = d) ∈ Σ∗ for
some d in C. Moreover,

c0 E c′0 & . . . & cn−1 E c′n−1 & (fc0 · · · cn−1 = d) ∈ Σ∗ &

(fc′0 · · · c′n−1 = d′) ∈ Σ∗ =⇒ d E d′

(exercise). Hence we can define

fA = {([c0], . . . , [cn−1], [d]) ∈ A : (fc0 · · · cn−1 = d) ∈ Σ∗}.

Note then

fA[c0] · · · [cn−1] = [d] ⇐⇒ (fc0 · · · cn−1 = d) ∈ Σ∗

(exercise). Finally, if c is a constant of L, we can consider it as a nullary
function-symbol, obtaining the interpretation

cA = [d] ⇐⇒ (c = d) ∈ Σ∗.

So we have A. It remains to show A � Σ∗. We shall do this by showing

A � σ ⇐⇒ σ ∈ Σ∗ (6.1)

63

for all sentences σ of L ∪ C, by induction on the length of σ.

We need a preliminary observation: If t is a term with no variables, and c ∈ C,
then

tA = [c] ⇐⇒ (t = c) ∈ Σ∗

(exercise). Now suppose σ is the atomic sentence Rt0 · · · tn−1, and ti
A = [ci]

for each i in n. Then

A � σ ⇐⇒ (t0
A, . . . , tn−1

A) ∈ RA

⇐⇒ ([c0], . . . , [cn−1]) ∈ RA

⇐⇒ (Rc0 · · · cn−1) ∈ Σ∗

⇐⇒ σ ∈ Σ∗.

If instead σ is the equation t0 = t1, then

A � σ ⇐⇒ t0
A = t1

A

⇐⇒ [c0] = [c1]

⇐⇒ (c0 = c1) ∈ Σ∗

⇐⇒ σ ∈ Σ∗.

Now suppose that (6.1) holds when σ has the length of τ , θ or ϕ:

(∗) If σ is ¬τ , then

A � σ ⇐⇒ A 2 τ ⇐⇒ τ /∈ Σ∗ ⇐⇒ σ ∈ Σ∗

by maximality of Σ.

(†) If σ is (τ → θ), then

A 2 σ ⇐⇒ A � τ & A �6 θ
⇐⇒ τ ∈ Σ∗ & θ /∈ Σ∗

⇐⇒ σ ∈ Σ∗

by maximality of Σ∗.

(‡) If σ is ∃x ϕ, then

A � σ ⇐⇒ A � ϕx
c for some c in C

⇐⇒ ϕx
c ∈ Σ∗ for some c in C

⇐⇒ ∃x ϕ ∈ Σ∗

by definition of Σ∗.

By induction, (6.1) holds for all σ, so A � Σ∗.

In the proof, we introduced a set C of new constants such that |C| = |SnL|. We
can denote |SnL| by |L|. For the model A of Σ produced, we have |A| 6 |C| =
|L|.

Theorem 6.0.8. If T is a theory such that, for all n in ω, there is a model of
T of size greater than n, then T has an infinite model.

64 CHAPTER 6. COMPACTNESS

Proof. For each n in ω, introduce a new constant cn. Every model of the
theory T ∪ {ci 6= cj : i < j < ω} is infinite. Also this theory has models, by
Compactness, since the theory is finitely satisfiable. Indeed, every finite subset
of the theory is a subset of T ∪ {ci < cj : i < j < n} for some n. We can
expand a model of T of size greater than n to a model of the larger theory by
interpreting each ci by a different element of the universe.

Example 6.0.9. Let K be the class of finite fields (considered as structures in
the signature {+,−, ·, 0, 1}). Then Th(K) has infinite models; these are called
pseudo-finite fields. Every field F has a characteristic: If

F � 1 + · · · + 1︸ ︷︷ ︸
p

= 0

for some prime number p, then p is the characteristic of F , or charF = p; if
there is no such p, then charF = 0. The field F is perfect if either:

(∗) charF = 0; or

(†) charF = p and every element of F has a p-th root.

Then perfect fields are precisely the fields that satisfy the axioms

∀x ∃y (1 + · · · + 1︸ ︷︷ ︸
p

= 0 → yp = x).

Now, if F is finite, then charF = p for some prime p, and the function x 7→ xp is
an automorphism of F , that is, an isomorphism from F to itself. This shows
F is perfect. Therefore the pseudo-finite fields are also perfect. In fact, axioms
can be written for the theory of pseudo-finite fields (James Ax, 1968). •

Another field-theoretic application of Compactness is:

Example 6.0.10. An ordered field is a structure F or (F,+,−, ·, 0, 1, <) such
that:

(∗) (F,+,−, ·, 0, 1) is a field;

(†) (F,<) is a total order;

(‡) F � ∀x ∀y (0 < x ∧ 0 < y → 0 < x+ y ∧ 0 < x · y);

(§) F � ∀x (x < 0 → 0 < −x).

An ordered field must have characteristic 0 (why?); hence Q can be treated as a
sub-field of it. In an ordered field, the formula 0 < x defines the set of positive
elements. The ordered field F is Archimedean if, for all positive a and b in F ,
there is a natural number n such that

F � a < b+ · · · + b︸ ︷︷ ︸
n

.

Then R is an Archimedean ordered field. However, there is an ordered field F

such that F ≡ R, but F is not Archimedean. Indeed, let c be a new constant.
Then the theory

Th(R) ∪ {n < c : n ∈ ω}

65

is finitely satisfiable, since for every finite subset Σ of this theory, R itself expands
to a model of Σ. So the theory has a model F, by Compactness; but

F � 1 + · · · + 1︸ ︷︷ ︸
n

< c

for all n in ω. • {thm:LST}

Theorem 6.0.11 (Löwenheim–Skolem–Tarski). Suppose A is an infinite L-
structure, and κ is an infinite cardinal such that |L| 6 κ. Then there is an
L-structure B such that |B| = κ and A ≡ B.

Proof. Introduce κ-many new constants cα (where α < κ). In the Compactness
Theorem, let Σ be Th(A)∪{cα 6= cβ : α < β < κ}. This set is finitely satisfiable.
Indeed, any finite subset is included in a subset Th(A)∪{cαi

6= cαj
: i < j < n}

for some finite subset {α0, . . . , αn−1} of κ. Then A expands to a model of this
set of sentences, once we interpret each constant cαi

as a different element of
A. (Since A is infinite, we can do this.) Therefore Σ is finitely satisfiable. The
proof of Compactness now produces a model of Σ of size κ.

{thm:Vaught}

Theorem 6.0.12 (Vaught). Suppose T is a finitely satisfiable theory of L, and
|L| 6 κ. Then T is complete, provided:

(∗) T has no finite models;

(†) T is κ-categorical.

Proof. Suppose T is finitely satisfiable, but has no finite models, but is not
complete. By Compactness, T does have models. Then for some sentence σ,
neither σ nor ¬σ is a consequence of T . Hence, both T ∪ {¬σ} and T ∪ {σ}
have models. By Löwenheim–Skolem–Tarski, they have models of size κ. These
models are not elementarily equivalent, so they are not isomorphic; this means
T is not κ-categorical.

Examples 6.0.13. [

]

(1) To prove that TO∗ is complete, it is enough to show that every model
is infinite, and that every countable model is isomorphic to (Q, <).

(2) If a real vector-space V has positive dimension κ, then

|V | = κ · |2ω| = max(κ, |2ω|).

A space of dimension 0 is the the trivial space, namely the space con-
taining only the 0-vector; this space has size 1. Real vector-spaces of the
same dimension are isomorphic Hence the theory of real vector-spaces is
κ-categorical if κ > |2ω|. Therefore the theory of non-trivial real vector-
spaces is complete. •

66 CHAPTER 6. COMPACTNESS

6.1 Additional exercises

(1) Show that every Archimedean ordered field is elementarily equivalent to
some countable, non-Archimedean ordered field.

(2) Show that every non-Archimedean ordered field contains infinitesimal
elements, that is, positive elements a that are less than every positive
rational number.

(3) Find an example of a non-Archimedean ordered field.

(4) The order of an element g of a group is the size of the subgroup {gn : n ∈
Z} that g generates. In a periodic group, all elements have finite order.
Suppose G is a periodic group in which there is no finite upper bound on
the orders of elements. Show that G ≡ H for some non-periodic group H .

(5) Suppose (X,<) is an infinite total order in which X is well-ordered by <.
Show that there is a total order (X∗, <∗) such that

(X,<) ≡ (X∗, <∗),

but X∗ is not well-ordered by <∗.

Chapter 7

Completeness

We now aim to establish a complete proof-system for first-order logic. The result
is Theorem 7.6.8 on p. 77. The proof of this theorem follows the pattern of our
proof of Compactness.

First-order logic is based on propositional logic. It will be useful to have a
general description of logics that encompasses both propositional and first-order
logic. So, this is where we begin. All sections following § 7.3 concern first-order
logic, unless otherwise noted.

There are a few exercises, on pp. 68, 71, 72, 73, 73, 73 and 76.

7.1 Logic in general

A logic has an alphabet, which is just a certain non-empty set; the members
of this set can be called the symbols of the logic. These symbols can be put
together to form strings. If we want a formal definition, we can say that such
a string is a finite, non-empty sequence of symbols of the logic; that is, the
string is a function k 7→ sk from {0, 1, . . . , n} into the alphabet, for some n in
ω. We usually write this function as

s0s1 · · · sn;

this the result of juxtaposing the symbols sk in the prescribed order. Such a
string has sub-strings, namely the strings

s`s`+1 · · · sm,

where 0 6 ` 6 m 6 n; the sub-string is proper if 0 < ` or m < n. Certain
strings will be formulas of the logic. In particular, certain strings will be atomic
formulas. Some rules of construction are specified for converting certain finite
sets of strings into other strings. Then a formula of the logic is a member of
the smallest set X of strings such that:

(∗) all atomic formulas are in X ; and

(†) X contains every string that results from applying a rule of construction
to a set of elements of X .

67

68 CHAPTER 7. COMPLETENESS

Hence properties of all formulas can be proved by induction.

Moreoever, it is required that, for every formula that is not atomic, there is
exactly one rule of construction and one set of formulas such that the original
formula results from applying that rule to that set. This is the principle of
uniquely readability as formulas; it makes possible the recursive definition of
functions on the set of formulas.

For any logic, a proof-system consists of:

(∗) axioms, which are just certain formulas of the logic;

(†) rules of inference, that is, ways of inferring certain formulas from certain
finite sets of formulas.

So the notions of axiom and rule of inference are parallel to the notions of
atomic formula and rule of construction. However, in a proof-system, there is
no requirement corresponding to unique readability.

Let S be proof-system. A deduction or formal proof in S of the formula ϕ
from the set Φ of formulas is a sequence

ψ0, . . . , ψn

of formulas where ψn is ϕ, and for each k such that k 6 n, one of the following
holds:

(∗) ψk ∈ Φ, or

(†) ψk is an axiom of S, or

(‡) ψk follows from some subset of {ψj : j < k} by one of the rules of inference
of S.

To denote that such a deduction exists, we can write

Φ `S ϕ.

Then we can say that ϕ is deducible from Φ in S. In case Φ is empty, we can
just write

`S ϕ,

and we can call ϕ a theorem of S.

Here are some basic facts:{lem:gen}

Lemma 7.1.1.

(∗) Every non-empty initial segment of a deduction is also a deduction;

(†) if Φ `S ϕ and Φ ⊆ Φ∗, then Φ∗ `S ϕ;

(‡) if Φ `S ϕ, then Φ0 `S ϕ for some finite subset Φ0 of Φ;

(§) if Φ `S ψ for each ψ in Ψ, and Ψ `S χ, then Φ `S χ.

Proof. Exercise.{ex1}

7.2. PROPOSITIONAL LOGIC 69

7.2 Propositional logic

We shall work here with the propositional logic whose alphabet consists of:

(∗) the propositional variables Pk , where k ∈ ω;

(†) the connectives ¬ and →;

(‡) the left bracket (and the right bracket).

The atomic formulas are then the propositional variables. There are two rules
of construction:

(∗) From the string A, construct ¬A.

(†) From the strings A and B, construct (A → B).

Note that the same formula might be both (A → B) and (C → D) for some
strings A, B, C and D such that A is not C. But if all of these strings are
formulas, then (as one can prove) A must be C. We use F and G and H as
syntactical variables for propositional formulas.

In propositional logic, there is a notion of truth, which we can develop as
follows. If S ⊆ ω, let 2S be the set of functions from S to 2. We can consider 2
as the universe of the field F2; then a ring-structure on 2S is induced. If F is a
propositional formula, and all variables appearing in F are in S, then there is a
function F̂ from 2S into 2, as given by the following recursive definition:

(∗) If F is Pk, then F̂ (α) = α(k) for all α in 2ω.

(†) If F is ¬G, then F̂ = 1 + Ĝ.

(‡) If F is (G → H), then F̂ = 1 + Ĝ · (1 + Ĥ).

Suppose S is the set of variables actually appearing in F , and F̂ (α) = 1 for all
α in 2S ; then F is called a tautology.

An element α of 2ω can be called a structure for propositional logic. (Alterna-
tively, the set {Pn : α(n) = 1} can be called the structure; each one determines
the other.) Then a formula F is true in α if F̂ (α) = 1. If every formula in a set
Φ of formulas is true in a structure α, then α is a model of Φ. If F is true in
every model of Φ, then we say that F is a logical consequence of Φ, or that
Φ entails F , and we write

Φ � F.

A formula F is valid, or is a validity, if it is true in all structures; in that case,
we write

� F.

A proof-system S for propositional logic is called:

(∗) sound, if Φ � ϕ whenever Φ `S ϕ;

(†) complete, if Φ `S ϕ whenever Φ � ϕ.
{lem:sound}

Lemma 7.2.1. Let S be a proof-system for propositional logic. Then S is sound
if and only if:

(∗) each axiom of S is valid;

(†) Φ � ϕ whenever ϕ can be inferred from Φ by one of the rules of inference
of S.

70 CHAPTER 7. COMPLETENESS

Proof. Suppose S is sound. If ϕ is an axiom of S, then the one-term sequence
ϕ is a deduction of ϕ from ∅, so `S ϕ and therefore � ϕ. Suppose, instead,
that ϕ can be inferred from Φ by one of the rules of inference of S. Then Φ is
a finite set {ψ0, . . . , ψn}, so the sequence

ψ0, . . . , ψn, ϕ

is a deduction of ϕ from Φ in S. Hence Φ `S ϕ, and therefore Φ � ϕ.

The converse is proved by induction on the lengths of deductions. Suppose that
each axiom of S is valid, and Φ � ϕ whenever ϕ can be inferred from Φ by
one of the rules of inference of S. As an inductive hypothesis, suppose Φ � ϕ
whenever ϕ has a deduction in S from Φ of length less than n+ 1. Now say the
sequence

ψ0, . . . , ψn−1, ϕ

of length n+1 is a deduction in S from Φ. If ϕ ∈ Φ, then Φ � ϕ trivially. If ϕ is
an axiom of S, then � ϕ by assumption, so Φ � ϕ. The remaining possibility is
that ϕ can be inferred from some subset Γ of {ψk : k < n} by a rule of inference
of S. Then Γ � ϕ by assumption. Also, Φ � ψk for each ψk in Γ by inductive
hypothesis, since each ψk has a proof from Φ of length k + 1, namely

ψ0, . . . , ψk.

Hence every model of Φ is a model of Γ, and so ϕ is true in this model; that is,
Φ � ϕ.

Let us also note that if a proof-system is complete, then so is every proof-system
obtained by addition of new axioms or rules of inference.

In the only proof-system for first-order logic that we shall consider,

(∗) the axioms are just the tautologies;

(†) the only rule of inference is modus ponens, that is, G can be inferred from
{F, (F → G)}.

If, in this system, F is deducible from the set Φ of formulas, then we can just
write

Φ ` F

(since we shall consider no other proof-systems for propositional logic). We have
proved (in class) that this system is sound and complete.

7.3 First-order logic
{sect:1st}

The foregoing notions in propositional logic generalize to first-order logic. For
us, the alphabet for a first-order logic will consist of:

(∗) the symbols in a signature L for the logic;

(†) individual variables vk , where k ∈ ω;

(‡) the Boolean connectives ¬ and →;

(§) the quantifier ∃;

7.4. TAUTOLOGICAL COMPLETENESS 71

(¶) the brackets (and).

The set of formulas of the resulting logic can be denoted

FmL .

Certain formulas are sentences; the set of them is

SnL .

We do not have proof by induction on this set, since sentences can be constructed
from formulas that are not sentences. However, we can still define proof-systems
for SnL. (Alternatively, we could define a proof-system for FmL.)

There are L-structures A, and then for each sentence σ of L, there is an
element σA of 2. Then σ is true in A if σA = 1. The notions of model,
entailment, validity, soundness and completeness can now be defined as
for propositional logic. Hence we have Lemma 7.2.1 for SnL in addition to
propositional logic.

To prove that a certain proof-system for SnL is complete, we shall use the
method first expounded by Leon Henkin, in [5]. (Henkin’s proof was a part of his
doctoral thesis; see [6]. We have already used Henkin’s method to prove Com-
pactness.) The particular treatment in these notes owes something to Shoen-
field’s in [13]. I introduce the notions of tautological and deductive completeness
merely to make our ultimate proof-system seem natural.

If F is an n-ary formula F (P0, . . . , Pn−1) of propositional logic, and σk ∈ SnL,
then by substitution we can form the sentence

F (σ0, . . . , σn−1)

of L. If F is a tautology, then F (σ0, . . . , σn−1) can be called a tautology of
SnL.

{lem:validities}

Lemma 7.3.1. Tautologies of SnL are validities.

Proof. We can prove by induction on propositional formulas F that, if F is
F (P0, . . . , Pn−1), then for all sentences σk of SnL, and all L-structure A,

F (σ0, . . . , σn−1)A = F̂ (σ0
A, . . . , σn−1

A).

(Details are an exercise.) The claim follows immediately from this. {ex2}

7.4 Tautological completeness

Suppose S is a proof-system for SnL such that, if F0, . . . , Fk are n-ary propo-
sitional formulas, and

{F0, . . . , Fk−1} � Fk, (7.1)

and σ0, . . . , σn−1 ∈ SnL, then

{F0(σ0, . . . , σn−1), . . . , Fk−1(σ0, . . . , σn−1)} `S Fk(σ0, . . . , σn−1); (7.2)

let us say then that S is tautologically complete.

72 CHAPTER 7. COMPLETENESS

{lem:1}

Lemma 7.4.1. Let S be a proof-system for SnL. Then S is tautologically
complete if and only if:

(∗) `S σ for all tautologies σ of SnL, and

(†) {σ, σ → τ} `S τ for all σ and τ in SnL.

Proof. If S is tautologically complete, then immediately all tautologies are the-
orems; the other condition follows since {P0, P0 → P1} � P1.

To prove the converse, we can use our complete proof-system for propositional
logic: Suppose we have (7.1) above. Then Fk has a a formal proof from
{F0, . . . , Fk−1}. Say this proof is

G0, . . . , Gm.

Then Gm is Fk. We proceed by induction on m. There are three possibilities:

(∗) If Fk ∈ {F0, . . . , Fk−1}, then trivially (7.2) follows.

(†) If Fk is a tautology, then `S Fk(~σ) by assumption, so (7.2).

(‡) If Gj is (Gi → Fk) for some i and j in m, then, by inductive hypothesis,
we have

{F0(~σ), . . . , Fk−1(~σ)} `S Gi(~σ);

{F0(~σ), . . . , Fk−1(~σ)} `S Gj(~σ);

hence (7.2) by assumption (and Lemma 7.1.1).

In all cases then, (7.2) follows.

It should be clear that a complete proof-system is tautologically complete. The
converse fails:

Example 7.4.2. The proof-system in which all tautologies are axioms and
modus ponens is the only rule of inference is not complete, since it cannot be
used to prove the validity ∃x x = x. Indeed, the theorems of this proof-system
are just the tautologies (as one can show); but ∃x x = x is not a tautology. •

Let ⊥ be the negation of a tautology, say

¬(∃x x = x → ∃x x = x).

Henceforth, let Σ ⊆ SnL and σ ∈ SnL.
{lem:2}

Lemma 7.4.3. In a tautologically complete proof-system S, the following are
equivalent:

(∗) Σ ` ¬σ for some σ in Σ;

(†) Σ ` σ and Σ ` ¬σ for some σ in SnL;

(‡) Σ ` σ for every σ in SnL;

(§) Σ ` ⊥.

Proof. Exercise. (There is a corresponding lemma for propositional logic.){ex3}

7.5. DEDUCTIVE COMPLETENESS 73

If Σ `S ⊥, then Σ is inconsistent in S; otherwise, it is consistent.

Lemma 7.4.4. In a complete proof-system, every consistent subset of SnL has
a model.

Proof. If S is complete, but Σ has no model, then Σ � ⊥, so Σ `S ⊥ by
completeness, so Σ is inconsistent.

The converse of the lemma may fail, even if the proof-system is required to be
tautologically complete:

Example 7.4.5. Let the axioms of a proof-system S be the tautologies, and
let the rules of inference be modus ponens, along with the rule that ⊥ can
be inferred from every finite set that has no model. (Note however that this
is not a syntactical rule: it is not based directly on the form of sentences.)
By the Compactness Theorem of first-order logic, every set with no model is
inconsistent in this theory; therefore all consistent sets have models. However,
the validity ∃x x = x is not a theorem of S. (Exercise: show this.) • {ex4}

7.5 Deductive completeness

Let a proof-system S be called deductively complete if Σ `S (σ → τ) when-
ever Σ ∪ {σ} `S τ .

{lem:4}

Lemma 7.5.1. A tautologically and deductively complete proof-system in which
every consistent set has a model is complete.

Proof. Suppose S is such a system, and Σ ∪ {¬σ} is inconsistent in S. Then
Σ ∪ {¬σ} `S σ by Lemma 7.4.3, so Σ `S (¬σ → σ) by deductive completeness.
But (¬σ → σ) → σ is a tautology, so Σ `S σ by tautological completeness.

Therefore, if Σ 6`S σ, then Σ∪ {¬σ} is consistent, so it has a model by assump-
tion; this shows Σ 6� σ.

{lem:5}

Lemma 7.5.2. A tautologically complete proof-system whose only rule of in-
ference is modus ponens is deductively complete.

Proof. Exercise. (See the Deduction Theorem of propositional logic.) {ex5}

Lemma 7.5.3. Suppose Σ ⊆ SnL and Σ is consistent in a tautologically and
deductively complete proof-system. The following are equivalent:

(∗) If Σ ⊆ Γ ⊆ SnL and Γ is consistent, then Γ = Σ.

(†) ¬σ ∈ Σ ⇐⇒ σ /∈ Σ for all σ in SnL.

Proof. Exercise. {ex6}

A set Σ meeting one of the conditions in the lemma can be called maximally
consistent.

74 CHAPTER 7. COMPLETENESS

7.6 Completeness

By Lemma 7.4.1, we know of one tautologically complete proof-system, namely,
the system whose axioms are the tautologies, and whose rule of inference is
modus ponens. Let S be this system. Then S is deductively complete, by
Lemma 7.5.2, and is sound, by Lemmas 7.2.1 and 7.3.1. Moreover, soundness
and deductive completeness are preserved if we add new valid axioms to S. Now
we shall see which valid axioms we can add in order to ensure that every con-
sistent set has a model; then we shall have a complete system by Lemma 7.5.1.

We follow the proof of the Compactness Theorem, replacing ‘finitely satisfiable’
with ‘consistent’. We assume that L is countable. Suppose Σ is a consistent
subset of SnL. We introduce an infinite set C of new constants and enumerate
SnL∪C as {σn : n ∈ ω}. We construct a chain

Σ = Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ · · ·

where

Σ2n+1 =

{
Σ2n ∪ {σn}, if this is consistent;

Σ2n, otherwise.

If σn is ∃x ϕ, and this is in Σ2n+1, then we want to define Σ2n+2 as

Σ2n+1 ∪ {ϕx
c},

where c is a variable not used in Σ2n+1. But we need to know that this set is
consistent. For this we assume, as axioms of S, the sentences

(ϕx
c → χ) → ∃x ϕ→ χ, (7.3)

where c is a variable not appearing in χ. Note that these axioms are valid. We
now have:

Lemma 7.6.1. If Γ is consistent and contains ∃x ϕ, and c does not appear in
Γ, then Γ ∪ {ϕx

c} is consistent.

Proof. Suppose it’s not. Then

{ψ0, . . . , ψk−1} ∪ {ϕx
c} `S ⊥

for some ψi in Γ. By deductive completeness,

`S ϕ
x
c → ψ0 → · · · → ψk−1 → ⊥, (7.4)

where the notational convention is that a terminal string χ0 → χ1 → χ2 stands
for the formula (χ0 → (χ1 → χ2)). We can re-write (7.4) as

`S ϕ
x
c → χ, (7.5)

where χ is ψ0 → · · · → ψk−1 → ⊥. Then from (7.3) we have

`S ∃x ϕ→ χ

7.6. COMPLETENESS 75

by modus ponens ; that is,

`S ∃x ϕ→ ψ0 → · · · → ψk−1 → ⊥.

Then k + 1 applications of modus ponens show

Γ `S ⊥,

which contradicts the assumption that Γ is consistent.

So now, given a consistent subset Σ of SnL, we can construct a consistent subset
Σ∗ of SnL∪C such that

(∗) Σ ⊆ Σ∗;

(†) Σ∗ is maximally consistent;

(‡) if (∃x ϕ) ∈ Σ, then ϕx
c ∈ Σ for some c in C, that is, Σ∗ has witnesses.

As in the proof of Compactness, we want to use Σ∗ to define a model A of itself.

For the sake of defining the universe of A, we assume now that S has the axioms

c = c, (7.6)

c = c′ → d = d′ → c = d → c′ = d′, (7.7)

where c, c′, d and d′ range over C. Let E be the relation

{(c, d) ∈ C2 : (c = d) ∈ Σ∗}.

We can now show:

Lemma 7.6.2. The relation E is an equivalence-relation.

Proof. We first show

`S c = c, (7.8)

`S c = d→ d = c, (7.9)

`S c = d→ d = e→ c = e (7.10)

for all constants c, d and e in C.

Now, we have (7.8) trivially by (7.6). An instance of (7.7) is

c = d→ c = c→ c = c→ d = c;

then (7.9) follows by tautological completeness. Another instance of (7.7) is

c = c→ d = e→ c = d → c = e;

then (7.10) follows by tautological completeness.

By its maximal consistency then, Σ∗ contains c = c; and if Σ∗ contains c = d
and d = e, then it contains d = c and c = e.

76 CHAPTER 7. COMPLETENESS

We define A to be C/E. We now define RA (for each n-ary predicate R in L)
as the set

{([c0], · · · , [cn−1]) ∈ An : (Rc0 · · · cn−1) ∈ Σ∗}.
Then we have

(Rc0 · · · cn−1) ∈ Σ∗ =⇒ ([c0], · · · , [cn−1]) ∈ RA,

but perhaps not the converse. Possibly then both Rc0 · · · cn−1 and ¬Rc′0 · · · c′n−1

are in Σ∗, although (ck = c′k) ∈ Σ∗ in each case. To prevent this, as as axioms
of S we assume

c0 = c′0 → · · · → cn−1 = c′n−1 → Rc0 · · · cn−1 → Rc′0 · · · c′n−1. (7.11)

We now have:

Lemma 7.6.3. ([c0], · · · , [cn−1]) ∈ RA ⇐⇒ (Rc0 · · · cn−1) ∈ Σ∗.

Proof. Exercise.{ex7}

Finally, suppose f is an n-ary function-symbol (where possibly n = 0, in which
case f is a constant.) We want to be able to define fA. (If c ∈ C, then cA = [c];
but there might be constants of L as well.) To define fA, we first need some
lemmas, which are based on another axiom:

ϕx
t → ∃x ϕ, (7.12)

where fv(ϕ) ⊆ {x} and t is a term with no variables. Let us assume that this is
an axiom of S. Then we have:

Lemma 7.6.4 (Substitution). If fv(ϕ) ⊆ {x}, and the constant c does not
appear in ϕ, then

`S ϕ
x
c → ϕx

t

for all constant terms t.

Proof. We have

`S ¬ϕx
t → ∃x ¬ϕ, [by (7.12)]

`S ¬∃x ¬ϕ → ϕx
t , [by tautological completeness]

`S (¬ϕx
c → ⊥) → ∃x ¬ϕ→ ⊥, [by (7.3)]

`S ϕ
x
c → ¬∃x ¬ϕ, [by tautological completeness]

and hence `S ϕ
x
c → ϕx

t by modus ponens.

Lemma 7.6.5. `S t = t for all terms t.

Proof. We have

`S c = c, [by (7.6)]

`S c = c→ t = t, [by the Substitution Lemma]

and hence `S t = t by modus ponens.

7.6. COMPLETENESS 77

Lemma 7.6.6. `S ∃x fc0 · · · cn−1 = x.

Proof. We have

`S fc0 · · · cn−1 = fc0 · · · cn−1, [by the last lemma]

`S fc0 · · · cn−1 = fc0 · · · cn−1 → ∃x fc0 · · · cn−1 = x, [by (7.12)]

hence `S ∃x fc0 · · · cn−1 = x by modus ponens.

Finally, we assume as axioms of S the sentences

c0 = c′0 → · · · → cn−1 = c′n−1 → fc0 · · · cn−1 = fc′0 · · · c′n−1. (7.13)

This enables us to define fA:

Lemma 7.6.7. For each n-ary function-symbol f , there is an n-ary operation
fA on A given by

fA([c0], . . . , [cn−1]) = [d] ⇐⇒ (fc0 · · · cn−1 = d) ∈ Σ∗. (7.14)

Proof. Since Σ∗ is maximally consistent, we now have

∃x fc0 · · · cn−1 = x ∈ Σ∗.

Since Σ∗ has witnesses, we have

fc0 · · · cn−1 = d ∈ Σ∗

for some constant d. This gives us a value for fA([c0], · · · , [cn−1]); we have to
show that this value is unique. For this, it is enough to show

`S c0 = c′0 → · · · → cn−1 = c′n−1 →
d = d′ → fc0 · · · cn−1 = d→ fc′0 · · · c′n−1 = d′

for all ck and c′k and d and d′ in C. By (7.13) and tautological completeness, it
is enough to show

`S fc0 · · · cn−1 = fc′0 · · · c′n−1 → d = d′ → fc0 · · · cn−1 = d→ fc′0 · · · c′n−1 = d′.

In the axiom (7.7), we may assume that c is not one of the variables c′, d or d′.
Then by the Substitution Lemma, we have

`S fc0 · · · cn−1 = c′ → d = d′ → fc0 · · · cn−1 = d→ c′ = d′.

We may also assume that c′ is not one of the variables ck, d or d′. Applying the
Substitution Lemma again gives what we want.

The structure A is now determined and is a model of Σ, by the proof of the
Compactness Theorem. In sum, what we have shown is:

{thm:completeness}

Theorem 7.6.8 (Completeness for first-order logic). That proof-system for SnL

is complete whose only rule of inference is modus ponens, and whose axioms
are the following:

78 CHAPTER 7. COMPLETENESS

(∗) the tautologies;

(†) (ϕx
c → χ) → ∃x ϕ → χ, where c does not appear in χ;

(‡) c = c;

(§) c = c′ → d = d′ → c = d→ c′ = d′;

(¶) c0 = c′0 → . . . cn−1 = c′n−1 → Rc0 · · · cn−1 → Rc′0 · · · c′n−1;

(‖) ϕx
t → ∃x ϕ;

(∗∗) c0 = c′0 → · · · → cn−1 = c′n−1 → fc0 · · · cn−1 = fc′0 · · · c′n−1.

Here the notation is as follows:

• x is a variable;

• ϕ is a formula such that fv(ϕ) ⊆ {x};
• χ is a sentence;

• t is a constant term;

• c, c′, ck, c
′
k, d and d′ are constants;

• n ∈ ω;

• R is an n-ary predicate if n > 0; and

• f is an n-ary function-symbol (or a constant, if n = 0).

Chapter 8

Numbers of countable

models

Our ultimate aim is to show that

I(T, ω) 6= 2 (8.1)

whenever T is a countable, complete theory. The proof will require several
interesting general results.

Note that proving (8.1) requires T to be complete:

Example 8.0.9. Let P be a singulary predicate, and in the signature {L}, let
T be axiomatized by

∀x ∀y (Px ∧ Py → x = y).

Then T has non-isomorphic countably infinite models (ω,∅) and (ω, {0}), and
every countably infinite model is isomorphic to one of these. •

8.1 Three models

In the signature {<} ∪ {cn : n ∈ ω}, let T3 be the theory axiomatized by

TO∗ ∪ {cn+1 < cn : n ∈ ω}.

We shall see that T3 is complete, and I(T3, ω) = 3. Let

A0 = {a ∈ Q : 0 < a} = Q ∩ (0,∞),

A1 = Q r {0},
A2 = Q.

Then each Ak is the universe of a model Ak of T3, where <Ak is the usual
ordering <, and

cn
Ak =

1

n+ 1
.

Then the set {cnAk : n ∈ ω}, in Ak,

79

80 CHAPTER 8. NUMBERS OF COUNTABLE MODELS

(∗) has no lower bound, if k = 0;

(†) has a lower bound, but no infimum, if k = 1;

(‡) has an infimum, if k = 2.

Hence the three structures are not isomorphic. However, we shall be able to
show:

(∗) if B � T3 and is countable, then B ∼= Ak for some k in 3;

(†) T3 is complete.

The proof of the first claim will be by the back-and-forth method. The fol-
lowing gives the prototypical example:{thm:Cantor}

Theorem 8.1.1. TO∗ is ω-categorical.

Proof. Suppose A,B � TO∗ and |A| = ω = |B|. We shall show A ∼= B.

We can enumerate the universes:

A = {an : n ∈ ω}, B = {bn : n ∈ ω}.

We shall recursively define an order-preserving bijection h from A to B. In
particular, h will be

⋃{hn : n ∈ ω}, where, notationally, we shall have

hn = {(ak, b
′
k) : k < n} ∪ {(a′k, bk) : k < n}.

We let h0 = ∅. Suppose we have hn so that the tuples

(a0, a
′
0, . . . , an−1, a

′
n−1), and (b′0, b0, . . . , b

′
n−1, bn−1)

have the same order-type. This means that, if we write these tuples as
(c0, . . . , c2n−1) and (c′0, . . . , c

′
2n−1) respectively, then

ci < cj ⇐⇒ c′i < c′j

for all i and j in 2n. Since B is a dense total order without endpoints, we can
chose b′n so that

(a0, a
′
0, . . . , an−1, a

′
n−1, an) and (b′0, b0, . . . , b

′
n−1, bn−1, b

′
n)

have the same order-type. Likewise, we can choose a′n so that

(a0, a
′
0, . . . , an, a

′
n), and (b′0, b0, . . . , b

′
n, bn)

have the same order-type. Now let hn+1 = hn ∪ {(an, b
′
n), (a′n, bn)}.

{cor:T3-3}

Corollary 8.1.2. I(T3, ω) = 3.

Proof. Suppose B is a countable model of T3. The interpretation in B of each
formula

cn+1 < x ∧ x < cn

is (when equipped with the ordering induced from B) a countable model of
TO∗. The same is true for the formula c0 < x. Finally, the set

⋂

n∈ω

{b ∈ B : b < cn}

is one of the following:

8.1. THREE MODELS 81

(∗) empty;

(†) a countable model of TO∗;

(‡) a countable dense total order with a greatest point, but no least point.

Then the previous theorem allows us to construct an isomorphism between B

and A0, A1 or A2 respectively.

The following is really a corollary of Theorem 4.0.3:
{thm:T3-QE}

Theorem 8.1.3. T3 admits elimination of quantifiers.

Proof. Any formula ϕ(~x) of {<, c0, c1, . . . } can be considered as

θ(~x , c0, . . . , cn−1)

for some formula θ of {<}. By quantifier-elimination in TO∗, there is an open
formula α of {<} such that

TO∗
� ∀~x ∀~y (θ(~x , ~y) ∧

∧

i<n

yi+1 < yi ↔ α(~x , ~y)).

But T3 � ci+1 < ci, and T3 � TO∗; so

T3 � ∀~x (θ(~x ,~c) ↔ α(~x ,~c)).

Thus T3 admits quantifier-elimination.

Corollary 8.1.4. T3 is complete.

Proof. The three countable models Ak form a chain:

A0 ⊆ A1 ⊆ A2.

But here diag B � Th(BB) for all models B of T3, so by Theorem 5.3.6, the
chain is elementary:

A0 4 A1 4 A2.

In particular, the three structures are elementarily equivalent. Now, if B is an
arbitrary model of T3, then it is infinite, so B ≡ C for some countably infinite
structure C by Theorem 6.0.11. But C ∼= Ak for some k, by Corollary 8.1.2.
Hence B ≡ A0 by Theorem 5.3.6. Thus

T3 � Th(A0);

so T3 is complete.

82 CHAPTER 8. NUMBERS OF COUNTABLE MODELS

8.2 Omitting types

Since there is a sound, complete proof-system for first-order logic, we may say
that a set of sentences is consistent to mean that it has a model.

An n-type of a signature L is a set of n-ary formulas of L.

An n-type Φ of L is realized by ~a in an L-structure A if

A � ϕ(~a)

for all ϕ in Φ. A type not realized in a structure is omitted by the structure.

If a consistent theory T of L is specified, then an n-type of T is an n-type Φ
that is consistent with T : This means that Φ is realized in some model of T .
Equivalently, it means that, if ~c is an n-tuple of new constants, then the set

T ∪ {ϕ(~c) : ϕ ∈ Φ}

is consistent. By Compactness, for Φ to be consistent with T , it is sufficient
that

T ∪ {∃~x
∧

Φ0}
be consistent for all finite subsets Φ0 of Φ.

By Compactness also, for any collection of types consistent with T , there is a
model of T in which all of the types are realized.

An n-type Φ of T is isolated in T by an n-ary formula ψ if:

(∗) T ∪ {∃~x ψ} is consistent;

(†) T � ∀~x (ψ → ϕ) for all ϕ in Φ.

Hence, if ψ is satisfied by ~a in a model of T , then ~a realizes Φ. Also, if T is
complete, then T � ∃~x ψ, so Φ is realized in every model of T .

We can call a theory countable if its signature is countable. (A more general
definition is possible: T is countable if, in its signature, only countably many
formulas are inequivalent in T .) It turns out that, in a countable theory, being
isolated is the only barrier to being omitted by some model:

Theorem 8.2.1 (Omitting Types). Suppose T is a countable theory, and Φ is
a non-isolated 1-type of T . Then Φ is omitted by some countable model of T .

Proof. We adjust our proof of the Compactness Theorem. As there, we intro-
duce a set C of new constants cn (where n ∈ ω). We enumerate SnL∪C as
{σn : n ∈ ω}. We construct a chain

T = Σ0 ⊆ Σ1 ⊆ · · ·

as follows. Assume Σ3n is consistent. Then let

Σ3n+1 =

{
Σ3n ∪ {σn}, if this is consistent;

Σ3n, otherwise.

Now let
Σ3n+2 = Σ3n+1 ∪ {ϕ(ck)},

8.2. OMITTING TYPES 83

where k is minimal such that ck does not appear in Σ3n+1, if σn ∈ Σ3n+1 and
σn is ∃x ϕ; otherwise, Σ3n+2 = Σ3n+1. Finally, let

Σ3n+3 = Σ3n+2 ∪ {¬ψ(cn)},

where ψ is an element of Φ such that Σ3n+2 ∪ {¬ψ(cn)} is consistent. But we
have to check that there is such a formula ψ in Φ. If there is, then we can let

Σ∗ =
⋃

n∈ω

Σn.

Then Σ∗ has a countable model A (as in the proof of Compactness) such that
every element of A is cA for some c in C. But by construction, no such element
can realize Φ; so A omits Φ.

Now, in the definition of Σ3n+3, the formula ψ exists as desired because the set
Σ3n+2 r T can be assumed to be finite. In particular, the formulas in this set
use only finitely many constants from C. We may assume that these constants
form a tuple (cn, ~d). Then we can write

∧
Σ3n+2 r T as a sentence

ϕ(cn, ~d),

where ϕ is a certain formula of L. Now, if

Σ3n+2 � ψ(cn)

for some formula ψ, then

T � (ϕ(cn, ~d) → ψ(cn)),

hence
T � ∀x (∃~y ϕ(x, ~y) → ψ(x)).

Since Φ is not isolated in T , it is not isolated by ∃~y ϕ. Therefore the set
Σ3n+2 ∪ {¬ψ(cn)} must be consistent for some ψ in Φ.

In the proof, it is essential that Σn r T is finite; the proof can’t be generalized
to the case where T is uncountable. But the proof can be generalized to yield
the following:

Porism 8.2.2. Suppose T is a countable theory, and Φk is an n-type of T for
some n (depending on k), for each k in ω. Then T has a countable model
omitting each Φk.

An n-type Φ of a theory T is called complete if

ϕ /∈ Φ ⇐⇒ ¬ϕ ∈ Φ

for all n-ary formulas ϕ of L. Any n-tuple ~a of elements of a model A of T
determines a complete n-type of T , namely

{ϕ : A � ϕ(~a)};

this is the complete type of ~a in A and can be denoted

tpA(~a).

84 CHAPTER 8. NUMBERS OF COUNTABLE MODELS

If Φ is an arbitrary n-type of T , then some ~a from some model A of T realizes
Φ, and therefore

Φ ⊆ tpA(~a).

In particular, every type of T is included in a complete type of T .

The set of complete n-types of T can be denoted

Sn(T);

then we can let
⋃

n∈ω Sn(T) be denoted

S(T).

So the Omitting-Types Theorem gives us that, if T is countable and |S(T)| 6 ω,
then T has a countable model that omits all non-isolated types of T .

A structure A that realizes only isolated types of Th(A) is called atomic.

Examples 8.2.3. [

]

(1) (ω,′ , 0) is atomic, since each element is named by a term. For example,
a 1-type realized by 5 is isolated by the formula x = 0′′′′′.

(2) The theory of Example 5.4.4 has no atomic models. •

The following lemma hints at the characterization of countable atomic models
that we shall see in the next section.{lem:types-embeddings}

Lemma 8.2.4. If A embeds elementarily in B, then B realizes all types that A

realizes.

Proof. Suppose h is an elementary embedding of A in B, and ~a realizes the
type Φ in A. Then

{ϕ(~a) : ϕ ∈ Φ} ⊆ Th(AA),

so h(~a) realizes Φ in B by Theorem 5.3.6.

8.3 Prime structures

A structure is prime if it embeds elementarily in every model of its theory; if
that theory is T , then the structure is a prime model of T . (Note then that
only complete theories can have prime models, simply because the prime model
is elementarily equivalent to all other models.)

Examples 8.3.1. [

]

(1) If T admits quantifier-elimination, then by Corollary 5.3.7, all embed-
dings of models of T are elementary embeddings. Hence, for example, a
countably infinite set is a prime model of the theory of infinite sets. Also,
(Q, <) embeds in every model of TO∗, so it is a prime model.

8.3. PRIME STRUCTURES 85

(2) It is possible to show that, if |L| 6 κ 6 |B|, then B is an elementary
extension of some structure A such that |A| = κ. Hence, a model of
a countable theory T is prime, provided it embeds elementarily in all
countable models of T . In particular then, if T is ω-categorical, then its
countable model is prime. •

{thm:prime-atomic}

Theorem 8.3.2. Suppose T is a countable complete theory. Then the prime
models of T are precisely the countable atomic models of T .

Proof. Suppose A � T .

(⇒) If A is not countable, then A cannot embed in countable models of T (which
must exist, by Theorem 6.0.11), so A cannot be prime.

If A is not atomic, then A realizes some non-isolated type Φ of T . But by the
Omitting-Types Theorem, T has a countable model B that omits Φ. Then A

cannot embed elementarily in B, by Lemma 8.2.4.

(⇐) Suppose A is countable and atomic, and B � T . We construct an ele-
mentary embedding of A in B by the back-and-forth method, except that the
construction is in only one direction. Write A as {an : n ∈ ω}. Then each
tpA(a0, . . . , an−1) is isolated in T by some formula ϕn. Then we have

(∗) T � ∃~x ϕn;

(†) T � ∀~x (ϕn → ∃xn ϕn+1).

Hence we can recursively find bk in B so that

B � ϕn(b0, . . . , bn−1)

for all n in ω.

Now, every sentence in Th(AA) is θ(a0, . . . , an−1) for some formula θ of L. Then

T � ∀~x (ϕn → θ),

so B � θ(~b). Therefore the map ak 7→ bk : A → B is an elementary embedding
of A in B.

{por:prime-isom}

Porism 8.3.3. All prime models of a countable complete theory are isomorphic.

Proof. In the proof that A embeds elementarily in B, if we assume also that B is
countable and atomic, then the full back-and-forth method gives an isomorphism
between the structures.

{lem:I-S}

Lemma 8.3.4. If I(T, ω) 6 ω, then |S(T)| 6 ω.

Proof. Exercise.
{thm:prime-existence}

Theorem 8.3.5. Suppose T is a countable complete theory. Then T has a
prime model if S(T) is countable.

Proof. Exercise.

86 CHAPTER 8. NUMBERS OF COUNTABLE MODELS

8.4 Saturated structures

A saturated structure is the opposite of an atomic structure. Atomic structures
realize as few types as possible. Saturated structures realize as many types
as possible; moreover, these types are allowed to have parameters from the
structure.

To be precise, let M be an infinite L-structure, and let A ⊆M . In this context,
the set Sn(Th(MA)) can be denoted

Sn(A).

Consider the special case where A is M itself. The set S1(M), for example,
contains types that include the type

{x 6= a : a ∈M}.
These types cannot be realized in M. So we say that M is saturated, provided
that, whenever A ⊆ M and |A| 6 |M |, each type in S(A) is realized in M. (In
particular, if M is countable here, then the sets A should be finite.){thm:saturated}

Theorem 8.4.1. Suppose T is countable and complete, and |S(T)| 6 ω. Then
T has a countable saturated model.

Proof. Suppose M is a countable model of T . If A is a finite subset {ak : k < n}
of M , then each element of Sm(A) is

{ϕ(x0, . . . , xm−1, a0, . . . , an−1) : ϕ ∈ p}
for some p in Sm+n(T). Hence |S(A)| is countable. Therefore the set

⋃
{S(A) : A is a finite subset of M}

is countable. So all of the types in this set are realized in a countable elementary
extension M′ of M.

Thus, if M0 is a countable model of T , then we can form an elementary chain

M0 4 M1 4 M2 4 · · · .
It is straightforward then to define the union of this chain: this is a structure
N whose universe N is ∪n∈ωMn, and that is an elementary extension of each
Mn. Every finite subset of N is a subset of some Mn, and so the types of S(A)
are realized in Mn+1, hence in N. So N is saturated.

If A is a finite subset {ak : k < n} of M , and ~a is (a0, . . . , an−1), we can denote
MA by

(A,~a).

If M is countable, then M is called homogeneous if

tpM(~a) = tpM(~b) =⇒ (M,~a) ∼= (M,~b)

for all n-tuples ~a and ~b from M , for all n in ω.{thm:homog}

Theorem 8.4.2. Countable saturated structures are homogeneous.

Proof. The back-and-forth method.

8.5. ONE MODEL 87

8.5 One model

For the sake of stating and proving the following theorem more easily, we can
use the following notation. Suppose T is a theory of L. Then equivalence in
T is an equivalence-relation on the set of n-ary formulas of L. Let the set of
corresponding equivalence-classes be denoted

Bn(T).

Theorem 8.5.1. Suppose T is a countable complete theory. The following
statements are equivalent:

(0) I(T, ω) = 1.

(1) All types of T are isolated.

(2) Each set Bn(T) is finite.

(3) Each set Sn(T) is finite.

Proof. (0)⇒(1): If S(T) contains a non-isolated type, then it is realized in some,
but not all, countable models of T , so I(T, ω) > 1.

(1)⇒(0): If all types of T are isolated, then all models of T are atomic, so all
countable models of T are prime and therefore isomorphic.

(2)⇒(3): Immediate.

(3)⇒(1)&(2): Suppose Sn(T) = {p0, . . . , pm−1}. For each i and j in m, if i 6= j,
then there is a formula ϕij in pi r pj . Let ψi be the formula

∧

j∈mr{i}

ϕij .

Then ψi is in pj if and only if j = i. If A � T , and ~a is an n-tuple from A, then
A realizes some unique pi, and then A � ψi(~a). Conversely, if A � ψi(~a), then
~a must realize pi. Therefore ψi isolates pi.

If χ is an arbitrary n-ary formula, let I = {i ∈ m : χ ∈ pi}. Then

T � ∀~x (χ↔
∨

i∈I

ψi).

There are only finitely many possibilities for I , so Bn(T) is finite.

(1)⇒(3): Suppose infinitely many complete n-types are isolated in T . Since T
is countable, there must be countably many such types. Say they compose the
set {pk : k ∈ ω}, and each pk is isolated by ϕk. Then the type

{¬ϕk : k ∈ ω}

is consistent with T . It is not included in any of the pk, so it must be included
in a non-isolated type.

88 CHAPTER 8. NUMBERS OF COUNTABLE MODELS

8.6 Not two models

Theorem 8.6.1. Suppose T is a countable complete theory. Then I(T, ω) 6= 2.

Proof. Suppose if possible that T2 has just two non-isomorphic countable mod-
els. One of them, A, is prime, by Lemma 8.3.4 and Theorem 8.3.5. The other
one, B, is saturated, by Theorem 8.4.1. Since A embeds elementarily in B, we
may assume A 4 B.

Since A 6∼= B, there is a non-isolated type Φ realized by some ~b in B, by
Theorem 8.3.2 and Porism 8.3.3. Let T ∗ = Th(B,~b). Suppose (C,~c) is a
countable model of T ∗. Then C � T2, so C is isomorphic to A or B. In any
case, A embeds elementarily in C. But Φ is realized by ~c in C. Hence C ∼= B

by Lemma 8.2.4. Let the isomorphism take ~c to ~a . Then it is enough to show
(B,~a) ∼= (B,~b). But this follows from Theorem 8.4.2.

Bibliography

[1] Aristotle. Categories, On Interpretation, and Prior Analytics, volume 325
of Loeb Classical Library. Harvard University Press and William Heine-
mann Ltd, Cambridge, Massachusetts and London, 1973. Translated by H.
P. Cooke and H. Tredennick.

[2] C. C. Chang and H. J. Keisler. Model theory. North-Holland Publishing Co.,
Amsterdam, 1973. Studies in Logic and the Foundations of Mathematics,
Vol. 73.

[3] Alonzo Church. Introduction to mathematical logic. Vol. I. Princeton Uni-
versity Press, Princeton, N. J., 1956.

[4] René Descartes. The Geometry of René Descartes. Dover Publications,
Inc., New York, 1954. Translated from the French and Latin by David
Eugene Smith and Marcia L. Latham, with a facsimile of the first edition.

[5] Leon Henkin. The completeness of the first-order functional calculus. J.
Symbolic Logic, 14:159–166, 1949.

[6] Leon Henkin. The discovery of my completeness proofs. Bull. Symbolic
Logic, 2(2):127–158, 1996.

[7] Wilfrid Hodges. Model theory, volume 42 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press, Cambridge, 1993.

[8] Henry George Liddell and Robert Scott. A Greek-English Lexicon. Claren-
don Press, Oxford, 1940. Revised and augmented throughout by Sir Henry
Stuart Jones.

[9] David Marker. Model theory, volume 217 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002. An introduction.

[10] Plato. Republic. Loeb Classical Library. Harvard University Press, Cam-
bridge, Massachusetts, USA, 1980. With an English Translation by Paul
Shorey. In two volumes.

[11] Emil L. Post. Introduction to a general theory of elementary propositions.
Amer. J. Math., 43(3):163–185, July 1921.

[12] Philipp Rothmaler. Introduction to model theory, volume 15 of Algebra,
Logic and Applications. Gordon and Breach Science Publishers, Amster-
dam, 2000. Prepared by Frank Reitmaier, Translated and revised from the
1995 German original by the author.

89

90 BIBLIOGRAPHY

[13] Joseph R. Shoenfield. Mathematical logic. Addison-Wesley Publishing Co.,
Reading, Mass.-London-Don Mills, Ont., 1967.

[14] Robert R. Stoll. Set theory and logic. Dover Publications Inc., New York,
1979. Corrected reprint of the 1963 edition.

[15] Jean van Heijenoort, editor. Frege and Gödel. Two fundamental texts in
mathematical logic. Harvard University Press, Cambridge, Mass., 1970.

