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0 Preface

These notes are written according to my own understanding and preferences,
and they should be considered only as a rough draft. I aim to present some logic
as mathematics, and I assume that the reader already has some experience with
mathematics. I claim no originality, but I do not happen to know of a published
treatment that is quite like mine. However, § 2 in particular is influenced by [2]
and [5]; most model-theory texts seem not to deal specifically with propositional
logic. For the model-theoretic development of first-order logic, see also the early
parts of [4], [7] or [6]. Books on logic itself that I have found useful are [3] and
[1].

Technical terms in boldface are being defined, perhaps implicitly. Mathe-
matical propositions (theorems, lemmas) whose proofs are not supplied are to
be proved by the reader.

1 Conventions

In these notes, the symbol ⇐⇒ is just an abbreviation for the words ‘if and
only if’.

Let us denote the set {0, 1, 2, . . . } of natural numbers by ω. It is notationally
convenient to consider this as the smallest set of sets that contains ∅ and is
closed under the successor-operation, namely

A 7→ A ∪ {A}.



2 Elements of model-theory, David Pierce, May 15, 2003

So ω contains ∅, {∅} and {∅, {∅}}, denoted 0, 1 and 2 respectively. Thus, 2
is {0, 1}, which we shall consider as the underlying set—the universe—of the
2-element field, F2. We can write any n in ω as

{0, . . . , n− 1}.

Suppose M is a set, and I is a finite set. We shall denote the set of functions
from I to M by M I . Elements of this are I-tuples; a typical I-tuple can be
written

(aj : j ∈ I)

or just a. If I = n for some n in ω, then we may write a as (a0, . . . , an−1) or as
the string a0 . . . an−1. As a special case, we have M 0 = {0} = 1.

2 Propositional model-theory

We first select a set V , and we shall refer to its members as variables. Usually,
V is countably infinite, but this will not be required in any definitions. If A ⊆ V ,
then we may refer to the ordered pair (A, V ) as a (propositional) structure
(for V ) and denote it by

A.

The structure A determines, and is determined by, the characteristic function
χA : V → 2, which is given by

χA(P ) =

{
0, if P ∈ V rA;

1, if P ∈ A.

We may call such a characteristic function a truth-assignment for V , reading
0 as ‘false’, and 1 as ‘true’.

Remark 2.1. Instead of χA, one may write χA if the domain of the function is
clear.

Next, we introduce a set

{∧,∨,¬,→,↔}

of Boolean connectives, along with a pair {(, )} of brackets. We assume
that the Boolean connectives and the brackets are not variables. We define the
(propositional) formulas (for V ) to be the members of the smallest set Φ
of strings of elements of V ∪ {∧,∨,¬,→,↔} ∪ {(, )} such that

(0) V ⊆ Φ;

(1) if F ∈ Φ, then ¬F ∈ Φ;

(2) if F,G ∈ Φ, and ∗ ∈ {∧,∨,→,↔}, then (F ∗G) ∈ Φ.

So, we can call ¬ a unary connective; the other connectives are binary. Let us
denote the set of propositional formulas in V by PF(V ). The definition of PF(V )
obviously allows proof by induction. That is, if Φ ⊆ PF(V ), and if Φ satisfies
the three enumerated conditions in the definition of PF(V ), then Φ = PF(V ).
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Remark 2.2. The symbols ∧, ∨, ¬, → and ↔ can be read ‘and’, ‘or’, ‘not’,
‘implies’ and ‘if and only if’, respectively. We could avoid brackets by using the
so-called Polish notation, in which we would write ∗FG instead of (F ∗ G);
using reverse Polish notation, we would write FG∗. Note that the formulation
FG∧ in reverse Polish notation could be read as ‘F , G too,’ or in Turkish as
‘F , G de’.

Lemma 2.3 (unique readability). Any propositional formula that is not a
variable is the application of exactly one connective in exactly one way, that is,
if F , F ′, G, G′ and H are formulas, then F ∗ G and ¬H cannot be the same
formula, and if F ∗G and F ′ ∗′G′ are the same formula, then F and F ′ are the
same formula.

Lemma 2.4 (definition by recursion). Functions on PF(V ) can be defined
recursively. To be precise, suppose S is a set, and f¬ is a function from S to
itself, and f∗ is a function from S×S to S for each binary Boolean connective ∗.
Then for every function g : V → S, there is a unique extension ĝ : PF(V )→ S
such that

(1) ĝ(¬F ) = f¬(ĝ(F )) for all F in PF(V );

(2) ĝ(F ∗ G) = f∗(ĝ(F ), ĝ(G)) for all F and G in PF(V ) and each binary
Boolean connective ∗.

Proof. Let PFn(V ) be the set of elements of PF(V ) of length at most n. Suppose
hn and h′n have the desired properties of ĝ, but are defined only on PFn(V ).
By induction, the set

{F ∈ PF(V ) : hn(F ) = h′n(F ) or F /∈ PFn(V )}
is just PF(V ), so hn = h′n.

Also, in the obvious way, by Lemma 2.3, we can extend hn to a function
hn+1 on PFn+1(V ) having the properties of ĝ. Finally, h0 = ∅; so hn exists
uniquely for all n in ω, and we can let ĝ =

⋃
n∈ω hn.

For a first application of Lemma 2.4, we can define a function

F 7→ VF : PF(V )→ P(V )

by the requirements:

(0) VP = {P} if P ∈ V ;

(1) V¬F = VF ;

(2) VF∗G = VF ∪ VG.

Theorem 2.5. VF is the set of variables that actually appear in F . In partic-
ular, if also F ∈ PF(V ′), then VF = V ′F .

For a second application of Lemma 2.4, letting S be the universe of F2, we
can define

f¬(x) = 1 + x,

f∧(x, y) = xy,

f∨(x, y) = x+ y + xy,

f→(x, y) = 1 + x+ xy,

f↔(x, y) = 1 + x+ y.
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Letting g be a truth-assignment χA, we get an extension χ̂A : PF(V )→ 2.

Lemma 2.6. χ̂A(F ) depends only on F and A ∩ VF , that is,

χ̂A(F ) = χ̂A′(F ),

where A′ = (A′, V ′) and F ∈ PF(V ) ∩ PF(V ′), provided A ∩ VF = A′ ∩ V ′F .

If χ̂A(F ) = 1, we say that A is a model of F and write

A |= F.

If every structure for V is a model of F , then we say F is a validity for V and
write

|=V F.

The truth-table for F is the function

A 7→ χ̂A(F ) : P(VF )→ 2;

this is well-defined by Lemma 2.6. If this function is identically 1, then we say
that F is a tautology and write

` F.

Theorem 2.7 (Completeness). For all F in PF(V ),

|=V F ⇐⇒ ` F.

Hence we may write the single symbol |= in place of |=V and `. If Φ ⊆
PF(V ), and A is a model of every formula in Φ, then A is a model of F , and
we can write

A |= Φ.

Theorem 2.8 (Compactness). A set Φ of propositional formulas for a count-
able set of variables has a model if and only if each finite subset of Φ has a model.

If every model of a set Φ of formulas is a model of some formula F , then F
is a (logical) consequence of Φ, and we can write

Φ |= F.

Also, F |= G means {F} |= G. In this case, if also G |= F , then F and G are
(logically) equivalent, and we may write

F |= =| G.

Lemma 2.9. For all F and G in PF(V ),

F |= =| G ⇐⇒ |= F ↔ G.

Lemma 2.10. For all F and G in PF(V ),

(F ∨G) |= =| ¬(¬F ∧ ¬G),

(F → G) |= =| (¬F ∨G),

(F ↔ G) |= =| ((F → G) ∧ (G→ F )).
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Remark 2.11. By Lemma 2.10, one can show that every equivalence-class of
formulas contains a formula whose only Boolean connectives are ¬ and ∧.

Theorem 2.12 (Adequacy). Let A be a finite non-empty set of variables.
Every function from P(A) to 2 is the truth-table for some propositional formula.

Proof. We shall use induction on the size of A. If A = {P}, then the truth-
tables of P , ¬P , (P ∧ ¬P ) and (P ∨¬P ) are just the 4 possible functions from
P(A) to 2.

Suppose A has size n, and P is a variable not in A, and f is a function
from P(A ∪ {P}) to 2. Let f0 be the restriction of f to P(A), and let f1 be the
function

B 7→ f(B ∪ {P}) : P(A)→ 2.

Then for all B in P(A ∪ {P}) we have

f(B) =

{
f0(B r {P}), if P /∈ B;

f1(B r {P}), if P ∈ B.

Now let F be a formula ((F0 ∧ ¬P )∨ (F1 ∧ P )), where F0 and F1 are formulas
whose variables are from A. If B ⊆ A ∪ {P}, then

χ̂B(F ) =

{
χ̂Br{P}(F0), if P /∈ B;

χ̂Br{P}(F1), if P ∈ B.

Hence, if f0 and f1 are the truth-tables for F0 and F1 respectively, then f is the
truth-table for F .

Remark 2.13. We might define propositional logic as the use of formulas to
represent functions from the power-sets of finite sets to 2. We may then say that
our particular propositional logic uses the signature {∧,∨,¬,→,↔}. The last
theorem shows that this signature is adequate to the task of representing these
functions; in fact, the theorem shows that {∧,∨,¬} is adequate. We then have,
by Remark 2.11, that the signature {∧,¬} is adequate. In fact, one could get
by with a single connective, namely the binary connective | such that

F | G |= =| ¬(F ∧ G);

this connective is called the Sheffer stroke, although Church in [3, n. 207,
pp. 133 f.] says that Sheffer never used the stroke this way.

3 First-order logic

We now define first-order structures and their signatures. The structures are
primary in interest, but in giving definitions, it is easier to start with signatures.

Remark 3.1. A standard example of a first-order structure is R, considered as
the 7-tuple (R,+,−, ·, 0, 1,6), where R is the set of real numbers. A group is a
first-order structure when considered as the ordered quadruple (G, ·, −1, 1); but
it is not first-order when one considers it to be equipped also with the operation
S 7→ 〈S〉 that assigns to each subset the subgroup that it generates.
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A (first-order) signature is a set, each of whose members can be uniquely
recognized as a function-, relation- or constant-symbol. Each of the func-
tion- and relation-symbols has an arity: each of these symbols is n-ary for
some unique positive integer n.

Let L be a signature. Let f , R and c be arbitrary function-, relation- and
constant-symbols, respectively, of L, and let n stand for the arity of f or R. An
L-structure is an ordered pair

(M, int),

where M is a non-empty set, and int is a function s 7→ sM on L such that

• fM is a n-ary operation on M , that is, a function from Mn to M ;

• RM is an n-ary relation on M , that is, a subset of Mn;

• cM ∈M .

The structure itself can be denoted M. The set M is the universe of M, and
each image sM is the interpretation of s in M.

Remark 3.2. A structure can be considered as its universe together with the
interpretations of the symbols in its signature. This is how R was presented
in Remark 3.1. A structure without any relations can be called an algebra.
Theorem 2.4 involves an algebra, namely (S, f∧, f∨, f¬, f→, f↔). The natural
numbers compose the algebra (ω, ′, 0), where ′ is the successor-operation. The
complete set of propositional formulas in some set of variables is the universe of
an algebra in an obvious way.

Subsets of M0 are nullary relations. There are only two of these, namely 0
and 1, which we may read as before as ‘false’ and ‘true’.

Let X be set of new symbols, called (individual-) variables. We shall
develop a language, which we might denote

LX .

The symbols of LX will compose the disjoint union

X ∪ L ∪ {=} ∪ S ∪ {∃x : x ∈ X},

where S is an adequate signature for a propositional logic (along with brackets,
if one is using them). Let us consider S to be the signature {∧,¬}. Note
that each ∃x is an indivisible symbol, in which, however, the original x can be
recognized. The symbols that are not in X ∪ L are logical symbols. In every
L-structure M, each symbol s of LX has an interpretation (rather, a family of
interpretations) sM. We have defined the interpretations of the elements of L.
The interpretations of the rest of the symbols of LX are certain operations or,
in one case, a relation, associated with appropriate finite subsets I of X:

• If x ∈ I, then xM is a 7→ ax : M I →M .

• =M is equality, a subset of M 2.

• ∧M is (A,B) 7→ A ∩B : P(M I)× P(M I)→ P(M I) for any I.

• ¬M is A 7→ Ac : P(M I)→ P(M I) for any I.
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• ∃xM is, for any I, the map from P(M I) to P(M Ir{x}) induced by the
projection a 7→ (ai : i ∈ I r {x}) : M I →M Ir{x}.

The symbols of LX compose strings of various kinds, and each of these strings
has a family of interpretations. Certain strings are called terms, and their
interpretations are functions. For each term t and for each finite set I of variables
that contains the variables in t, there will be an interpretation tM : M I → M .
The precise definitions are thus:

• Each c is a term, and cM, besides being an element of M , can also be
understood as the constant-function a 7→ cM : M I →M .

• Each variable x is a term, interpreted as above.

• If t0, . . . , tn−1 are terms, then ft0 . . . tn−1 is a term, with interpretation

a 7→ fM(tM0 (a), . . . , tMn−1(a)) : M I →M.

The formulas are certain strings whose interpretations are relations. For
any atomic formula α and any finite set I of variables that contains the variables
appearing in α, there will be an interpretation αM that is a subset of M I . The
precise definitions are:

• If t0, . . . , tn−1 are terms, then Rt0 . . . tn−1 is an atomic formula, with
interpretation {a ∈M I : (tM0 (a), . . . , tMn−1(a)) ∈ RM}.

• If t0 and t1 are terms, then t0 = t1 is an atomic formula, with interpreta-
tion {a ∈M I : tM0 (a) = tM1 (a)}.

The formulas in general are built up using the remaining logical symbols: The
atomic formulas are formulas, and if φ and ψ are formulas, then so are (φ ∧ ψ),
¬φ and ∃x φ for any x in X. The interpretations are obvious:

• (φ ∧ ψ)M = φM ∩ ψM;

• ¬φM = (φM)c;

• ∃x φM = ∃xM(φM).

In particular, if φM is a well-defined subset of M I , then ∃x φM is a well-
defined subset of M Ir{x}. Thus, the nullary relations 0 and 1 can arise as
interpretations. To say precisely when they can arise, we recursively define the
set FV(φ) of free variables of an arbitrary formula φ:

• FV(α) is the set of variables appearing in α, if α is atomic;

• FV(¬φ) = FV(φ);

• FV(φ ∧ ψ) = FV(φ) ∪ FV(ψ);

• FV(∃x φ) = FV(φ)r {x}.

Then φM is defined as a subset of M I , provided FV(φ) ⊆ I.

Theorem 3.3 (Substitution). Suppose the following:
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• φ is a formula of LX ;

• I is a finite subset of X such that FV(φ) ⊆ I;

• u is an I-tuple of terms of LX ;

• J is a finite subset of X that contains all variables in the entries in u.

Then there is a formula φ(u) of LX such that FV(φ(u)) ⊆ J and, for every
L-structure M, and for all a in MJ ,

a ∈ φ(u)M ⇐⇒ (uM
i (a) : i ∈ I) ∈ φM.

Example 3.4. If FV(φ) ⊆ I, and x is the identity on I (so x = (x : x ∈ I)),
then we may assume that φ(x) is the same formula as x.

A sentence is a formula with no free variables. If σ is a sentence of LX ,
and σM = 1, then we say that M is a model of σ.

Example 3.5. If FV(φ) ⊆ I, and a is an I-tuple of constant-symbols, then
φ(c) is a sentence σ such that

σM = 1 ⇐⇒ cM ∈ φM,

where cM is (cMi : i ∈ I).

We can also allow structures to be models of arbitrary formulas. Suppose
φ is a formula of LX and FV(φ) ⊆ I. If c is an I-tuple of constant-symbols
that are not in L, and a is an I-tuple from M , then (M, a) is a structure of
L ∪ {cx : x ∈ I} in the obvious way. Then M is a model of φ, provided (M, a)
is a model of φ(c) for some tuple a.

The notations of § 2 involving |= now make sense in the present context. If
M |= φ, we say also that M satisfies φ.

We may let L(M) be the disjoint union L tM , where each element of M is
understood as a constant-symbol whose interpretation in M is itself. Then we
may ask whether M is a model of a formula of L(M)X .

In the following, ∃x is an abbreviation for

∃x0 ∃x1 . . .∃xn−1 ,

where I = {x0, . . . , xn−1}.

Lemma 3.6. Suppose M is an L-structure, and FV(φ) ⊆ I. The following are
equivalent:

(0) M satisfies φ;

(1) M |= φ(a) for some a in M I ;

(2) M |= ∃x φ(x).
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4 Types

Now suppose that the set X of individual-variables is {xi : i ∈ ω}, and write
LX just as L. On the set of formulas of L with free variables in {xi : i < n},
the relation |= =| is an equivalence-relation; let us denote the set modulo the
relation by

Fmn(L).

Then ∧ and ¬ (and hence ∨) are well-defined operations on Fmn(L), which is
also partially ordered by |= and, with respect to this, has a greatest element >
and a least element ⊥.

An n-type of L is a subset Γ of Fmn(L) such that

• φ, ψ ∈ Γ =⇒ φ ∧ ψ ∈ Γ;

• φ ∈ Γ & φ |= ψ =⇒ ψ ∈ Γ;

• > ∈ Γ;

the type is proper if ⊥ /∈ Γ; if proper, the type is complete if

• φ ∈ Fmn(L)r Γ =⇒ ¬φ ∈ Γ.

The unique improper n-type is Fmn(L) itself. Every subset of Fmn(L) gener-
ates a type, possibly improper. The subset itself can be called consistent or
finitely satisfiable if for every finite subset {φi : i < m} there is a structure
satisfying

∧
i<m φi.

Lemma 4.1. A subset of Fmn(L) is finitely satisfiable if and only if it generates
a proper type.

In fact the structure (Fmn(L),∧,∨,¬,⊥,>, |=) is a Boolean algebra. A
standard Boolean algebra is

(P(X),∩,∪, c,∅, X,⊆),

where X is a set. One way to give a formal definition is the following. A
Boolean ring is a (unital, associative) ring satisfying ∀x x · x = x.

Lemma 4.2. Boolean rings are commutative and are of characteristic 2.

Example 4.3. F2 is a Boolean ring.

Let (B,+, ·, 0, 1) be a Boolean ring, and define new operations and a relation
on B by the following rules (which should be compared with the definition of
χ̂A on p. 4):

• x ∧ y = xy;

• x ∨ y = x+ y + xy;

• ¬x = 1 + x;

• x 6 y ⇐⇒ x ∧ y = x;

• ⊥ = 0 and > = 1.
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The structure (B,∧,∨,¬,⊥,>,6) arising thus is a Boolean algebra.

Lemma 4.4. If (B,∧,∨,¬,⊥,>,6) is a Boolean algebra, then the Boolean ring
from which it arises is given by

• xy = x ∧ y;

• x+ y = ¬(¬x ∧ ¬y) ∧ ¬(x ∧ y);

• > = 1 and ⊥ = 0.

Lemma 4.5. Fmn(L) is a Boolean algebra.

A subset F of a Boolean algebra is a filter if the set {x : ¬x ∈ F} is an ideal
of the corresponding ring; F is principal if I is principal; F is an ultra-filter
if I is maximal. (The unique improper filter is the algebra itself; an ultra-filter
must be proper.)

Lemma 4.6. Types of Fmn(L) are just filters; complete types are just ultra-
filters.

The set of ultra-filters of a Boolean algebra B is denoted

S(B)

and called its Stone space, because of the following. If x ∈ B, let

[x]

be the subset {F : x ∈ F} of S(B).

Theorem 4.7 (Stone Representation). If B be a Boolean algebra, then the
map

x 7→ [x] : B→ P(S(B))

is an embedding of Boolean algebras.

Corollary 4.8. The subsets [x] of S(B) compose a basis of open sets and of
closed sets for a topology on S(B), which topology is compact and Hausdorff.

For every subset X of B, let X be the subset
⋂
x∈X [x] of S(B).

Lemma 4.9. Suppose B is a Boolean algebra.

(0) The map
X 7→ X : P(B)→ P(S(B))

is inclusion-reversing and takes unions to intersections, and its range is
the set of closed subsets of S(B).

(1) The map

Y 7→
⋂
Y : P(S(B))→ P(B)

is inclusion-reversing and takes unions to intersections, and its range is
the set of filters of B.

(2) If X ⊆ B, then
⋂
X is the filter of B generated by X.
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(3) If Y ⊆ S(B), then
⋂
Y is the topological closure of Y .

hence X 7→ X gives a one-to-one correspondence, with inverse Y 7→ ⋂
Y , be-

tween filters of B and closed subsets of S(B).

So the complete n-types of L compose a compact Hausdorff space, denoted

Sn(L),

whose closed subsets are just the sets Γ determined by arbitrary n-types Γ.
A theory of L is a 0-type The improper 0-type of L is the unique incon-

sistent theory of L.
Since Fm0(L) embeds in Fmn(L), a theory T of L determines a closed subset

of Sn(L), denoted
Sn(T ).

Then an arbitrary n-type Γ is consistent with T if Γ∪ T is consistent, equiv-
alently, Γ ∩ Sn(T ) 6= 0.

Theorem 4.10 (Compactness). Every consistent theory has a model.

Proof. Let T be a theory of L. The proof that T has a model has three parts:

(0) There is a signature L′ such that L ⊆ L′, and L′rL consists of constant-
symbols, and there is a bijection

φ 7→ cφ : Fm1(L′)→ L′ r L.

Now let H(T ) be the set S0(T ) ∩⋂φ∈Fm1(L′)[∃x0 φ→ φ(cφ)].

(1) Let T ′ be an element of H(T ). Then T ′ has a canonical model, whose
universe is L′ r L modulo the equivalence-relation ∼ given by

c ∼ d ⇐⇒ T ′ |= c = d.

(2) H(T ) is non-empty.

Note that H(T ) is non-empty by Corollary 4.8, in particular, compactness of
S0(T ).

If Γ is an n-type, and c is an n-tuple of constant-symbols, then the set
{φ(c) : φ ∈ Γ} can be denoted

Γ(c).

A structure M realizes Γ if M |= Γ(a) for some tuple a from M ; otherwise the
structure omits the type.

An complete type p is: isolated, if {p} is open; limit, if not. These defini-
tions can be understood absolutely, as stated, or over some theory T .

Lemma 4.11. The isolated types are precisely the principal complete types.
Every type included in a principal type over a complete theory T is realized in
every model of T . If Γ is a type consistent with an (arbitrary) theory T , then
the following are equivalent:

(0) Γ is not included in a principal type over T ;
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(1) Γ has empty interior in Sn(T );

(2) Γ
c

is a dense open subset of Sn(T ).

Example 4.12. Let L be {cn : n ∈ ω} ∪ {P}, where the cn are constant-
symbols and P is a unary relation-symbol. Let T be the theory generated by
{Pcn : n ∈ ω}. Then

T |= ¬Px→ x 6= cn

for each n, so the principal type generated by ¬Px includes the type generated
by {x 6= cn : n ∈ ω}; but the latter type is not principal.

A partial converse is the Omitting-Types Theorem below, whose proof is
based on [7, ch. 10]. First:

Lemma 4.13. The intersection of countably dense open subsets of a compact
Hausdorff space is also dense.

Proof. Suppose X is a compact Hausdorff space. Then X is locally compact,
that is, every neighborhood of every point includes a compact neighborhood.
Indeed, let U be an open neighborhood of P . For each x in U c there are disjoint
open neighborhoods Vx and Ux of x and P respectively. Some finite union of
sets Vx covers U c; the complement is included in U and is a closed—hence
compact—neighborhood of P , since it includes the corresponding intersection
of sets Ux.

Now suppose {On : n ∈ ω} is a collection of dense open subsets of X. We
can recursively define a decreasing chain U0 ⊇ K0 ⊇ U1 ⊇ K1 ⊇ U2 ⊇ . . . of
sets, and at the same time a sequence (Pn : n ∈ ω) of points, such that:

• U0 = U ;

• Un is open;

• Pn ∈ Un ∩On;

• Kn is compact, and Pn ∈ Kn ⊆ Un ∩On;

• Pn ∈ Un+1 ⊆ Kn.

Then
⋂
n∈ωKn is a nonempty subset of U included in each set On.

Theorem 4.14 (Omitting Types). Let T be a consistent theory of a count-
able signature L. For every countable collection of types Γ, none included in a
principal type, T has a countable model omitting each Γ.

Proof. To the proof of the Compactness Theorem, we add a step:

(3) H(T ) has an element T ′ such that, for each tuple c of elements of L′ rL,
and for each Γ,

T ′ /∈ Γ(c),

that is, Γ(c) 6⊆ T ′.



Elements of model-theory, David Pierce, May 15, 2003 13

To prove this, by Lemma 4.13, it is enough to show that each closed set Γ(c) has
dense complement in H(T ), since then the intersection of these complements is
dense and so non-empty.

Every open subset of H(T ) is a union of sets [ψ(d)] ∩ H(T ), where ψ is a
formula of L, and d is a tuple of elements of L′ r L. Supposing

T ′ ∈ [ψ(d)] ∩H(T ),

we shall derive an element T ∗ of [ψ(d)] ∩H(T )r Γ(c).
Each entry of (c,d) is cφ0 for some formula φ0, which contains finitely many

constant-symbols cφ1 ; each φ1 contains finitely many constant-symbols cφ2 , and
so on. The constant-symbols arising in this way form a finitely branching tree
with no infinite branches; hence they are finitely numerous and compose a tuple
e.

Hence if cφ is one of the terms of (c,d, e), then the constant-symbols used
in φ also appear in (c,d, e). Hence there is a formula θ of L such that θ(c,d, e)
is the conjunction of ψ(d) and the sentences

∃x0φ→ φ(cφ)

such that cφ appears in (c,d, e).
Let M be the canonical model of T ′. Then M |= θ(c,d, e). The open set

[∃y ∃z θ(x,y, z)] is therefore a non-empty subset of Sn(T ), so it is not included
in Γ. Suppose

p ∈ [∃y ∃z θ(x,y, z)]r Γ.

By the Compactness Theorem, T has a countable model N realizing p with some
tuple a. There is a bijection f between L′ r L and N such that f(c) = a and

N |= θ(f(c,d, e)).

This bijection determines the desired T ∗.
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Hints

• Lemma 2.4: Prove that for each n there is a unique such function on the
set of formulas of length at most n.

• Theorem 2.7: It’s a simple chain of equivalences, justified by Lemma 2.6.

• Theorem 2.8: Say V = {Pn : n ∈ ω}. Define Vn = {Pi : i < n}. Let T be
the set of structures on the various Vn. Order T by the rule

(A, Vm) 6 (B, Vn) ⇐⇒ m 6 n ∧ A = Vm ∩B.

Then (T,6) is a tree. Consider the set comprising those (A, Vm) such
that, for all F in Φ, if VF ⊆ Vm, then (A, Vm) |= F . This set forms an
infinite sub-tree of T . Hence the sub-tree includes an infinite chain.

• Lemma 2.9: Use f↔.

• Lemma 2.10: Use the various f∗.


