Elements of the theory of models

David Pierce

May 15, 2003

Contents

0 Preface 1
1 Conventions 1
2 Propositional model-theory 2
3 First-order logic 5
4 Types 9

0 Preface

These notes are written according to my own understanding and preferences, and they should be considered only as a rough draft. I aim to present some logic as mathematics, and I assume that the reader already has some experience with mathematics. I claim no originality, but I do not happen to know of a published treatment that is quite like mine. However, § 2 in particular is influenced by [2] and [5]; most model-theory texts seem not to deal specifically with propositional logic. For the model-theoretic development of first-order logic, see also the early parts of [4], [7] or [6]. Books on logic itself that I have found useful are [3] and [1].

Technical terms in boldface are being defined, perhaps implicitly. Mathematical propositions (theorems, lemmas) whose proofs are not supplied are to be proved by the reader.

1 Conventions

In these notes, the symbol \Longleftrightarrow is just an abbreviation for the words 'if and only if'.

Let us denote the set $\{0,1,2, \ldots\}$ of natural numbers by ω. It is notationally convenient to consider this as the smallest set of sets that contains \varnothing and is closed under the successor-operation, namely

$$
A \mapsto A \cup\{A\}
$$

So ω contains $\varnothing,\{\varnothing\}$ and $\{\varnothing,\{\varnothing\}\}$, denoted 0,1 and 2 respectively. Thus, 2 is $\{0,1\}$, which we shall consider as the underlying set - the universe - of the 2 -element field, \mathbb{F}_{2}. We can write any n in ω as

$$
\{0, \ldots, n-1\}
$$

Suppose M is a set, and I is a finite set. We shall denote the set of functions from I to M by M^{I}. Elements of this are I-tuples; a typical I-tuple can be written

$$
\left(a_{j}: j \in I\right)
$$

or just a. If $I=n$ for some n in ω, then we may write a as $\left(a_{0}, \ldots, a_{n-1}\right)$ or as the string $a_{0} \ldots a_{n-1}$. As a special case, we have $M^{0}=\{0\}=1$.

2 Propositional model-theory

We first select a set V, and we shall refer to its members as variables. Usually, V is countably infinite, but this will not be required in any definitions. If $A \subseteq V$, then we may refer to the ordered pair (A, V) as a (propositional) structure (for V) and denote it by
\mathfrak{A}.
The structure \mathfrak{A} determines, and is determined by, the characteristic function $\chi_{\mathfrak{A}}: V \rightarrow 2$, which is given by

$$
\chi_{\mathfrak{A}}(P)= \begin{cases}0, & \text { if } P \in V \backslash A ; \\ 1, & \text { if } P \in A\end{cases}
$$

We may call such a characteristic function a truth-assignment for V, reading 0 as 'false', and 1 as 'true'.

Remark 2.1. Instead of $\chi_{\mathfrak{A}}$, one may write χ_{A} if the domain of the function is clear.

Next, we introduce a set

$$
\{\wedge, \vee, \neg, \rightarrow, \leftrightarrow\}
$$

of Boolean connectives, along with a pair $\{()$,$\} of brackets. We assume$ that the Boolean connectives and the brackets are not variables. We define the (propositional) formulas (for V) to be the members of the smallest set Φ of strings of elements of $V \cup\{\wedge, \vee, \neg, \rightarrow, \leftrightarrow\} \cup\{()$,$\} such that$
(0) $V \subseteq \Phi$;
(1) if $F \in \Phi$, then $\neg F \in \Phi$;
(2) if $F, G \in \Phi$, and $* \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$, then $(F * G) \in \Phi$.

So, we can call \neg a unary connective; the other connectives are binary. Let us denote the set of propositional formulas in V by $\mathrm{PF}(V)$. The definition of $\mathrm{PF}(V)$ obviously allows proof by induction. That is, if $\Phi \subseteq \operatorname{PF}(V)$, and if Φ satisfies the three enumerated conditions in the definition of $\mathrm{PF}(V)$, then $\Phi=\mathrm{PF}(V)$.

Remark 2.2. The symbols $\wedge, \vee, \neg, \rightarrow$ and \leftrightarrow can be read 'and', 'or', 'not', 'implies' and 'if and only if', respectively. We could avoid brackets by using the so-called Polish notation, in which we would write $* F G$ instead of $(F * G)$; using reverse Polish notation, we would write $F G *$. Note that the formulation $F G \wedge$ in reverse Polish notation could be read as ' F, G too,' or in Turkish as ' F, G de'.
Lemma 2.3 (unique readability). Any propositional formula that is not a variable is the application of exactly one connective in exactly one way, that is, if $F, F^{\prime}, G, G^{\prime}$ and H are formulas, then $F * G$ and $\neg H$ cannot be the same formula, and if $F * G$ and $F^{\prime} *^{\prime} G^{\prime}$ are the same formula, then F and F^{\prime} are the same formula.

Lemma 2.4 (definition by recursion). Functions on $\operatorname{PF}(V)$ can be defined recursively. To be precise, suppose S is a set, and f_{\neg} is a function from S to itself, and f_{*} is a function from $S \times S$ to S for each binary Boolean connective $*$. Then for every function $g: V \rightarrow S$, there is a unique extension $\hat{g}: \operatorname{PF}(V) \rightarrow S$ such that
(1) $\hat{g}(\neg F)=f_{\neg}(\hat{g}(F))$ for all F in $\operatorname{PF}(V)$;
(2) $\hat{g}(F * G)=f_{*}(\hat{g}(F), \hat{g}(G))$ for all F and G in $\operatorname{PF}(V)$ and each binary Boolean connective *.
Proof. Let $\mathrm{PF}_{n}(V)$ be the set of elements of $\mathrm{PF}(V)$ of length at most n. Suppose h_{n} and h_{n}^{\prime} have the desired properties of \hat{g}, but are defined only on $\mathrm{PF}_{n}(V)$. By induction, the set

$$
\left\{F \in \operatorname{PF}(V): h_{n}(F)=h_{n}^{\prime}(F) \text { or } F \notin \mathrm{PF}_{n}(V)\right\}
$$

is just $\operatorname{PF}(V)$, so $h_{n}=h_{n}^{\prime}$.
Also, in the obvious way, by Lemma 2.3, we can extend h_{n} to a function h_{n+1} on $\mathrm{PF}_{n+1}(V)$ having the properties of \hat{g}. Finally, $h_{0}=\varnothing$; so h_{n} exists uniquely for all n in ω, and we can let $\hat{g}=\bigcup_{n \in \omega} h_{n}$.

For a first application of Lemma 2.4, we can define a function

$$
F \mapsto V_{F}: \operatorname{PF}(V) \rightarrow \mathcal{P}(V)
$$

by the requirements:
(0) $V_{P}=\{P\}$ if $P \in V$;
(1) $V_{\neg F}=V_{F}$;
(2) $V_{F * G}=V_{F} \cup V_{G}$.

Theorem 2.5. V_{F} is the set of variables that actually appear in F. In particular, if also $F \in \operatorname{PF}\left(V^{\prime}\right)$, then $V_{F}=V_{F}^{\prime}$.

For a second application of Lemma 2.4, letting S be the universe of \mathbb{F}_{2}, we can define

$$
\begin{aligned}
f_{\neg}(x) & =1+x, \\
f_{\wedge}(x, y) & =x y, \\
f_{\vee}(x, y) & =x+y+x y, \\
f_{\rightarrow}(x, y) & =1+x+x y, \\
f_{\leftrightarrow}(x, y) & =1+x+y .
\end{aligned}
$$

Letting g be a truth-assignment $\chi_{\mathfrak{A}}$, we get an extension $\hat{\chi}_{\mathfrak{A}}: \operatorname{PF}(V) \rightarrow 2$.
Lemma 2.6. $\hat{\chi}_{\mathfrak{A}}(F)$ depends only on F and $A \cap V_{F}$, that is,

$$
\hat{\chi}_{\mathfrak{A}}(F)=\hat{\chi}_{\mathfrak{A}^{\prime}}(F),
$$

where $\mathfrak{A}^{\prime}=\left(A^{\prime}, V^{\prime}\right)$ and $F \in \operatorname{PF}(V) \cap \operatorname{PF}\left(V^{\prime}\right)$, provided $A \cap V_{F}=A^{\prime} \cap V_{F}^{\prime}$.
If $\hat{\chi}_{\mathfrak{A}}(F)=1$, we say that \mathfrak{A} is a model of F and write

$$
\mathfrak{A} \models F .
$$

If every structure for V is a model of F, then we say F is a validity for V and write

$$
\models_{V} F \text {. }
$$

The truth-table for F is the function

$$
A \mapsto \hat{\chi}_{\mathfrak{A}}(F): \mathcal{P}\left(V_{F}\right) \rightarrow 2
$$

this is well-defined by Lemma 2.6. If this function is identically 1 , then we say that F is a tautology and write

$$
\vdash F
$$

Theorem 2.7 (Completeness). For all F in $\operatorname{PF}(V)$,

$$
\models_{V} F \Longleftrightarrow \vdash F
$$

Hence we may write the single symbol \models in place of \models_{V} and \vdash. If $\Phi \subseteq$ $\operatorname{PF}(V)$, and \mathfrak{A} is a model of every formula in Φ, then \mathfrak{A} is a model of F, and we can write

$$
\mathfrak{A} \vDash \Phi
$$

Theorem 2.8 (Compactness). A set Φ of propositional formulas for a countable set of variables has a model if and only if each finite subset of Φ has a model.

If every model of a set Φ of formulas is a model of some formula F, then F is a (logical) consequence of Φ, and we can write

$$
\Phi \models F .
$$

Also, $F \models G$ means $\{F\} \models G$. In this case, if also $G \models F$, then F and G are (logically) equivalent, and we may write

$$
F \models \neq G .
$$

Lemma 2.9. For all F and G in $\operatorname{PF}(V)$,

$$
F \models \neq G \Longleftrightarrow \models F \leftrightarrow G .
$$

Lemma 2.10. For all F and G in $\operatorname{PF}(V)$,

$$
\begin{aligned}
(F \vee G) & \models \neq \neg(\neg F \wedge \neg G), \\
(F \rightarrow G) & \models \neq(\neg F \vee G), \\
(F \leftrightarrow G) & \models \neq((F \rightarrow G) \wedge(G \rightarrow F)) .
\end{aligned}
$$

Remark 2.11. By Lemma 2.10, one can show that every equivalence-class of formulas contains a formula whose only Boolean connectives are \neg and \wedge.

Theorem 2.12 (Adequacy). Let A be a finite non-empty set of variables. Every function from $\mathcal{P}(A)$ to 2 is the truth-table for some propositional formula.

Proof. We shall use induction on the size of A. If $A=\{P\}$, then the truthtables of $P, \neg P,(P \wedge \neg P)$ and $(P \vee \neg P)$ are just the 4 possible functions from $\mathcal{P}(A)$ to 2 .

Suppose A has size n, and P is a variable not in A, and f is a function from $\mathcal{P}(A \cup\{P\})$ to 2 . Let f_{0} be the restriction of f to $\mathcal{P}(A)$, and let f_{1} be the function

$$
B \mapsto f(B \cup\{P\}): \mathcal{P}(A) \rightarrow 2
$$

Then for all B in $\mathcal{P}(A \cup\{P\})$ we have

$$
f(B)= \begin{cases}f_{0}(B \backslash\{P\}), & \text { if } P \notin B \\ f_{1}(B \backslash\{P\}), & \text { if } P \in B\end{cases}
$$

Now let F be a formula $\left(\left(F_{0} \wedge \neg P\right) \vee\left(F_{1} \wedge P\right)\right)$, where F_{0} and F_{1} are formulas whose variables are from A. If $B \subseteq A \cup\{P\}$, then

$$
\hat{\chi}_{B}(F)= \begin{cases}\hat{\chi}_{B \backslash\{P\}}\left(F_{0}\right), & \text { if } P \notin B ; \\ \hat{\chi}_{B \backslash\{P\}}\left(F_{1}\right), & \text { if } P \in B .\end{cases}
$$

Hence, if f_{0} and f_{1} are the truth-tables for F_{0} and F_{1} respectively, then f is the truth-table for F.

Remark 2.13. We might define propositional logic as the use of formulas to represent functions from the power-sets of finite sets to 2 . We may then say that our particular propositional logic uses the signature $\{\wedge, \vee, \neg, \rightarrow, \leftrightarrow\}$. The last theorem shows that this signature is adequate to the task of representing these functions; in fact, the theorem shows that $\{\wedge, \vee, \neg\}$ is adequate. We then have, by Remark 2.11, that the signature $\{\wedge, \neg\}$ is adequate. In fact, one could get by with a single connective, namely the binary connective \mid such that

$$
F \mid G \models \neq \neg(F \wedge G) ;
$$

this connective is called the Sheffer stroke, although Church in [3, n. 207, pp. 133 f .] says that Sheffer never used the stroke this way.

3 First-order logic

We now define first-order structures and their signatures. The structures are primary in interest, but in giving definitions, it is easier to start with signatures.
Remark 3.1. A standard example of a first-order structure is \mathbb{R}, considered as the 7 -tuple $(R,+,-, \cdot, 0,1, \leqslant)$, where R is the set of real numbers. A group is a first-order structure when considered as the ordered quadruple $\left(G, \cdot,{ }^{-1}, 1\right)$; but it is not first-order when one considers it to be equipped also with the operation $S \mapsto\langle S\rangle$ that assigns to each subset the subgroup that it generates.

A (first-order) signature is a set, each of whose members can be uniquely recognized as a function-, relation- or constant-symbol. Each of the func-tion- and relation-symbols has an arity: each of these symbols is n-ary for some unique positive integer n.

Let \mathcal{L} be a signature. Let f, R and c be arbitrary function-, relation- and constant-symbols, respectively, of \mathcal{L}, and let n stand for the arity of f or R. An \mathcal{L}-structure is an ordered pair

$$
(M, \text { int }),
$$

where M is a non-empty set, and int is a function $s \mapsto s^{\mathfrak{M}}$ on \mathcal{L} such that

- $f^{\mathfrak{M}}$ is a n-ary operation on M, that is, a function from M^{n} to M;
- $R^{\mathfrak{M}}$ is an n-ary relation on M, that is, a subset of M^{n};
- $c^{\mathfrak{M}} \in M$.

The structure itself can be denoted \mathfrak{M}. The set M is the universe of \mathfrak{M}, and each image $s^{\mathfrak{M}}$ is the interpretation of s in \mathfrak{M}.
Remark 3.2. A structure can be considered as its universe together with the interpretations of the symbols in its signature. This is how \mathbb{R} was presented in Remark 3.1. A structure without any relations can be called an algebra. Theorem 2.4 involves an algebra, namely ($\left.S, f_{\wedge}, f_{\vee}, f_{\neg}, f_{\rightarrow}, f_{\leftrightarrow}\right)$. The natural numbers compose the algebra $\left(\omega,{ }^{\prime}, 0\right)$, where ${ }^{\prime}$ is the successor-operation. The complete set of propositional formulas in some set of variables is the universe of an algebra in an obvious way.

Subsets of M^{0} are nullary relations. There are only two of these, namely 0 and 1 , which we may read as before as 'false' and 'true'.

Let X be set of new symbols, called (individual-) variables. We shall develop a language, which we might denote

$$
\mathcal{L}^{X}
$$

The symbols of \mathcal{L}^{X} will compose the disjoint union

$$
X \cup \mathcal{L} \cup\{=\} \cup S \cup\{\exists x: x \in X\}
$$

where S is an adequate signature for a propositional logic (along with brackets, if one is using them). Let us consider S to be the signature $\{\wedge, \neg\}$. Note that each $\exists x$ is an indivisible symbol, in which, however, the original x can be recognized. The symbols that are not in $X \cup \mathcal{L}$ are logical symbols. In every \mathcal{L}-structure \mathfrak{M}, each symbol s of \mathcal{L}^{X} has an interpretation (rather, a family of interpretations) $s^{\mathfrak{M}}$. We have defined the interpretations of the elements of \mathcal{L}. The interpretations of the rest of the symbols of \mathcal{L}^{X} are certain operations or, in one case, a relation, associated with appropriate finite subsets I of X :

- If $x \in I$, then $x^{\mathfrak{M}}$ is $\mathbf{a} \mapsto a_{x}: M^{I} \rightarrow M$.
- $={ }^{\mathfrak{M}}$ is equality, a subset of M^{2}.
- $\wedge^{\mathfrak{M}}$ is $(A, B) \mapsto A \cap B: \mathcal{P}\left(M^{I}\right) \times \mathcal{P}\left(M^{I}\right) \rightarrow \mathcal{P}\left(M^{I}\right)$ for any I.
- $\neg^{\mathfrak{M}}$ is $A \mapsto A^{\mathrm{c}}: \mathcal{P}\left(M^{I}\right) \rightarrow \mathcal{P}\left(M^{I}\right)$ for any I.
- $\exists x^{\mathfrak{M}}$ is, for any I, the map from $\mathcal{P}\left(M^{I}\right)$ to $\mathcal{P}\left(M^{I \backslash\{x\}}\right)$ induced by the projection $\mathbf{a} \mapsto\left(a_{i}: i \in I \backslash\{x\}\right): M^{I} \rightarrow M^{I \backslash\{x\}}$.

The symbols of \mathcal{L}^{X} compose strings of various kinds, and each of these strings has a family of interpretations. Certain strings are called terms, and their interpretations are functions. For each term t and for each finite set I of variables that contains the variables in t, there will be an interpretation $t^{\mathfrak{M}}: M^{I} \rightarrow M$. The precise definitions are thus:

- Each c is a term, and $c^{\mathfrak{M}}$, besides being an element of M, can also be understood as the constant-function $\mathbf{a} \mapsto c^{\mathfrak{M}}: M^{I} \rightarrow M$.
- Each variable x is a term, interpreted as above.
- If t_{0}, \ldots, t_{n-1} are terms, then $f t_{0} \ldots t_{n-1}$ is a term, with interpretation

$$
\mathbf{a} \mapsto f^{\mathfrak{M}}\left(t_{0}^{\mathfrak{M}}(\mathbf{a}), \ldots, t_{n-1}^{\mathfrak{M}}(\mathbf{a})\right): M^{I} \rightarrow M
$$

The formulas are certain strings whose interpretations are relations. For any atomic formula α and any finite set I of variables that contains the variables appearing in α, there will be an interpretation $\alpha^{\mathfrak{M}}$ that is a subset of M^{I}. The precise definitions are:

- If t_{0}, \ldots, t_{n-1} are terms, then $R t_{0} \ldots t_{n-1}$ is an atomic formula, with interpretation $\left\{\mathbf{a} \in M^{I}:\left(t_{0}^{\mathfrak{M}}(\mathbf{a}), \ldots, t_{n-1}^{\mathfrak{M}}(\mathbf{a})\right) \in R^{\mathfrak{M}}\right\}$.
- If t_{0} and t_{1} are terms, then $t_{0}=t_{1}$ is an atomic formula, with interpretation $\left\{\mathbf{a} \in M^{I}: t_{0}^{\mathfrak{M}}(\mathbf{a})=t_{1}^{\mathfrak{M}}(\mathbf{a})\right\}$.

The formulas in general are built up using the remaining logical symbols: The atomic formulas are formulas, and if ϕ and ψ are formulas, then so are $(\phi \wedge \psi)$, $\neg \phi$ and $\exists x \phi$ for any x in X. The interpretations are obvious:

- $(\phi \wedge \psi)^{\mathfrak{M}}=\phi^{\mathfrak{M}} \cap \psi^{\mathfrak{M}} ;$
- $\neg \phi^{\mathfrak{M}}=\left(\phi^{\mathfrak{M}}\right)^{\mathrm{c}}$;
- $\exists x \phi^{\mathfrak{M}}=\exists x^{\mathfrak{M}}\left(\phi^{\mathfrak{M}}\right)$.

In particular, if $\phi^{\mathfrak{M}}$ is a well-defined subset of M^{I}, then $\exists x \phi^{\mathfrak{M}}$ is a welldefined subset of $M^{I \backslash\{x\}}$. Thus, the nullary relations 0 and 1 can arise as interpretations. To say precisely when they can arise, we recursively define the set $\mathrm{FV}(\phi)$ of free variables of an arbitrary formula ϕ :

- $\mathrm{FV}(\alpha)$ is the set of variables appearing in α, if α is atomic;
- $\mathrm{FV}(\neg \phi)=\mathrm{FV}(\phi)$;
- $\operatorname{FV}(\phi \wedge \psi)=\mathrm{FV}(\phi) \cup \mathrm{FV}(\psi) ;$
- $\operatorname{FV}(\exists x \phi)=\mathrm{FV}(\phi) \backslash\{x\}$.

Then $\phi^{\mathfrak{M}}$ is defined as a subset of M^{I}, provided $\mathrm{FV}(\phi) \subseteq I$.
Theorem 3.3 (Substitution). Suppose the following:

- ϕ is a formula of \mathcal{L}^{X};
- I is a finite subset of X such that $\mathrm{FV}(\phi) \subseteq I$;
- \mathbf{u} is an I-tuple of terms of \mathcal{L}^{X};
- J is a finite subset of X that contains all variables in the entries in \mathbf{u}.

Then there is a formula $\phi(\mathbf{u})$ of \mathcal{L}^{X} such that $\operatorname{FV}(\phi(\mathbf{u})) \subseteq J$ and, for every \mathcal{L}-structure \mathfrak{M}, and for all \mathbf{a} in M^{J},

$$
\mathbf{a} \in \phi(\mathbf{u})^{\mathfrak{M}} \Longleftrightarrow\left(u_{i}^{\mathfrak{M}}(\mathbf{a}): i \in I\right) \in \phi^{\mathfrak{M}}
$$

Example 3.4. If $\mathrm{FV}(\phi) \subseteq I$, and \mathbf{x} is the identity on I (so $\mathbf{x}=(x: x \in I)$), then we may assume that $\phi(\mathbf{x})$ is the same formula as \mathbf{x}.

A sentence is a formula with no free variables. If σ is a sentence of \mathcal{L}^{X}, and $\sigma^{\mathfrak{M}}=1$, then we say that \mathfrak{M} is a model of σ.

Example 3.5. If $\mathrm{FV}(\phi) \subseteq I$, and \mathbf{a} is an I-tuple of constant-symbols, then $\phi(\mathbf{c})$ is a sentence σ such that

$$
\sigma^{\mathfrak{M}}=1 \Longleftrightarrow \mathbf{c}^{\mathfrak{M}} \in \phi^{\mathfrak{M}}
$$

where $\mathbf{c}^{\mathfrak{M}}$ is $\left(c_{i}^{\mathfrak{M}}: i \in I\right)$.
We can also allow structures to be models of arbitrary formulas. Suppose ϕ is a formula of \mathcal{L}^{X} and $\mathrm{FV}(\phi) \subseteq I$. If \mathbf{c} is an I-tuple of constant-symbols that are not in \mathcal{L}, and \mathbf{a} is an I-tuple from M, then ($\mathfrak{M}, \mathbf{a})$ is a structure of $\mathcal{L} \cup\left\{c_{x}: x \in I\right\}$ in the obvious way. Then \mathfrak{M} is a model of ϕ, provided $(\mathfrak{M}, \mathbf{a})$ is a model of $\phi(\mathbf{c})$ for some tuple \mathbf{a}.

The notations of $\S 2$ involving \models now make sense in the present context. If $\mathfrak{M} \vDash \phi$, we say also that \mathfrak{M} satisfies ϕ.

We may let $\mathcal{L}(M)$ be the disjoint union $\mathcal{L} \sqcup M$, where each element of M is understood as a constant-symbol whose interpretation in \mathfrak{M} is itself. Then we may ask whether \mathfrak{M} is a model of a formula of $\mathcal{L}(M)^{X}$.

In the following, $\exists \mathbf{x}$ is an abbreviation for

$$
\exists x_{0} \exists x_{1} \ldots \exists x_{n-1}
$$

where $I=\left\{x_{0}, \ldots, x_{n-1}\right\}$.
Lemma 3.6. Suppose \mathfrak{M} is an \mathcal{L}-structure, and $\mathrm{FV}(\phi) \subseteq I$. The following are equivalent:
(0) \mathfrak{M} satisfies ϕ;
(1) $\mathfrak{M} \models \phi(\mathbf{a})$ for some \mathbf{a} in M^{I};
(2) $\mathfrak{M} \models \exists \mathbf{x} \phi(\mathbf{x})$.

4 Types

Now suppose that the set X of individual-variables is $\left\{x_{i}: i \in \omega\right\}$, and write \mathcal{L}^{X} just as \mathcal{L}. On the set of formulas of \mathcal{L} with free variables in $\left\{x_{i}: i<n\right\}$, the relation $\models \neq$ is an equivalence-relation; let us denote the set modulo the relation by

$$
\operatorname{Fm}^{n}(\mathcal{L})
$$

Then \wedge and $\neg($ and hence $\vee)$ are well-defined operations on $\operatorname{Fm}^{n}(\mathcal{L})$, which is also partially ordered by \models and, with respect to this, has a greatest element T and a least element \perp.

An n-type of \mathcal{L} is a subset Γ of $\operatorname{Fm}^{n}(\mathcal{L})$ such that

- $\phi, \psi \in \Gamma \Longrightarrow \phi \wedge \psi \in \Gamma ;$
- $\phi \in \Gamma \& \phi \models \psi \Longrightarrow \psi \in \Gamma$;
- $T \in \Gamma$;
the type is proper if $\perp \notin \Gamma$; if proper, the type is complete if
- $\phi \in \operatorname{Fm}^{n}(\mathcal{L}) \backslash \Gamma \Longrightarrow \neg \phi \in \Gamma$.

The unique improper n-type is $\mathrm{Fm}^{n}(\mathcal{L})$ itself. Every subset of $\mathrm{Fm}^{n}(\mathcal{L})$ generates a type, possibly improper. The subset itself can be called consistent or finitely satisfiable if for every finite subset $\left\{\phi_{i}: i<m\right\}$ there is a structure satisfying $\bigwedge_{i<m} \phi_{i}$.

Lemma 4.1. A subset of $\operatorname{Fm}^{n}(\mathcal{L})$ is finitely satisfiable if and only if it generates a proper type.

In fact the structure $\left(\operatorname{Fm}^{n}(\mathcal{L}), \wedge, \vee, \neg, \perp, \top, \models\right)$ is a Boolean algebra. A standard Boolean algebra is

$$
\left(\mathcal{P}(X), \cap, \cup,{ }^{c}, \varnothing, X, \subseteq\right)
$$

where X is a set. One way to give a formal definition is the following. A Boolean ring is a (unital, associative) ring satisfying $\forall x x \cdot x=x$.

Lemma 4.2. Boolean rings are commutative and are of characteristic 2.
Example 4.3. \mathbb{F}_{2} is a Boolean ring.
Let $(B,+, \cdot, 0,1)$ be a Boolean ring, and define new operations and a relation on B by the following rules (which should be compared with the definition of $\hat{\chi}_{\mathfrak{A}}$ on p. 4):

- $x \wedge y=x y ;$
- $x \vee y=x+y+x y$;
- $\neg x=1+x$;
- $x \leqslant y \Longleftrightarrow x \wedge y=x ;$
- $\perp=0$ and $\top=1$.

The structure $(B, \wedge, \vee, \neg, \perp, \top, \leqslant)$ arising thus is a Boolean algebra.
Lemma 4.4. If $(B, \wedge, \vee, \neg, \perp, \top, \leqslant)$ is a Boolean algebra, then the Boolean ring from which it arises is given by

- $x y=x \wedge y ;$
- $x+y=\neg(\neg x \wedge \neg y) \wedge \neg(x \wedge y)$;
- $\top=1$ and $\perp=0$.

Lemma 4.5. $\mathrm{Fm}^{n}(\mathcal{L})$ is a Boolean algebra.
A subset F of a Boolean algebra is a filter if the set $\{x: \neg x \in F\}$ is an ideal of the corresponding ring; F is principal if I is principal; F is an ultra-filter if I is maximal. (The unique improper filter is the algebra itself; an ultra-filter must be proper.)

Lemma 4.6. Types of $\mathrm{Fm}^{n}(\mathcal{L})$ are just filters; complete types are just ultrafilters.

The set of ultra-filters of a Boolean algebra \mathfrak{B} is denoted

$$
S(\mathfrak{B})
$$

and called its Stone space, because of the following. If $x \in B$, let

$$
[x]
$$

be the subset $\{F: x \in F\}$ of $\mathrm{S}(\mathfrak{B})$.
Theorem 4.7 (Stone Representation). If \mathfrak{B} be a Boolean algebra, then the map

$$
x \mapsto[x]: \mathfrak{B} \rightarrow \mathcal{P}(\mathrm{S}(\mathfrak{B}))
$$

is an embedding of Boolean algebras.
Corollary 4.8. The subsets $[x]$ of $\mathrm{S}(\mathfrak{B})$ compose a basis of open sets and of closed sets for a topology on $\mathrm{S}(\mathfrak{B})$, which topology is compact and Hausdorff.

For every subset X of B, let \bar{X} be the subset $\bigcap_{x \in X}[x]$ of $\mathrm{S}(\mathfrak{B})$.
Lemma 4.9. Suppose \mathfrak{B} is a Boolean algebra.
(0) The map

$$
X \mapsto \bar{X}: \mathcal{P}(B) \rightarrow \mathcal{P}(\mathrm{S}(\mathfrak{B}))
$$

is inclusion-reversing and takes unions to intersections, and its range is the set of closed subsets of $\mathrm{S}(\mathfrak{B})$.
(1) The map

$$
Y \mapsto \bigcap Y: \mathcal{P}(\mathrm{S}(\mathfrak{B})) \rightarrow \mathcal{P}(\mathfrak{B})
$$

is inclusion-reversing and takes unions to intersections, and its range is the set of filters of \mathfrak{B}.
(2) If $X \subseteq B$, then $\bigcap \bar{X}$ is the filter of \mathfrak{B} generated by X.
(3) If $Y \subseteq \mathrm{~S}(\mathfrak{B})$, then $\overline{\bigcap Y}$ is the topological closure of Y.
hence $X \mapsto \bar{X}$ gives a one-to-one correspondence, with inverse $Y \mapsto \bigcap Y$, between filters of \mathfrak{B} and closed subsets of $\mathrm{S}(\mathfrak{B})$.

So the complete n-types of \mathcal{L} compose a compact Hausdorff space, denoted

$$
\mathrm{S}^{n}(\mathcal{L})
$$

whose closed subsets are just the sets $\bar{\Gamma}$ determined by arbitrary n-types Γ.
A theory of \mathcal{L} is a 0 -type The improper 0 -type of \mathcal{L} is the unique inconsistent theory of \mathcal{L}.

Since $\operatorname{Fm}^{0}(\mathcal{L})$ embeds in $\operatorname{Fm}^{n}(\mathcal{L})$, a theory T of \mathcal{L} determines a closed subset of $S^{n}(\mathcal{L})$, denoted

$$
\mathrm{S}^{n}(T)
$$

Then an arbitrary n-type Γ is consistent with T if $\Gamma \cup T$ is consistent, equivalently, $\bar{\Gamma} \cap S^{n}(T) \neq 0$.

Theorem 4.10 (Compactness). Every consistent theory has a model.
Proof. Let T be a theory of \mathcal{L}. The proof that T has a model has three parts:
(0) There is a signature \mathcal{L}^{\prime} such that $\mathcal{L} \subseteq \mathcal{L}^{\prime}$, and $\mathcal{L}^{\prime} \backslash \mathcal{L}$ consists of constantsymbols, and there is a bijection

$$
\phi \mapsto c_{\phi}: \operatorname{Fm}^{1}\left(\mathcal{L}^{\prime}\right) \rightarrow \mathcal{L}^{\prime} \backslash \mathcal{L}
$$

Now let $H(T)$ be the set $\mathrm{S}^{0}(T) \cap \bigcap_{\phi \in \mathrm{Fm}^{1}\left(\mathcal{L}^{\prime}\right)}\left[\exists x_{0} \phi \rightarrow \phi\left(c_{\phi}\right)\right]$.
(1) Let T^{\prime} be an element of $H(T)$. Then T^{\prime} has a canonical model, whose universe is $\mathcal{L}^{\prime} \backslash \mathcal{L}$ modulo the equivalence-relation \sim given by

$$
c \sim d \Longleftrightarrow T^{\prime} \vDash c=d
$$

(2) $H(T)$ is non-empty.

Note that $H(T)$ is non-empty by Corollary 4.8, in particular, compactness of $\mathrm{S}^{0}(T)$.

If Γ is an n-type, and \mathbf{c} is an n-tuple of constant-symbols, then the set $\{\phi(\mathbf{c}): \phi \in \Gamma\}$ can be denoted

$$
\Gamma(\mathbf{c})
$$

A structure \mathfrak{M} realizes Γ if $\mathfrak{M} \models \Gamma(\mathbf{a})$ for some tuple a from M; otherwise the structure omits the type.

An complete type p is: isolated, if $\{p\}$ is open; limit, if not. These definitions can be understood absolutely, as stated, or over some theory T.

Lemma 4.11. The isolated types are precisely the principal complete types. Every type included in a principal type over a complete theory T is realized in every model of T. If Γ is a type consistent with an (arbitrary) theory T, then the following are equivalent:
(0) Γ is not included in a principal type over T;
(1) $\bar{\Gamma}$ has empty interior in $\mathrm{S}^{n}(T)$;
(2) $\bar{\Gamma}^{\mathrm{c}}$ is a dense open subset of $\mathrm{S}^{n}(T)$.

Example 4.12. Let \mathcal{L} be $\left\{c_{n}: n \in \omega\right\} \cup\{P\}$, where the c_{n} are constantsymbols and P is a unary relation-symbol. Let T be the theory generated by $\left\{P c_{n}: n \in \omega\right\}$. Then

$$
T \models \neg P x \rightarrow x \neq c_{n}
$$

for each n, so the principal type generated by $\neg P x$ includes the type generated by $\left\{x \neq c_{n}: n \in \omega\right\}$; but the latter type is not principal.

A partial converse is the Omitting-Types Theorem below, whose proof is based on [7, ch. 10]. First:

Lemma 4.13. The intersection of countably dense open subsets of a compact Hausdorff space is also dense.

Proof. Suppose X is a compact Hausdorff space. Then X is locally compact, that is, every neighborhood of every point includes a compact neighborhood. Indeed, let U be an open neighborhood of P. For each x in $U^{\text {c }}$ there are disjoint open neighborhoods V_{x} and U_{x} of x and P respectively. Some finite union of sets V_{x} covers $U^{\text {c }}$; the complement is included in U and is a closed-hence compact-neighborhood of P, since it includes the corresponding intersection of sets U_{x}.

Now suppose $\left\{O_{n}: n \in \omega\right\}$ is a collection of dense open subsets of X. We can recursively define a decreasing chain $U_{0} \supseteq K_{0} \supseteq U_{1} \supseteq K_{1} \supseteq U_{2} \supseteq \ldots$ of sets, and at the same time a sequence $\left(P_{n}: n \in \omega\right)$ of points, such that:

- $U_{0}=U$;
- U_{n} is open;
- $P_{n} \in U_{n} \cap O_{n}$;
- K_{n} is compact, and $P_{n} \in K_{n} \subseteq U_{n} \cap O_{n}$;
- $P_{n} \in U_{n+1} \subseteq K_{n}$.

Then $\bigcap_{n \in \omega} K_{n}$ is a nonempty subset of U included in each set O_{n}.

Theorem 4.14 (Omitting Types). Let T be a consistent theory of a countable signature \mathcal{L}. For every countable collection of types Γ, none included in a principal type, T has a countable model omitting each Γ.

Proof. To the proof of the Compactness Theorem, we add a step:
(3) $H(T)$ has an element T^{\prime} such that, for each tuple \mathbf{c} of elements of $\mathcal{L}^{\prime} \backslash \mathcal{L}$, and for each Γ,

$$
T^{\prime} \notin \overline{\Gamma(\mathbf{c})}
$$

that is, $\Gamma(\mathbf{c}) \nsubseteq T^{\prime}$.

To prove this, by Lemma 4.13, it is enough to show that each closed set $\overline{\Gamma(\mathbf{c})}$ has dense complement in $H(T)$, since then the intersection of these complements is dense and so non-empty.

Every open subset of $H(T)$ is a union of sets $[\psi(\mathbf{d})] \cap H(T)$, where ψ is a formula of \mathcal{L}, and \mathbf{d} is a tuple of elements of $\mathcal{L}^{\prime} \backslash \mathcal{L}$. Supposing

$$
T^{\prime} \in[\psi(\mathbf{d})] \cap H(T)
$$

we shall derive an element T^{*} of $[\psi(\mathbf{d})] \cap H(T) \backslash \overline{\Gamma(\mathbf{c})}$.
Each entry of (\mathbf{c}, \mathbf{d}) is $c_{\phi^{0}}$ for some formula ϕ^{0}, which contains finitely many constant-symbols $c_{\phi^{1}}$; each ϕ^{1} contains finitely many constant-symbols $c_{\phi^{2}}$, and so on. The constant-symbols arising in this way form a finitely branching tree with no infinite branches; hence they are finitely numerous and compose a tuple e.

Hence if c_{ϕ} is one of the terms of ($\left.\mathbf{c}, \mathbf{d}, \mathbf{e}\right)$, then the constant-symbols used in ϕ also appear in $(\mathbf{c}, \mathbf{d}, \mathbf{e})$. Hence there is a formula θ of \mathcal{L} such that $\theta(\mathbf{c}, \mathbf{d}, \mathbf{e})$ is the conjunction of $\psi(\mathbf{d})$ and the sentences

$$
\exists x_{0} \phi \rightarrow \phi\left(c_{\phi}\right)
$$

such that c_{ϕ} appears in $(\mathbf{c}, \mathbf{d}, \mathbf{e})$.
Let \mathfrak{M} be the canonical model of T^{\prime}. Then $\mathfrak{M} \models \theta(\mathbf{c}, \mathbf{d}, \mathbf{e})$. The open set $[\exists \mathbf{y} \exists \mathbf{z} \theta(\mathbf{x}, \mathbf{y}, \mathbf{z})]$ is therefore a non-empty subset of $\mathrm{S}^{n}(T)$, so it is not included in $\bar{\Gamma}$. Suppose

$$
p \in[\exists \mathbf{y} \exists \mathbf{z} \theta(\mathbf{x}, \mathbf{y}, \mathbf{z})] \backslash \bar{\Gamma}
$$

By the Compactness Theorem, T has a countable model \mathfrak{N} realizing p with some tuple a. There is a bijection f between $\mathcal{L}^{\prime} \backslash \mathcal{L}$ and N such that $f(\mathbf{c})=\mathbf{a}$ and

$$
\mathfrak{N} \models \theta(f(\mathbf{c}, \mathbf{d}, \mathbf{e}))
$$

This bijection determines the desired T^{*}.

References

[1] Stanley N. Burris. Logic for Mathematics and Computer Science. Prentice Hall, Upper Saddle River, New Jersey, USA, 1998.
[2] C. C. Chang and H. J. Keisler. Model theory, volume 73 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, third edition, 1990.
[3] Alonzo Church. Introduction to mathematical logic. Vol. I. Princeton University Press, Princeton, N. J., 1956.
[4] Wilfrid Hodges. Model theory, volume 42 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1993.
[5] David W. Kueker. An introduction to mathematical logic. course notes, 1989.
[6] David Marker. Model theory, volume 217 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002. An introduction.
[7] Bruno Poizat. A course in model theory. Universitext. Springer-Verlag, New York, 2000. An introduction to contemporary mathematical logic, Translated from the French by Moses Klein and revised by the author.

Hints

- Lemma 2.4: Prove that for each n there is a unique such function on the set of formulas of length at most n.
- Theorem 2.7: It's a simple chain of equivalences, justified by Lemma 2.6.
- Theorem 2.8: Say $V=\left\{P_{n}: n \in \omega\right\}$. Define $V_{n}=\left\{P_{i}: i<n\right\}$. Let T be the set of structures on the various V_{n}. Order T by the rule

$$
\left(A, V_{m}\right) \leqslant\left(B, V_{n}\right) \Longleftrightarrow m \leqslant n \wedge A=V_{m} \cap B .
$$

Then (T, \leqslant) is a tree. Consider the set comprising those $\left(A, V_{m}\right)$ such that, for all F in Φ, if $V_{F} \subseteq V_{m}$, then $\left(A, V_{m}\right) \vDash F$. This set forms an infinite sub-tree of T. Hence the sub-tree includes an infinite chain.

- Lemma 2.9: Use f_{\leftrightarrow}.
- Lemma 2.10: Use the various f_{*}.

