Elements of the theory of models

David Pierce

May 15, 2003

Contents

0	Preface	1
1	Conventions	1
2	Propositional model-theory	2
3	First-order logic	5
4	Types	9

0 Preface

These notes are written according to my own understanding and preferences, and they should be considered only as a rough draft. I aim to present some logic as mathematics, and I assume that the reader already has some experience with mathematics. I claim no originality, but I do not happen to know of a published treatment that is quite like mine. However, § 2 in particular is influenced by [2] and [5]; most model-theory texts seem not to deal specifically with propositional logic. For the model-theoretic development of first-order logic, see also the early parts of [4], [7] or [6]. Books on logic itself that I have found useful are [3] and [1].

Technical terms in **boldface** are being defined, perhaps implicitly. Mathematical propositions (theorems, lemmas) whose proofs are not supplied are to be proved by the reader.

1 Conventions

In these notes, the symbol \iff is just an abbreviation for the words 'if and only if'.

Let us denote the set $\{0, 1, 2, ...\}$ of natural numbers by ω . It is notationally convenient to consider this as the smallest set of sets that contains \emptyset and is closed under the successor-operation, namely

$$A \mapsto A \cup \{A\}.$$

So ω contains \emptyset , $\{\emptyset\}$ and $\{\emptyset, \{\emptyset\}\}$, denoted 0, 1 and 2 respectively. Thus, 2 is $\{0,1\}$, which we shall consider as the underlying set—the *universe*—of the 2-element field, \mathbb{F}_2 . We can write any n in ω as

$$\{0,\ldots,n-1\}.$$

Suppose M is a set, and I is a finite set. We shall denote the set of functions from I to M by M^{I} . Elements of this are I-tuples; a typical I-tuple can be written

 $(a_j: j \in I)$

or just **a**. If I = n for some n in ω , then we may write **a** as (a_0, \ldots, a_{n-1}) or as the **string** $a_0 \ldots a_{n-1}$. As a special case, we have $M^0 = \{0\} = 1$.

2 Propositional model-theory

We first select a set V, and we shall refer to its members as **variables**. Usually, V is countably infinite, but this will not be required in any definitions. If $A \subseteq V$, then we may refer to the ordered pair (A, V) as a **(propositional) structure (for** V**)** and denote it by

A.

The structure \mathfrak{A} determines, and is determined by, the characteristic function $\chi_{\mathfrak{A}}: V \to 2$, which is given by

$$\chi_{\mathfrak{A}}(P) = \begin{cases} 0, & \text{if } P \in V \smallsetminus A; \\ 1, & \text{if } P \in A. \end{cases}$$

We may call such a characteristic function a **truth-assignment for** V, reading 0 as 'false', and 1 as 'true'.

Remark 2.1. Instead of $\chi_{\mathfrak{A}}$, one may write χ_A if the domain of the function is clear.

Next, we introduce a set

$$\{\wedge, \vee, \neg, \rightarrow, \leftrightarrow\}$$

of **Boolean connectives**, along with a pair $\{(,)\}$ of **brackets**. We assume that the Boolean connectives and the brackets are not variables. We define the **(propositional) formulas (for** V) to be the members of the smallest set Φ of strings of elements of $V \cup \{\land, \lor, \neg, \rightarrow, \leftrightarrow\} \cup \{(,)\}$ such that

- (0) $V \subseteq \Phi$;
- (1) if $F \in \Phi$, then $\neg F \in \Phi$;
- (2) if $F, G \in \Phi$, and $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, then $(F * G) \in \Phi$.

So, we can call \neg a **unary** connective; the other connectives are **binary**. Let us denote the set of propositional formulas in V by PF(V). The definition of PF(V) obviously allows proof by induction. That is, if $\Phi \subseteq PF(V)$, and if Φ satisfies the three enumerated conditions in the definition of PF(V), then $\Phi = PF(V)$.

Remark 2.2. The symbols \land , \lor , \neg , \rightarrow and \leftrightarrow can be read 'and', 'or', 'not', 'implies' and 'if and only if', respectively. We could avoid brackets by using the so-called **Polish notation**, in which we would write *FG instead of (F * G); using **reverse** Polish notation, we would write FG*. Note that the formulation $FG\land$ in reverse Polish notation could be read as 'F, G too,' or in Turkish as 'F, G de'.

Lemma 2.3 (unique readability). Any propositional formula that is not a variable is the application of exactly one connective in exactly one way, that is, if F, F', G, G' and H are formulas, then F * G and $\neg H$ cannot be the same formula, and if F * G and F' *' G' are the same formula, then F and F' are the same formula.

Lemma 2.4 (definition by recursion). Functions on PF(V) can be defined recursively. To be precise, suppose S is a set, and f_{\neg} is a function from S to itself, and f_* is a function from $S \times S$ to S for each binary Boolean connective *. Then for every function $g: V \to S$, there is a unique extension $\hat{g}: PF(V) \to S$ such that

- (1) $\hat{g}(\neg F) = f_{\neg}(\hat{g}(F))$ for all F in PF(V);
- (2) $\hat{g}(F * G) = f_*(\hat{g}(F), \hat{g}(G))$ for all F and G in PF(V) and each binary Boolean connective *.

Proof. Let $PF_n(V)$ be the set of elements of PF(V) of length at most n. Suppose h_n and h'_n have the desired properties of \hat{g} , but are defined only on $PF_n(V)$. By induction, the set

$$\{F \in \operatorname{PF}(V) \colon h_n(F) = h'_n(F) \text{ or } F \notin \operatorname{PF}_n(V)\}$$

is just PF(V), so $h_n = h'_n$.

Also, in the obvious way, by Lemma 2.3, we can extend h_n to a function h_{n+1} on $\operatorname{PF}_{n+1}(V)$ having the properties of \hat{g} . Finally, $h_0 = \emptyset$; so h_n exists uniquely for all n in ω , and we can let $\hat{g} = \bigcup_{n \in \omega} h_n$.

For a first application of Lemma 2.4, we can define a function

$$F \mapsto V_F \colon \operatorname{PF}(V) \to \mathcal{P}(V)$$

by the requirements:

- (0) $V_P = \{P\}$ if $P \in V$;
- (1) $V_{\neg F} = V_F;$
- (2) $V_{F*G} = V_F \cup V_G$.

Theorem 2.5. V_F is the set of variables that actually appear in F. In particular, if also $F \in PF(V')$, then $V_F = V'_F$.

For a second application of Lemma 2.4, letting S be the universe of \mathbb{F}_2 , we can define

$$f_{\neg}(x) = 1 + x,$$

$$f_{\wedge}(x, y) = xy,$$

$$f_{\vee}(x, y) = x + y + xy,$$

$$f_{\rightarrow}(x, y) = 1 + x + xy,$$

$$f_{\leftrightarrow}(x, y) = 1 + x + y.$$

Letting g be a truth-assignment $\chi_{\mathfrak{A}}$, we get an extension $\hat{\chi}_{\mathfrak{A}}$: $\mathrm{PF}(V) \to 2$.

Lemma 2.6. $\hat{\chi}_{\mathfrak{A}}(F)$ depends only on F and $A \cap V_F$, that is,

$$\hat{\chi}_{\mathfrak{A}}(F) = \hat{\chi}_{\mathfrak{A}'}(F)$$

where $\mathfrak{A}' = (A', V')$ and $F \in PF(V) \cap PF(V')$, provided $A \cap V_F = A' \cap V'_F$.

If $\hat{\chi}_{\mathfrak{A}}(F) = 1$, we say that \mathfrak{A} is a **model** of F and write

 $\mathfrak{A} \models F.$

If every structure for V is a model of F, then we say F is a **validity for** V and write

$$\models_V F.$$

The **truth-table for** F is the function

$$A \mapsto \hat{\chi}_{\mathfrak{A}}(F) \colon \mathfrak{P}(V_F) \to 2;$$

this is well-defined by Lemma 2.6. If this function is identically 1, then we say that F is a **tautology** and write

 $\vdash F$.

Theorem 2.7 (Completeness). For all F in PF(V),

 $\models_V F \iff \vdash F.$

Hence we may write the single symbol \models in place of \models_V and \vdash . If $\Phi \subseteq \operatorname{PF}(V)$, and \mathfrak{A} is a model of every formula in Φ , then \mathfrak{A} is a model of F, and we can write

 $\mathfrak{A} \models \Phi.$

Theorem 2.8 (Compactness). A set Φ of propositional formulas for a countable set of variables has a model if and only if each finite subset of Φ has a model.

If every model of a set Φ of formulas is a model of some formula F, then F is a **(logical) consequence** of Φ , and we can write

 $\Phi \models F.$

Also, $F \models G$ means $\{F\} \models G$. In this case, if also $G \models F$, then F and G are **(logically) equivalent**, and we may write

 $F \models = G.$

Lemma 2.9. For all F and G in PF(V),

$$F \models \dashv G \iff \models F \leftrightarrow G.$$

Lemma 2.10. For all F and G in PF(V),

$$(F \lor G) \models \exists \neg (\neg F \land \neg G),$$

$$(F \to G) \models \exists (\neg F \lor G),$$

$$(F \leftrightarrow G) \models \exists ((F \to G) \land (G \to F))$$

Remark 2.11. By Lemma 2.10, one can show that every equivalence-class of formulas contains a formula whose only Boolean connectives are \neg and \wedge .

Theorem 2.12 (Adequacy). Let A be a finite non-empty set of variables. Every function from $\mathcal{P}(A)$ to 2 is the truth-table for some propositional formula.

Proof. We shall use induction on the size of A. If $A = \{P\}$, then the truthtables of P, $\neg P$, $(P \land \neg P)$ and $(P \lor \neg P)$ are just the 4 possible functions from $\mathcal{P}(A)$ to 2.

Suppose A has size n, and P is a variable not in A, and f is a function from $\mathcal{P}(A \cup \{P\})$ to 2. Let f_0 be the restriction of f to $\mathcal{P}(A)$, and let f_1 be the function

$$B \mapsto f(B \cup \{P\}) \colon \mathfrak{P}(A) \to 2.$$

Then for all B in $\mathcal{P}(A \cup \{P\})$ we have

$$f(B) = \begin{cases} f_0(B \smallsetminus \{P\}), & \text{if } P \notin B; \\ f_1(B \smallsetminus \{P\}), & \text{if } P \in B. \end{cases}$$

Now let F be a formula $((F_0 \land \neg P) \lor (F_1 \land P))$, where F_0 and F_1 are formulas whose variables are from A. If $B \subseteq A \cup \{P\}$, then

$$\hat{\chi}_B(F) = \begin{cases} \hat{\chi}_{B \smallsetminus \{P\}}(F_0), & \text{if } P \notin B; \\ \hat{\chi}_{B \smallsetminus \{P\}}(F_1), & \text{if } P \in B. \end{cases}$$

Hence, if f_0 and f_1 are the truth-tables for F_0 and F_1 respectively, then f is the truth-table for F.

Remark 2.13. We might define **propositional logic** as the use of formulas to represent functions from the power-sets of finite sets to 2. We may then say that our particular propositional logic uses the **signature** $\{\land, \lor, \neg, \rightarrow, \leftrightarrow\}$. The last theorem shows that this signature is **adequate** to the task of representing these functions; in fact, the theorem shows that $\{\land, \lor, \neg\}$ is adequate. We then have, by Remark 2.11, that the signature $\{\land, \neg\}$ is adequate. In fact, one could get by with a single connective, namely the binary connective | such that

$$F \mid G \models = \neg (F \land G);$$

this connective is called the **Sheffer stroke**, although Church in [3, n. 207, pp. 133 f.] says that Sheffer never used the stroke this way.

3 First-order logic

We now define **first-order structures** and their signatures. The structures are primary in interest, but in giving definitions, it is easier to start with signatures.

Remark 3.1. A standard example of a first-order structure is \mathbb{R} , considered as the 7-tuple $(R, +, -, \cdot, 0, 1, \leq)$, where R is the *set* of real numbers. A group is a first-order structure when considered as the ordered quadruple $(G, \cdot, ^{-1}, 1)$; but it is *not* first-order when one considers it to be equipped also with the operation $S \mapsto \langle S \rangle$ that assigns to each subset the subgroup that it generates.

A (first-order) signature is a set, each of whose members can be uniquely recognized as a function-, relation- or constant-symbol. Each of the function- and relation-symbols has an arity: each of these symbols is n-ary for some unique positive integer n.

Let \mathcal{L} be a signature. Let f, R and c be arbitrary function-, relation- and constant-symbols, respectively, of \mathcal{L} , and let n stand for the arity of f or R. An \mathcal{L} -structure is an ordered pair

 $(M, \operatorname{int}),$

where M is a non-empty set, and int is a function $s \mapsto s^{\mathfrak{M}}$ on \mathcal{L} such that

- $f^{\mathfrak{M}}$ is a *n*-ary operation on *M*, that is, a function from M^n to *M*;
- $R^{\mathfrak{M}}$ is an *n*-ary relation on *M*, that is, a subset of M^n ;
- $c^{\mathfrak{M}} \in M$.

The structure itself can be denoted \mathfrak{M} . The set M is the **universe** of \mathfrak{M} , and each image $s^{\mathfrak{M}}$ is the **interpretation** of s in \mathfrak{M} .

Remark 3.2. A structure can be considered as its universe together with the interpretations of the symbols in its signature. This is how \mathbb{R} was presented in Remark 3.1. A structure without any relations can be called an **algebra**. Theorem 2.4 involves an algebra, namely $(S, f_{\wedge}, f_{\vee}, f_{\neg}, f_{\rightarrow}, f_{\rightarrow})$. The natural numbers compose the algebra $(\omega, ', 0)$, where ' is the successor-operation. The complete set of propositional formulas in some set of variables is the universe of an algebra in an obvious way.

Subsets of M^0 are **nullary** relations. There are only two of these, namely 0 and 1, which we may read as before as 'false' and 'true'.

Let X be set of new symbols, called (individual-) variables. We shall develop a language, which we might denote

 \mathcal{L}^X .

The symbols of \mathcal{L}^X will compose the disjoint union

$$X \cup \mathcal{L} \cup \{=\} \cup S \cup \{\exists x : x \in X\},\$$

where S is an adequate signature for a propositional logic (along with brackets, if one is using them). Let us consider S to be the signature $\{\wedge, \neg\}$. Note that each $\exists x$ is an indivisible symbol, in which, however, the original x can be recognized. The symbols that are not in $X \cup \mathcal{L}$ are **logical** symbols. In every \mathcal{L} -structure \mathfrak{M} , each symbol s of \mathcal{L}^X has an interpretation (rather, a family of interpretations) $s^{\mathfrak{M}}$. We have defined the interpretations of the elements of \mathcal{L} . The interpretations of the rest of the symbols of \mathcal{L}^X are certain operations or, in one case, a relation, associated with appropriate finite subsets I of X:

- If $x \in I$, then $x^{\mathfrak{M}}$ is $\mathbf{a} \mapsto a_x \colon M^I \to M$.
- $=^{\mathfrak{M}}$ is equality, a subset of M^2 .
- $\wedge^{\mathfrak{M}}$ is $(A, B) \mapsto A \cap B \colon \mathfrak{P}(M^{I}) \times \mathfrak{P}(M^{I}) \to \mathfrak{P}(M^{I})$ for any I.
- $\neg^{\mathfrak{M}}$ is $A \mapsto A^{c} \colon \mathfrak{P}(M^{I}) \to \mathfrak{P}(M^{I})$ for any I.

• $\exists x^{\mathfrak{M}}$ is, for any I, the map from $\mathcal{P}(M^{I})$ to $\mathcal{P}(M^{I \setminus \{x\}})$ induced by the projection $\mathbf{a} \mapsto (a_i : i \in I \setminus \{x\}) : M^I \to M^{I \setminus \{x\}}$.

The symbols of \mathcal{L}^X compose strings of various kinds, and each of these strings has a family of interpretations. Certain strings are called **terms**, and their interpretations are functions. For each term t and for each finite set I of variables that contains the variables in t, there will be an interpretation $t^{\mathfrak{M}} : M^I \to M$. The precise definitions are thus:

- Each c is a term, and $c^{\mathfrak{M}}$, besides being an element of M, can also be understood as the constant-function $\mathbf{a} \mapsto c^{\mathfrak{M}} \colon M^{I} \to M$.
- Each variable x is a term, interpreted as above.
- If t_0, \ldots, t_{n-1} are terms, then $ft_0 \ldots t_{n-1}$ is a term, with interpretation

$$\mathbf{a} \mapsto f^{\mathfrak{M}}(t_0^{\mathfrak{M}}(\mathbf{a}), \dots, t_{n-1}^{\mathfrak{M}}(\mathbf{a})) \colon M^I \to M.$$

The **formulas** are certain strings whose interpretations are relations. For any **atomic** formula α and any finite set I of variables that contains the variables appearing in α , there will be an interpretation $\alpha^{\mathfrak{M}}$ that is a subset of M^{I} . The precise definitions are:

- If t_0, \ldots, t_{n-1} are terms, then $Rt_0 \ldots t_{n-1}$ is an atomic formula, with interpretation $\{\mathbf{a} \in M^I : (t_0^{\mathfrak{M}}(\mathbf{a}), \ldots, t_{n-1}^{\mathfrak{M}}(\mathbf{a})) \in R^{\mathfrak{M}}\}.$
- If t_0 and t_1 are terms, then $t_0 = t_1$ is an atomic formula, with interpretation $\{\mathbf{a} \in M^I : t_0^{\mathfrak{M}}(\mathbf{a}) = t_1^{\mathfrak{M}}(\mathbf{a})\}.$

The formulas in general are built up using the remaining logical symbols: The atomic formulas are formulas, and if ϕ and ψ are formulas, then so are $(\phi \land \psi)$, $\neg \phi$ and $\exists x \phi$ for any x in X. The interpretations are obvious:

- $(\phi \wedge \psi)^{\mathfrak{M}} = \phi^{\mathfrak{M}} \cap \psi^{\mathfrak{M}};$
- $\neg \phi^{\mathfrak{M}} = (\phi^{\mathfrak{M}})^{\mathrm{c}};$
- $\exists x \ \phi^{\mathfrak{M}} = \exists x^{\mathfrak{M}}(\phi^{\mathfrak{M}}).$

In particular, if $\phi^{\mathfrak{M}}$ is a well-defined subset of M^{I} , then $\exists x \ \phi^{\mathfrak{M}}$ is a welldefined subset of $M^{I \setminus \{x\}}$. Thus, the nullary relations 0 and 1 can arise as interpretations. To say precisely when they can arise, we recursively define the set $FV(\phi)$ of **free variables** of an arbitrary formula ϕ :

- $FV(\alpha)$ is the set of variables appearing in α , if α is atomic;
- $FV(\neg \phi) = FV(\phi);$
- $FV(\phi \land \psi) = FV(\phi) \cup FV(\psi);$
- $FV(\exists x \phi) = FV(\phi) \setminus \{x\}.$

Then $\phi^{\mathfrak{M}}$ is defined as a subset of M^{I} , provided $\mathrm{FV}(\phi) \subseteq I$.

Theorem 3.3 (Substitution). Suppose the following:

- ϕ is a formula of \mathcal{L}^X ;
- I is a finite subset of X such that $FV(\phi) \subseteq I$;
- **u** is an *I*-tuple of terms of \mathcal{L}^X ;
- J is a finite subset of X that contains all variables in the entries in **u**.

Then there is a formula $\phi(\mathbf{u})$ of \mathcal{L}^X such that $FV(\phi(\mathbf{u})) \subseteq J$ and, for every \mathcal{L} -structure \mathfrak{M} , and for all \mathbf{a} in M^J ,

$$\mathbf{a} \in \phi(\mathbf{u})^{\mathfrak{M}} \iff (u_i^{\mathfrak{M}}(\mathbf{a}) : i \in I) \in \phi^{\mathfrak{M}}.$$

Example 3.4. If $FV(\phi) \subseteq I$, and **x** is the identity on I (so $\mathbf{x} = (x : x \in I)$), then we may assume that $\phi(\mathbf{x})$ is the same formula as **x**.

A sentence is a formula with no free variables. If σ is a sentence of \mathcal{L}^X , and $\sigma^{\mathfrak{M}} = 1$, then we say that \mathfrak{M} is a **model** of σ .

Example 3.5. If $FV(\phi) \subseteq I$, and **a** is an *I*-tuple of constant-symbols, then $\phi(\mathbf{c})$ is a sentence σ such that

$$\sigma^{\mathfrak{M}} = 1 \iff \mathbf{c}^{\mathfrak{M}} \in \phi^{\mathfrak{M}},$$

where $\mathbf{c}^{\mathfrak{M}}$ is $(c_i^{\mathfrak{M}} : i \in I)$.

We can also allow structures to be models of arbitrary formulas. Suppose ϕ is a formula of \mathcal{L}^X and $FV(\phi) \subseteq I$. If **c** is an *I*-tuple of constant-symbols that are *not* in \mathcal{L} , and **a** is an *I*-tuple from *M*, then $(\mathfrak{M}, \mathbf{a})$ is a structure of $\mathcal{L} \cup \{c_x : x \in I\}$ in the obvious way. Then \mathfrak{M} is a model of ϕ , provided $(\mathfrak{M}, \mathbf{a})$ is a model of $\phi(\mathbf{c})$ for *some* tuple **a**.

The notations of § 2 involving \models now make sense in the present context. If $\mathfrak{M} \models \phi$, we say also that \mathfrak{M} satisfies ϕ .

We may let $\mathcal{L}(M)$ be the disjoint union $\mathcal{L} \sqcup M$, where each element of M is understood as a constant-symbol whose interpretation in \mathfrak{M} is itself. Then we may ask whether \mathfrak{M} is a model of a formula of $\mathcal{L}(M)^X$.

In the following, $\exists \mathbf{x}$ is an abbreviation for

$$\exists x_0 \; \exists x_1 \; \dots \; \exists x_{n-1} \; ,$$

where $I = \{x_0, \dots, x_{n-1}\}.$

Lemma 3.6. Suppose \mathfrak{M} is an \mathcal{L} -structure, and $FV(\phi) \subseteq I$. The following are equivalent:

- (0) \mathfrak{M} satisfies ϕ ;
- (1) $\mathfrak{M} \models \phi(\mathbf{a})$ for some \mathbf{a} in M^I ;
- (2) $\mathfrak{M} \models \exists \mathbf{x} \phi(\mathbf{x}).$

4 Types

Now suppose that the set X of individual-variables is $\{x_i : i \in \omega\}$, and write \mathcal{L}^X just as \mathcal{L} . On the set of formulas of \mathcal{L} with free variables in $\{x_i : i < n\}$, the relation $\models \dashv$ is an equivalence-relation; let us denote the set *modulo* the relation by

 $\operatorname{Fm}^{n}(\mathcal{L}).$

Then \wedge and \neg (and hence \vee) are well-defined operations on $\operatorname{Fm}^{n}(\mathcal{L})$, which is also partially ordered by \models and, with respect to this, has a greatest element \top and a least element \perp .

An *n*-type of \mathcal{L} is a subset Γ of $\operatorname{Fm}^{n}(\mathcal{L})$ such that

- $\phi, \psi \in \Gamma \implies \phi \land \psi \in \Gamma;$
- $\phi \in \Gamma \& \phi \models \psi \implies \psi \in \Gamma;$
- $\top \in \Gamma$;

the type is **proper** if $\perp \notin \Gamma$; if proper, the type is **complete** if

• $\phi \in \operatorname{Fm}^n(\mathcal{L}) \smallsetminus \Gamma \implies \neg \phi \in \Gamma.$

The unique **improper** *n*-type is $\operatorname{Fm}^{n}(\mathcal{L})$ itself. Every subset of $\operatorname{Fm}^{n}(\mathcal{L})$ generates a type, possibly improper. The subset itself can be called **consistent** or **finitely satisfiable** if for every finite subset $\{\phi_i : i < m\}$ there is a structure satisfying $\bigwedge_{i \leq m} \phi_i$.

Lemma 4.1. A subset of $\operatorname{Fm}^{n}(\mathcal{L})$ is finitely satisfiable if and only if it generates a proper type.

In fact the structure $(\operatorname{Fm}^n(\mathcal{L}), \wedge, \vee, \neg, \bot, \top, \models)$ is a Boolean algebra. A standard Boolean algebra is

$$(\mathcal{P}(X), \cap, \cup, {}^{\mathrm{c}}, \varnothing, X, \subseteq),$$

where X is a set. One way to give a formal definition is the following. A **Boolean ring** is a (unital, associative) ring satisfying $\forall x \ x \cdot x = x$.

Lemma 4.2. Boolean rings are commutative and are of characteristic 2.

Example 4.3. \mathbb{F}_2 is a Boolean ring.

Let $(B, +, \cdot, 0, 1)$ be a Boolean ring, and define new operations and a relation on B by the following rules (which should be compared with the definition of $\hat{\chi}_{\mathfrak{A}}$ on p. 4):

- $x \wedge y = xy;$
- $x \lor y = x + y + xy;$
- $\neg x = 1 + x;$
- $x \leqslant y \iff x \land y = x;$
- $\perp = 0$ and $\top = 1$.

The structure $(B, \land, \lor, \neg, \bot, \top, \leqslant)$ arising thus is a **Boolean algebra**.

Lemma 4.4. If $(B, \land, \lor, \neg, \bot, \top, \leqslant)$ is a Boolean algebra, then the Boolean ring from which it arises is given by

- $xy = x \wedge y;$
- $x + y = \neg(\neg x \land \neg y) \land \neg(x \land y);$
- $\top = 1$ and $\bot = 0$.

Lemma 4.5. $\operatorname{Fm}^{n}(\mathcal{L})$ is a Boolean algebra.

A subset F of a Boolean algebra is a **filter** if the set $\{x : \neg x \in F\}$ is an ideal of the corresponding ring; F is **principal** if I is principal; F is an **ultra-filter** if I is maximal. (The unique improper filter is the algebra itself; an ultra-filter must be proper.)

Lemma 4.6. Types of $\operatorname{Fm}^{n}(\mathcal{L})$ are just filters; complete types are just ultrafilters.

The set of ultra-filters of a Boolean algebra \mathfrak{B} is denoted

 $S(\mathfrak{B})$

and called its **Stone space**, because of the following. If $x \in B$, let

[x]

be the subset $\{F : x \in F\}$ of $S(\mathfrak{B})$.

Theorem 4.7 (Stone Representation). If \mathfrak{B} be a Boolean algebra, then the map

$$x \mapsto [x] : \mathfrak{B} \to \mathcal{P}(\mathcal{S}(\mathfrak{B}))$$

is an embedding of Boolean algebras.

Corollary 4.8. The subsets [x] of $S(\mathfrak{B})$ compose a basis of open sets and of closed sets for a topology on $S(\mathfrak{B})$, which topology is compact and Hausdorff.

For every subset X of B, let \overline{X} be the subset $\bigcap_{x \in X} [x]$ of $S(\mathfrak{B})$.

Lemma 4.9. Suppose \mathfrak{B} is a Boolean algebra.

(0) The map

$$X \mapsto \overline{X} : \mathcal{P}(B) \to \mathcal{P}(\mathcal{S}(\mathfrak{B}))$$

is inclusion-reversing and takes unions to intersections, and its range is the set of closed subsets of $S(\mathfrak{B})$.

(1) The map

 $Y \mapsto \bigcap Y : \mathcal{P}(\mathcal{S}(\mathfrak{B})) \to \mathcal{P}(\mathfrak{B})$

is inclusion-reversing and takes unions to intersections, and its range is the set of filters of \mathfrak{B} .

(2) If $X \subseteq B$, then $\bigcap \overline{X}$ is the filter of \mathfrak{B} generated by X.

(3) If $Y \subseteq S(\mathfrak{B})$, then $\overline{\bigcap Y}$ is the topological closure of Y.

hence $X \mapsto \overline{X}$ gives a one-to-one correspondence, with inverse $Y \mapsto \bigcap Y$, between filters of \mathfrak{B} and closed subsets of $S(\mathfrak{B})$.

So the complete *n*-types of \mathcal{L} compose a compact Hausdorff space, denoted

 $\mathrm{S}^n(\mathcal{L}),$

whose closed subsets are just the sets $\overline{\Gamma}$ determined by arbitrary *n*-types Γ .

A theory of \mathcal{L} is a 0-type The improper 0-type of \mathcal{L} is the unique inconsistent theory of \mathcal{L} .

Since $\operatorname{Fm}^{0}(\mathcal{L})$ embeds in $\operatorname{Fm}^{n}(\mathcal{L})$, a theory T of \mathcal{L} determines a closed subset of $\operatorname{S}^{n}(\mathcal{L})$, denoted

 $S^n(T).$

Then an arbitrary *n*-type Γ is **consistent with** T if $\Gamma \cup T$ is consistent, equivalently, $\overline{\Gamma} \cap S^n(T) \neq 0$.

Theorem 4.10 (Compactness). Every consistent theory has a model.

Proof. Let T be a theory of \mathcal{L} . The proof that T has a model has three parts:

(0) There is a signature \mathcal{L}' such that $\mathcal{L} \subseteq \mathcal{L}'$, and $\mathcal{L}' \smallsetminus \mathcal{L}$ consists of constantsymbols, and there is a bijection

$$\phi \mapsto c_{\phi} : \operatorname{Fm}^{1}(\mathcal{L}') \to \mathcal{L}' \smallsetminus \mathcal{L}.$$

Now let H(T) be the set $S^0(T) \cap \bigcap_{\phi \in \operatorname{Fm}^1(\mathcal{L}')} [\exists x_0 \ \phi \to \phi(c_\phi)].$

(1) Let T' be an element of H(T). Then T' has a **canonical model**, whose universe is $\mathcal{L}' \smallsetminus \mathcal{L}$ modulo the equivalence-relation \sim given by

$$c \sim d \iff T' \models c = d$$

(2) H(T) is non-empty.

Note that H(T) is non-empty by Corollary 4.8, in particular, compactness of $S^0(T)$.

If Γ is an *n*-type, and **c** is an *n*-tuple of constant-symbols, then the set $\{\phi(\mathbf{c}) : \phi \in \Gamma\}$ can be denoted

$$\Gamma(\mathbf{c}).$$

A structure \mathfrak{M} realizes Γ if $\mathfrak{M} \models \Gamma(\mathbf{a})$ for some tuple \mathbf{a} from M; otherwise the structure **omits** the type.

An complete type p is: **isolated**, if $\{p\}$ is open; **limit**, if not. These definitions can be understood absolutely, as stated, or **over** some theory T.

Lemma 4.11. The isolated types are precisely the principal complete types. Every type included in a principal type over a complete theory T is realized in every model of T. If Γ is a type consistent with an (arbitrary) theory T, then the following are equivalent:

(0) Γ is not included in a principal type over T;

- (1) $\overline{\Gamma}$ has empty interior in $S^n(T)$;
- (2) $\overline{\Gamma}^{c}$ is a dense open subset of $S^{n}(T)$.

Example 4.12. Let \mathcal{L} be $\{c_n : n \in \omega\} \cup \{P\}$, where the c_n are constantsymbols and P is a unary relation-symbol. Let T be the theory generated by $\{Pc_n : n \in \omega\}$. Then

 $T \models \neg Px \to x \neq c_n$

for each n, so the principal type generated by $\neg Px$ includes the type generated by $\{x \neq c_n : n \in \omega\}$; but the latter type is not principal.

A partial converse is the Omitting-Types Theorem below, whose proof is based on [7, ch. 10]. First:

Lemma 4.13. The intersection of countably dense open subsets of a compact Hausdorff space is also dense.

Proof. Suppose X is a compact Hausdorff space. Then X is locally compact, that is, every neighborhood of every point includes a compact neighborhood. Indeed, let U be an open neighborhood of P. For each x in U^c there are disjoint open neighborhoods V_x and U_x of x and P respectively. Some finite union of sets V_x covers U^c ; the complement is included in U and is a closed—hence compact—neighborhood of P, since it includes the corresponding intersection of sets U_x .

Now suppose $\{O_n : n \in \omega\}$ is a collection of dense open subsets of X. We can recursively define a decreasing chain $U_0 \supseteq K_0 \supseteq U_1 \supseteq K_1 \supseteq U_2 \supseteq \ldots$ of sets, and at the same time a sequence $(P_n : n \in \omega)$ of points, such that:

- $U_0 = U;$
- U_n is open;
- $P_n \in U_n \cap O_n;$
- K_n is compact, and $P_n \in K_n \subseteq U_n \cap O_n$;
- $P_n \in U_{n+1} \subseteq K_n$.

Then $\bigcap_{n \in \omega} K_n$ is a nonempty subset of U included in each set O_n .

Theorem 4.14 (Omitting Types). Let T be a consistent theory of a countable signature \mathcal{L} . For every countable collection of types Γ , none included in a principal type, T has a countable model omitting each Γ .

Proof. To the proof of the Compactness Theorem, we add a step:

(3) H(T) has an element T' such that, for each tuple **c** of elements of $\mathcal{L}' \smallsetminus \mathcal{L}$, and for each Γ ,

 $T' \notin \overline{\Gamma(\mathbf{c})},$

that is, $\Gamma(\mathbf{c}) \not\subseteq T'$.

To prove this, by Lemma 4.13, it is enough to show that each closed set $\Gamma(\mathbf{c})$ has dense complement in H(T), since then the intersection of these complements is dense and so non-empty.

Every open subset of H(T) is a union of sets $[\psi(\mathbf{d})] \cap H(T)$, where ψ is a formula of \mathcal{L} , and \mathbf{d} is a tuple of elements of $\mathcal{L}' \smallsetminus \mathcal{L}$. Supposing

$$T' \in [\psi(\mathbf{d})] \cap H(T),$$

we shall derive an element T^* of $[\psi(\mathbf{d})] \cap H(T) \smallsetminus \overline{\Gamma(\mathbf{c})}$.

Each entry of (\mathbf{c}, \mathbf{d}) is c_{ϕ^0} for some formula ϕ^0 , which contains finitely many constant-symbols c_{ϕ^1} ; each ϕ^1 contains finitely many constant-symbols c_{ϕ^2} , and so on. The constant-symbols arising in this way form a finitely branching tree with no infinite branches; hence they are finitely numerous and compose a tuple **e**.

Hence if c_{ϕ} is one of the terms of $(\mathbf{c}, \mathbf{d}, \mathbf{e})$, then the constant-symbols used in ϕ also appear in $(\mathbf{c}, \mathbf{d}, \mathbf{e})$. Hence there is a formula θ of \mathcal{L} such that $\theta(\mathbf{c}, \mathbf{d}, \mathbf{e})$ is the conjunction of $\psi(\mathbf{d})$ and the sentences

$$\exists x_0 \phi \to \phi(c_\phi)$$

such that c_{ϕ} appears in $(\mathbf{c}, \mathbf{d}, \mathbf{e})$.

Let \mathfrak{M} be the canonical model of T'. Then $\mathfrak{M} \models \theta(\mathbf{c}, \mathbf{d}, \mathbf{e})$. The open set $[\exists \mathbf{y} \exists \mathbf{z} \theta(\mathbf{x}, \mathbf{y}, \mathbf{z})]$ is therefore a non-empty subset of $S^n(T)$, so it is not included in $\overline{\Gamma}$. Suppose

$$p \in [\exists \mathbf{y} \exists \mathbf{z} \ \theta(\mathbf{x}, \mathbf{y}, \mathbf{z})] \setminus \overline{\Gamma}.$$

By the Compactness Theorem, T has a countable model \mathfrak{N} realizing p with some tuple **a**. There is a bijection f between $\mathcal{L}' \smallsetminus \mathcal{L}$ and N such that $f(\mathbf{c}) = \mathbf{a}$ and

$$\mathfrak{N} \models \theta(f(\mathbf{c}, \mathbf{d}, \mathbf{e})).$$

This bijection determines the desired T^* .

References

- Stanley N. Burris. Logic for Mathematics and Computer Science. Prentice Hall, Upper Saddle River, New Jersey, USA, 1998.
- [2] C. C. Chang and H. J. Keisler. Model theory, volume 73 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, third edition, 1990.
- [3] Alonzo Church. Introduction to mathematical logic. Vol. I. Princeton University Press, Princeton, N. J., 1956.
- [4] Wilfrid Hodges. *Model theory*, volume 42 of *Encyclopedia of Mathematics* and its Applications. Cambridge University Press, Cambridge, 1993.
- [5] David W. Kueker. An introduction to mathematical logic. course notes, 1989.
- [6] David Marker. Model theory, volume 217 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002. An introduction.

- [7] Bruno Poizat. A course in model theory. Universitext. Springer-Verlag, New York, 2000. An introduction to contemporary mathematical logic, Translated from the French by Moses Klein and revised by the author.
- 14

Hints

- Lemma 2.4: Prove that for each n there is a unique such function on the set of formulas of length at most n.
- Theorem 2.7: It's a simple chain of equivalences, justified by Lemma 2.6.
- Theorem 2.8: Say $V = \{P_n : n \in \omega\}$. Define $V_n = \{P_i : i < n\}$. Let T be the set of structures on the various V_n . Order T by the rule

$$(A, V_m) \leq (B, V_n) \iff m \leq n \land A = V_m \cap B.$$

Then (T, \leq) is a tree. Consider the set comprising those (A, V_m) such that, for all F in Φ , if $V_F \subseteq V_m$, then $(A, V_m) \models F$. This set forms an infinite sub-tree of T. Hence the sub-tree includes an infinite chain.

- Lemma 2.9: Use f_{\leftrightarrow} .
- Lemma 2.10: Use the various f_* .