Homework IV, Math 736, Model-Theory.

Elements a_0, \ldots, a_{k-1} of an abelian group are called **additively inde**pendent if

$$\sum_{i < k} n_i a_i \neq 0$$

for all integers $n_0 \ldots, n_{k-1}$, not all of which are 0.

Problem 7. Let \mathbf{Q} be the abelian group of rational numbers. Show that there is an abelian group \mathcal{G} such that:

- (*) $\mathcal{G} \equiv \mathbf{Q}$, and
- (†) \mathcal{G} contains n additively independent elements for every n in ω .

Then show that any two such countable groups are isomorphic.

Now let \mathcal{L} be an arbitrary signature. If $\mathcal{M}, \mathcal{N} \in \mathfrak{Mod}(\mathcal{L})$ and $\mathcal{M} \subseteq \mathcal{N}$, let us write

 $\mathcal{M} \preccurlyeq_1 \mathcal{N}$

if the inclusion of M in N preserves *universal* formulas of \mathcal{L} .

Problem 8. Prove that the following are equivalent:

$$(*) \ \mathcal{M} \preccurlyeq_1 \mathcal{N}$$

(†) there is \mathcal{R} in $\mathfrak{Mod}(\mathcal{L})$ such that $\mathcal{M} \preccurlyeq \mathcal{R}$ and $\mathcal{N} \subseteq \mathcal{R}$.

Suppose $\{\mathcal{M}_n : n \in \omega\}$ is a subset of $\mathfrak{Mod}(\mathcal{L})$ forming a **chain**, that is, $\mathcal{M}_n \subseteq \mathcal{M}_{n+1}$ for all n in ω . Then the **union** of this chain is defined to be the structure \mathcal{N} , where:

- (*) $N = \bigcup_{n \in \omega} M_n$, and
- (†) for all basic formulas ϕ , if **a** is a tuple from M_n , and $\mathcal{M}_n \models \phi(\mathbf{a})$, then $\mathcal{N} \models \phi(\mathbf{a})$.

(You should verify that \mathcal{N} is well-defined, but you need not submit the verification.) The chain is called **elementary** if $\mathcal{M}_n \preccurlyeq \mathcal{M}_{n+1}$ for all n.

Problem 9. Show that the union of an elementary chain is an elementary extension of each structure in the chain.

Recall that a theory T of \mathcal{L} is called **model-complete** if $\mathcal{M} \preccurlyeq \mathcal{N}$ whenever $\mathcal{M} \subseteq \mathcal{N}$ and both structures are models of T. A formally weaker notion is **1-model-completeness**: T is 1-model-complete if $\mathcal{M} \preccurlyeq_1 \mathcal{N}$ whenever $\mathcal{M} \subseteq \mathcal{N}$ and both structures are models of T.

Problem 10. Prove that 1-model-completeness and model-completeness coincide.