Homework IV, Math 736, Model-Theory.
Elements a_{0}, \ldots, a_{k-1} of an abelian group are called additively independent if

$$
\sum_{i<k} n_{i} a_{i} \neq 0
$$

for all integers $n_{0} \ldots, n_{k-1}$, not all of which are 0 .
Problem 7. Let \mathbf{Q} be the abelian group of rational numbers. Show that there is an abelian group \mathcal{G} such that:
$(*) \mathcal{G} \equiv \mathbf{Q}$, and
$(\dagger) \mathcal{G}$ contains n additively independent elements for every n in ω.
Then show that any two such countable groups are isomorphic.
Now let \mathcal{L} be an arbitrary signature. If $\mathcal{M}, \mathcal{N} \in \mathfrak{M o d}(\mathcal{L})$ and $\mathcal{M} \subseteq \mathcal{N}$, let us write

$$
\mathcal{M} \preccurlyeq_{1} \mathcal{N}
$$

if the inclusion of M in N preserves universal formulas of \mathcal{L}.
Problem 8. Prove that the following are equivalent:
(*) $\mathcal{M} \preccurlyeq 1 \mathcal{N}$
(\dagger) there is \mathcal{R} in $\mathfrak{M o d}(\mathcal{L})$ such that $\mathcal{M} \preccurlyeq \mathcal{R}$ and $\mathcal{N} \subseteq \mathcal{R}$.
Suppose $\left\{\mathcal{M}_{n}: n \in \omega\right\}$ is a subset of $\mathfrak{M o d}(\mathcal{L})$ forming a chain, that is, $\mathcal{M}_{n} \subseteq \mathcal{M}_{n+1}$ for all n in ω. Then the union of this chain is defined to be the structure \mathcal{N}, where:
(*) $N=\bigcup_{n \in \omega} M_{n}$, and
(\dagger) for all basic formulas ϕ, if \mathbf{a} is a tuple from M_{n}, and $\mathcal{M}_{n} \models \phi(\mathbf{a})$, then $\mathcal{N} \vDash \phi(\mathbf{a})$.
(You should verify that \mathcal{N} is well-defined, but you need not submit the verification.) The chain is called elementary if $\mathcal{M}_{n} \preccurlyeq \mathcal{M}_{n+1}$ for all n.
Problem 9. Show that the union of an elementary chain is an elementary extension of each structure in the chain.

Recall that a theory T of \mathcal{L} is called model-complete if $\mathcal{M} \preccurlyeq \mathcal{N}$ whenever $\mathcal{M} \subseteq \mathcal{N}$ and both structures are models of T. A formally weaker notion is 1 -model-completeness: T is 1-model-complete if $\mathcal{M} \preccurlyeq 1 \mathcal{N}$ whenever $\mathcal{M} \subseteq \mathcal{N}$ and both structures are models of T.

Problem 10. Prove that 1-model-completeness and model-completeness coincide.

