Homework III, Math 736, Model-Theory.

These notes present an alternative approach to compactness and completeness. The proofs of the lemmas are exercises (not necessarily to be turned in).

Let $\operatorname{Fm}^{n}(\mathcal{L})$ comprise the *n*-ary formulas of \mathcal{L} , defined as in the notes ('Homework II') as strings of symbols, but with formulas $(\phi \to \psi)$ allowed as well, with $(\phi \to \psi)^{\mathcal{M}} = (\neg \phi \lor \psi)^{\mathcal{M}}$. We may leave off outer brackets when writing formulas, and write $\phi_0 \land \phi_1 * \phi_2$ for $(\phi_0 \land \phi_1) * \phi_2$, where $* \text{ is } \land \text{ or}$ \rightarrow . Let $\operatorname{Fm}(\mathcal{L})$ be the union of the chain $\operatorname{Fm}^0(\mathcal{L}) \subseteq \operatorname{Fm}^1(\mathcal{L}) \subseteq \ldots$. We shall assume that all tuples, terms and formulas have the arities they must, for what we say to make sense.

Let Γ be a subset of $\operatorname{Fm}(\mathcal{L})$, and let ϕ be in $\operatorname{Fm}(\mathcal{L})$. We can define

$$\Gamma \models \phi$$

to mean that, for every \mathcal{M} in $\mathfrak{Mod}(\mathcal{L})$, and for every sequence $(a_i : i \in \omega)$ of elements of M, if $\mathcal{M} \models \psi(\mathbf{a})$ for each ψ in Γ , then $\mathcal{M} \models \phi(\mathbf{a})$. This agrees with the definition given in class when all formulas are sentences. We can also say that \mathcal{M} is a **model** of Γ , writing

$$\mathcal{M} \models \Gamma$$
,

if there is some sequence $(a_i : i \in \omega)$ of elements of M such that $\mathcal{M} \models \psi(\mathbf{a})$ for each ψ in Γ .

We now define

 $\Gamma \vdash \phi$

to mean that ϕ is **derivable** from Γ , in a sense to be specified presently. The point of these notes will be to prove that this definition agrees with the one given in class. That ϕ is derivable from Γ will mean that there is a **proof** of ϕ from Γ , namely a finite sequence of formulas, ending with ϕ , of which each formula:

- is in Γ ,
- is an **axiom**, or
- follows from previous formulas in the sequence by a **rule of inference**.

Before naming the axioms and rule(s) of inference, we can already check the following.

Lemma 1. If $\Gamma \vdash \phi$, then ϕ is derivable from a finite subset of Γ .

Lemma 2. Derivability is **transitive**, in the sense that, if each formula in a set Θ is derivable from Γ , and ϕ is derivable from Θ , then $\Gamma \vdash \phi$.

We shall use a single rule of inference, namely *Modus Ponens*:

$$\{\phi, (\phi \to \psi)\} \vdash \psi.$$

Our axioms will be the following (where, throughout, t_i , u_i , t, u and v are terms, and ϕ and ψ are formulas of appropriate arities):

- the tautologies, namely formulas F(φ₀,..., φ_{n-1}), where F is a tautologous n-ary propositional formula (an n-ary term of the language of Boolean algebras whose interpretation in F₂ is the constant-function 1);
- the axioms of equality, namely:

$$-(t_0 = u_0) \wedge \dots \wedge (t_{n-1} = u_{n-1}) \rightarrow (\phi(\mathbf{t}) \rightarrow \phi(\mathbf{u}));$$

$$-t = t;$$

$$-(t = u) \rightarrow (u = t);$$

$$-(t = u) \wedge (u = v) \rightarrow (t = v);$$

• the axioms of quantification, namely:

$$- \phi(\mathbf{x}, t) \to \exists x_n \phi;$$

$$- \forall x_n \neg \phi \to \neg \exists x_n \phi;$$

$$- \phi \to \forall x_n \phi, \text{ where } \phi \text{ is } n\text{-ary};$$

$$- \forall x_n (\phi \to \psi) \to (\forall x_n \phi \to \forall x_n \psi);$$

$$- \forall x_n \phi, \text{ where } \phi \text{ is an axiom}.$$

Lemma 3. $\Gamma \vdash \phi \implies \Gamma \models \phi$.

Changing a notation used in class, let us write

 $\phi\approx\psi$

if $\phi^{\mathcal{M}} = \phi^{\mathcal{M}}$ for all \mathcal{M} , and let us now use

 $\phi \sim \psi$

to mean that $\{\phi\} \vdash \psi$ and $\{\psi\} \vdash \phi$. Both \approx and \sim are equivalence-relations (and will turn out to be the same).

Lemma 4. $\phi \sim \psi \implies \phi \approx \psi$.

Lemma 5. If $\Gamma \vdash \phi$, then $\Gamma' \vdash \phi'$, where Γ' is got from Γ by replacing each an element with a \sim -equivalent one, and $\phi' \sim \phi$.

So, as far as derivability and interpretations are concerned, we can identify formulas with their \sim -classes. One point of doing this is the following.

Lemma 6. $\operatorname{Fm}(\mathcal{L})/\sim$ is naturally the universe of a Boolean algebra.

Now define

$$\langle \Gamma \rangle = \{ \phi : \Gamma \vdash \phi \}.$$

Say that Γ is **consistent** if $\bot \notin \langle \Gamma \rangle$.

Lemma 7. If Γ is consistent, then the image of $\langle \Gamma \rangle$ in $\operatorname{Fm}(\mathcal{L})/\sim$ is the smallest filter containing the images of the formulas in Γ .

Now we can prove compactness—that every consistent set of formulas has a model—just as in class; but we have to do more work at some points.

Derivability depends a priori on signature. We must rule out the possibility that there is a proof of ϕ from Γ in a signature larger than \mathcal{L} , but not in \mathcal{L} itself.

Lemma 8. Suppose $\Gamma \subseteq \operatorname{Fm}^{n}(\mathcal{L})$, and $\phi \subseteq \operatorname{Fm}^{n+k+1}(\mathcal{L})$, and c is a k+1-tuple of constant-symbols not in \mathcal{L} .

- If $\Gamma \vdash \phi$, then $\Gamma \vdash \forall x_n \dots \forall x_{n+k} \phi$.
- If $\Gamma \vdash \phi(\mathbf{x}, \mathbf{c})$ in $\mathcal{L} \cup \{c_0, \ldots, c_k\}$, then $\Gamma \vdash \forall x_n \ldots \forall x_{n+k} \phi$ in \mathcal{L} .

Suppose $\mathcal{L} \subseteq \mathcal{L}'$, and $\mathcal{L}' - \mathcal{L}$ contains only constant-symbols.

Lemma 9. The inclusion of $\operatorname{Fm}(\mathcal{L})$ in $\operatorname{Fm}(\mathcal{L}')$ induces an embedding of $\operatorname{Fm}(\mathcal{L})/\sim$ in $\operatorname{Fm}(\mathcal{L}')/\sim$.

For any consistent set T of formulas of \mathcal{L}' , there is a relation on constantsymbols given by

 $c\sim d\iff T\vdash c=d.$

(This is distinct from the relation \sim on *formulas*.)

Lemma 10. The relation \sim on constant-symbols is an equivalence-relation.

Suppose in particular that \mathcal{L} has a constant-symbol c_{ϕ} for each unary formula ϕ , and suppose Γ is a consistent set of formulas of \mathcal{L} .

Lemma 11. There is a consistent set T of formulas of \mathcal{L}' such that:

- $\Gamma \subseteq T$;
- $T \vdash \exists x_0 \phi \rightarrow \phi(c_\phi)$ for each unary formula ϕ ;
- T is maximally consistent: the image of ⟨T⟩ in Fm(L')/~ is an ultrafilter.

Lemma 12. Suppose T is a maximally consistent set of formulas of \mathcal{L}' such that $T \vdash \exists x_0 \phi \rightarrow \phi(c_{\phi})$ for each unary formula ϕ . Then:

- There is a unique model \mathcal{M} of T whose universe M comprises the \sim classes of the constant-symbols c_{ϕ} , and such that
 - $c^{\mathcal{M}} = c/\sim$ for each constant-symbol c, - $f^{\mathcal{M}}(\mathbf{c}/\sim) = d/\sim$ if $T \vdash fc_0 \dots c_{n-1} = d$, for all function-symbols f, and - $(\mathbf{c}/\sim) \in \mathbb{R}^{\mathcal{M}}$ if $T \vdash \mathbb{R}c_0 \dots c_{n-1}$, for all relation-symbols \mathbb{R} .
- If \mathcal{M} is this model, then $\phi^{\mathcal{M}} = \{(\mathbf{c}/\sim) : T \vdash \phi(\mathbf{c})\}$ for all formulas ϕ .