Math 736, Model-Theory, 2001, fall. Here are some additional notes on terms and formulas; Problems 5 and 6 constitute Homework II. Revised, 25 October 2001.

Fix a signature \mathcal{L}. Let c, f and R range respectively over the constant-, function- and relation-symbols of $\mathcal{L} ;$ let \mathcal{M} range over $\mathfrak{M o d}(\mathcal{L})$; let i, k, m, and n range over ω.

For each n, we want to define a set $\operatorname{Tm}^{n}(\mathcal{L})$, of n-ary terms of \mathcal{L}. Each t in $\operatorname{Tm}^{n}(\mathcal{L})$ should have, for each \mathcal{M}, an interpretation $t^{\mathcal{M}}$, which is an n-ary function on M. We want the terms and their interpretations to satisfy the following requirements.

0 . For each c, there is t in $\operatorname{Tm}^{0}(\mathcal{L})$ such that $t^{\mathcal{M}}$ is $c^{\mathcal{M}}$ for each \mathcal{M}.

1. If f is n-ary, then there is t in $\operatorname{Tm}^{n}(\mathcal{L})$ such that $t^{\mathcal{M}}$ is $f^{\mathcal{M}}$ for each \mathcal{M}.
2. There is t in $\operatorname{Tm}^{1}(\mathcal{L})$ such that $t^{\mathcal{M}}$ is id_{M} for each \mathcal{M}.
3. For every function $\sigma: m \rightarrow n$, and for every u in $\operatorname{Tm}^{m}(\mathcal{L})$, there is t in $\operatorname{Tm}^{n}(\mathcal{L})$ such that $t^{\mathcal{M}}$ is

$$
\mathbf{a} \mapsto u^{\mathcal{M}}\left(a_{\sigma(0)}, \ldots, a_{\sigma(m-1)}\right): M^{n} \rightarrow M
$$

for each \mathcal{M}.
4. For each u in $\operatorname{Tm}^{m}(\mathcal{L})$, and for any t_{0}, \ldots, t_{m-1} in $\operatorname{Tm}^{n}(\mathcal{L})$, there is t in $\operatorname{Tm}^{n}(\mathcal{L})$ such that $t^{\mathcal{M}}$ is $u^{\mathcal{M}} \circ\left(t_{0}^{\mathcal{M}}, \ldots, t_{m-1}^{\mathcal{M}}\right)$ for each \mathcal{M}.
5. No terms t exist whose interpretations $t^{\mathcal{M}}$ are not required by the preceding clauses.

Then the sets $\operatorname{Tm}^{n}(\mathcal{L})$ of n-ary terms t, and their interpretations $t^{\mathcal{M}}$, can be defined as follows.
(a) $\operatorname{Tm}^{0}(\mathcal{L})$ contains the symbols c (each a string of length 1).
(b) $\mathrm{Tm}^{i+1}(\mathcal{L})$ contains the symbol x_{i} (a string of length 1).
(c) $\operatorname{Tm}^{n+1}(\mathcal{L})$ includes $\operatorname{Tm}^{n}(\mathcal{L})$.
(d) If f is m-ary, and u_{0}, \ldots, u_{m-1} are in $\operatorname{Tm}^{n}(\mathcal{L})$, then $\operatorname{Tm}^{n}(\mathcal{L})$ contains $f u_{0} \cdots u_{m-1}$ (the concatenation of the strings $f, u_{0}, \ldots, u_{m-1}$).
(e) $\mathrm{Tm}^{n}(\mathcal{L})$ contains no other strings than those required by the preceding clauses, and if $t \in \operatorname{Tm}^{n}(\mathcal{L})$, then for every \mathcal{M}, the interpretation $t^{\mathcal{M}}$ is:

- $\mathbf{a} \mapsto c^{\mathcal{M}}$, if t is c;
- $\mathbf{a} \mapsto a_{i}$, if t is x_{i};
- $f^{\mathcal{M}} \circ\left(u_{0}^{\mathcal{M}}, \ldots, u_{m-1}^{\mathcal{M}}\right)$, if t is $f u_{0} \cdots u_{m-1}$ (where f is m-ary and the u_{i} are in $\left.\operatorname{Tm}^{n}(\mathcal{L})\right)$.

The definition of the interpretations of terms depends on how terms can be analyzed; so the validity of the definition must be checked. To do this, one can use the following.

Lemma. A proper initial segment of a term is not a term; that is, if a string $\alpha_{0} \alpha_{1} \cdots \alpha_{n}$ of symbols α_{i} is a term, and $m<n$, then $\alpha_{0} \alpha_{1} \ldots \alpha_{m}$ is not a term.

Proof. The claim is trivially true for terms of length 1 . Suppose it is false for a term t of length $k+1$. Then t is $f t_{0} \cdots t_{n-1}$ for some terms t_{i}, but t has a proper initial segment of the form $f u_{0} \cdots u_{m-1}$, where the u_{i} are terms. Then there is some least i such that t_{i} is not u_{i}; but then also one of these is an initial segment of the other. Thus the claim fails for a term of length k or less - if it fails for a term of length $k+1$. By induction, the claim holds for terms of all lengths.

Lemma (unique readability of terms). Every term is uniquely of the form c, x_{i} or $f t_{0} \cdots t_{n-1}$, where the t_{i} are terms.

Proof. If the analysis of a term as $f t_{0} \cdots t_{n-1}$ is not unique, then (as in the proof of the previous lemma) one of the t_{i} can be assumed to be a proper initial segment of another term.

Finally, by induction on the length of terms, every n-ary term is also $n+$ 1 -ary and has an interpretation as such. So terms and their interpretations are well-defined. Now we can check that the several numbered requirements of terms are met:

0 . Let t be c.

1. Let t be $f x_{0} \cdots x_{n-1}$.
2. Let t be x_{0}.
3. The required term t can be denoted $u\left(x_{\sigma(0)}, \ldots, x_{\sigma(m-1)}\right)$, and can be defined inductively:

- If u is c, then t is c.
- If u is x_{i}, then t is $x_{\sigma(i)}$.
- If u is $f u_{0} \cdots u_{k-1}$, then t is $f t_{0} \cdots t_{k-1}$, where t_{i} is $u_{i}\left(x_{\sigma(0)}, \ldots, x_{\sigma(m-1)}\right)$.

4. The required term t can be denoted $u\left(t_{0}, \ldots, t_{m-1}\right)$, and can be defined inductively:

- If u is c, then t is c.
- If u is x_{i}, then t is t_{i}.
- If u is $f u_{0} \cdots u_{k-1}$, then t is $f v_{0} \cdots v_{k-1}$, where v_{i} is $u_{i}\left(t_{0}, \ldots, t_{m-1}\right)$.

5. Every interpretation $t^{\mathcal{M}}$ satisfies one of the requirements:
(a) The nullary term c is a term t such that $t^{\mathcal{M}}=c^{\mathcal{M}}$.
(b) Let u be the unary term x_{0} (whose interpretation in \mathcal{M}, or id_{M}, is required); let σ be the map from 1 to $i+1$ such that $\sigma(0)=i$; then x_{i} is an $i+1$-ary term t such that $t^{\mathcal{M}}$ is $\mathbf{a} \mapsto u^{\mathcal{M}}\left(a_{\sigma(0)}\right)$.
(c) if an n-ary term t has a required interpretation, then the interpretation of t as an $n+1$-ary term is also required, since this interpretation is $\mathbf{a} \mapsto t^{\mathcal{M}}\left(a_{\sigma(0)}, \ldots, a_{\sigma(n-1)}\right)$, where σ is the inclusion of n in $n+1$.
(d) Let u be $f x_{0} \cdots x_{m-1}$; then its interpretation in \mathcal{M}, namely $f^{\mathcal{M}}$, is required. Suppose the interpretations of the terms t_{i} are required; then so is the interpretation of $f t_{0} \cdots t_{m-1}$, since this interpretation is $u^{\mathcal{M}} \circ\left(t_{0}^{\mathcal{M}}, \ldots, t_{m-1}^{\mathcal{M}}\right)$.

Now we can move on to formulas. For each n, we want to define a set $\operatorname{Fm}^{n}(\mathcal{L})$, comprising the n-ary formulas of \mathcal{L}. Each ϕ in $\operatorname{Fm}^{n}(\mathcal{L})$ should have, for each \mathcal{M}, an interpretation $\phi^{\mathcal{M}}$, which is an n-ary relation on M. We want the formulas and their interpretations to satisfy the following requirements.

0 . There is ϕ in $\operatorname{Fm}^{2}(\mathcal{L})$ such that $\phi^{\mathcal{M}}$ is $\left\{(a, b) \in M^{2}: a=b\right\}$ for each \mathcal{M}.

1. If R is n-ary, then there is ϕ in $\operatorname{Fm}^{n}(\mathcal{L})$ such that $\phi^{\mathcal{M}}$ is $R^{\mathcal{M}}$ for each \mathcal{M}.
2. For any m-ary term F of the signature of Boolean algebras, and for any $\psi_{0}, \ldots, \psi_{m-1}$ in $\operatorname{Fm}^{n}(\mathcal{L})$, there is ϕ in $\operatorname{Fm}^{n}(\mathcal{L})$ such that $\phi^{\mathcal{M}}$ is $F^{\mathcal{P}\left(M^{n}\right)}\left(\psi_{0}^{\mathcal{M}}, \ldots, \psi_{m-1}^{\mathcal{M}}\right)$ for each \mathcal{M}.
3. For any t_{0}, \ldots, t_{m-1} in $\operatorname{Tm}^{n}(\mathcal{L})$, and for any ψ in $\operatorname{Fm}^{m}(\mathcal{L})$, there is ϕ in $\operatorname{Fm}^{n}(\mathcal{L})$ such that $\phi^{\mathcal{M}}$ is

$$
\left\{\mathbf{a} \in M^{n}:\left(t_{0}^{\mathcal{M}}(\mathbf{a}), \ldots, t_{m-1}^{\mathcal{M}}(\mathbf{a})\right) \in \psi^{\mathcal{M}}\right\}
$$

for each \mathcal{M}.
4. For any u_{0}, \ldots, u_{n-1} in $\operatorname{Tm}^{m}(\mathcal{L})$, and for any ψ in $\operatorname{Fm}^{m}(\mathcal{L})$, there is ϕ in $\operatorname{Fm}^{n}(\mathcal{L})$ such that $\phi^{\mathcal{M}}$ is

$$
\left\{\left(u_{0}^{\mathcal{M}}(\mathbf{a}), \ldots, u_{n-1}^{\mathcal{M}}(\mathbf{a})\right) \in M^{n}: \mathbf{a} \in \psi^{\mathcal{M}}\right\}
$$

for each \mathcal{M}.
5. No formulas ϕ exist whose interpretations $\phi^{\mathcal{M}}$ are not required by the preceding clauses.

To meet these requirements, we propose to define the sets $\mathrm{Fm}^{n}(\mathcal{L})$ of n-ary formulas ϕ, and their interpretations $\phi^{\mathcal{M}}$, as follows.
(a) $\operatorname{Fm}^{n}(\mathcal{L})$ contains $(t=u)$ whenever t and u are in $\operatorname{Tm}^{n}(\mathcal{L})$.
(b) $\operatorname{Fm}^{n}(\mathcal{L})$ contains $R t_{0} \cdots t_{m-1}$ whenever R is m-ary and t_{0}, \ldots, t_{m-1} are in $\operatorname{Tm}^{n}(\mathcal{L})$.
(c) $\mathrm{Fm}^{0}(\mathcal{L})$ contains \perp and T ; and $\mathrm{Fm}^{n}(\mathcal{L})$ contains $\neg \psi$ and $(\psi \wedge \chi)$ and $(\psi \vee \chi)$ whenever $\psi, \chi \in \operatorname{Fm}^{n}(\mathcal{L})$. (The symbols \perp and T and \neg and \wedge and \vee can be supposed distinct from any symbols in \mathcal{L}.)
(d) $\operatorname{Fm}^{n}(\mathcal{L})$ contains $\exists x_{n} \psi$ and $\forall x_{n} \psi$ whenever $\psi \in \operatorname{Fm}^{n+1}(\mathcal{L})$.
(e) $\operatorname{Fm}^{n}(\mathcal{L})$ contains no other strings of symbols than those required by the preceding clauses, and if $\phi \in \operatorname{Fm}^{n}(\mathcal{L})$, then for every \mathcal{M} the interpretation $\phi^{\mathcal{M}}$ is:

- $\left\{\mathbf{a} \in M^{n}: t^{\mathcal{M}}(\mathbf{a})=u^{\mathcal{M}}(\mathbf{a})\right\}$, if ϕ is $(t=u)$;
- $\left\{\mathbf{a} \in M^{n}:\left(t_{0}^{\mathcal{M}}(\mathbf{a}), \ldots, t_{m-1}^{\mathcal{M}}(\mathbf{a})\right) \in R^{\mathcal{M}}\right\}$, if ϕ is $R t_{0} \cdots t_{m-1}$;
- \emptyset, if ϕ is \perp;
- \emptyset^{c}, if ϕ is T;
- $\left(\psi^{\mathcal{M}}\right)^{\mathrm{c}}$, if ϕ is $\neg \psi$;
- $\psi^{\mathcal{M}} \cap \chi^{\mathcal{M}}$, if ϕ is $(\psi \wedge \chi)$;
- $(\neg(\neg \psi \wedge \neg \chi))^{\mathcal{M}}$, if ϕ is $(\psi \vee \chi)$;
- $\left\{\mathbf{a} \in M^{n}:(\mathbf{a}, b) \in \psi^{\mathcal{M}}\right.$, some b in $\left.M\right\}$, if ϕ is $\exists x_{n} \psi$;
- $\left(\neg \exists x_{n} \neg \psi\right)^{\mathcal{M}}$, if ϕ is $\forall x_{n} \psi$.

Problem 5. Show that the proposed definition of $\mathrm{Fm}^{n}(\mathcal{L})$ is valid and meets the requirements.

Now let $\operatorname{Fm}_{0}^{n}(\mathcal{L})$ be the smallest subset of $\operatorname{Fm}^{n}(\mathcal{L})$ that contains the formulas $R t_{0} \cdots t_{m-1}$ and $(t=u)$ and that contains $\neg \psi$ and $(\psi \wedge \chi)$ and $(\psi \vee \chi)$ when it contains ψ and χ. Let $\operatorname{Fm}_{\mathrm{p}}^{n}(\mathcal{L})$ be the smallest subset of $\mathrm{Fm}^{n}(\mathcal{L})$ such that:

- $\operatorname{Fm}_{0}^{n}(\mathcal{L}) \subseteq \operatorname{Fm}_{\mathrm{p}}^{n}(\mathcal{L})$;
- $\operatorname{Fm}_{\mathrm{p}}^{n}(\mathcal{L})$ contains \perp and T;
- $\operatorname{Fm}_{\mathrm{p}}^{n}(\mathcal{L})$ contains $\exists x_{n} \psi$ and $\forall x_{n} \psi$ when $\psi \in \operatorname{Fm}_{\mathrm{p}}^{n+1}(\mathcal{L})$.
(The subscript p stands for p renex, which describes the elements of $\operatorname{Fm}_{\mathrm{p}}^{n}(\mathcal{L})$.) Say that n-ary formulas ϕ and ψ are equivalent if their interpretations in \mathcal{M} are the same, for every \mathcal{M}.

Problem 6. Show that for every formula in $\mathrm{Fm}^{n}(\mathcal{L})$ there is an equivalent formula in $\mathrm{Fm}_{p}^{n}(\mathcal{L})$.

