Math 736, Model-Theory, 2001, fall. Here are some additional notes on terms and formulas; Problems 5 and 6 constitute Homework II. Revised, 25 October 2001.

Fix a signature \mathcal{L} . Let c, f and R range respectively over the constant-, function- and relation-symbols of \mathcal{L} ; let \mathcal{M} range over $\mathfrak{Mod}(\mathcal{L})$; let i, k, m, and n range over ω .

For each n, we want to define a set $\operatorname{Tm}^{n}(\mathcal{L})$, of *n*-ary terms of \mathcal{L} . Each t in $\operatorname{Tm}^{n}(\mathcal{L})$ should have, for each \mathcal{M} , an interpretation $t^{\mathcal{M}}$, which is an *n*-ary function on \mathcal{M} . We want the terms and their interpretations to satisfy the following requirements.

- 0. For each c, there is t in $\mathrm{Tm}^{0}(\mathcal{L})$ such that $t^{\mathcal{M}}$ is $c^{\mathcal{M}}$ for each \mathcal{M} .
- 1. If f is n-ary, then there is t in $\operatorname{Tm}^{n}(\mathcal{L})$ such that $t^{\mathcal{M}}$ is $f^{\mathcal{M}}$ for each \mathcal{M} .
- 2. There is t in $\operatorname{Tm}^{1}(\mathcal{L})$ such that $t^{\mathcal{M}}$ is id_{M} for each \mathcal{M} .
- 3. For every function $\sigma : m \to n$, and for every u in $\operatorname{Tm}^m(\mathcal{L})$, there is t in $\operatorname{Tm}^n(\mathcal{L})$ such that $t^{\mathcal{M}}$ is

$$\mathbf{a} \mapsto u^{\mathcal{M}}(a_{\sigma(0)}, \dots, a_{\sigma(m-1)}) : M^n \to M$$

for each \mathcal{M} .

- 4. For each u in $\operatorname{Tm}^{m}(\mathcal{L})$, and for any t_{0}, \ldots, t_{m-1} in $\operatorname{Tm}^{n}(\mathcal{L})$, there is t in $\operatorname{Tm}^{n}(\mathcal{L})$ such that $t^{\mathcal{M}}$ is $u^{\mathcal{M}} \circ (t_{0}^{\mathcal{M}}, \ldots, t_{m-1}^{\mathcal{M}})$ for each \mathcal{M} .
- 5. No terms t exist whose interpretations $t^{\mathcal{M}}$ are not required by the preceding clauses.

Then the sets $\operatorname{Tm}^{n}(\mathcal{L})$ of *n*-ary terms *t*, and their interpretations $t^{\mathcal{M}}$, can be defined as follows.

- (a) $\operatorname{Tm}^{0}(\mathcal{L})$ contains the symbols c (each a string of length 1).
- (b) $\operatorname{Tm}^{i+1}(\mathcal{L})$ contains the symbol x_i (a string of length 1).
- (c) $\operatorname{Tm}^{n+1}(\mathcal{L})$ includes $\operatorname{Tm}^{n}(\mathcal{L})$.
- (d) If f is m-ary, and u_0, \ldots, u_{m-1} are in $\operatorname{Tm}^n(\mathcal{L})$, then $\operatorname{Tm}^n(\mathcal{L})$ contains $fu_0 \cdots u_{m-1}$ (the concatenation of the strings f, u_0, \ldots, u_{m-1}).
- (e) $\operatorname{Tm}^{n}(\mathcal{L})$ contains no other strings than those required by the preceding clauses, and if $t \in \operatorname{Tm}^{n}(\mathcal{L})$, then for every \mathcal{M} , the interpretation $t^{\mathcal{M}}$ is:
 - $\mathbf{a} \mapsto c^{\mathcal{M}}$, if t is c;
 - $\mathbf{a} \mapsto a_i$, if t is x_i ;
 - $f^{\mathcal{M}} \circ (u_0^{\mathcal{M}}, \ldots, u_{m-1}^{\mathcal{M}})$, if t is $fu_0 \cdots u_{m-1}$ (where f is m-ary and the u_i are in $\operatorname{Tm}^n(\mathcal{L})$).

The definition of the interpretations of terms depends on how terms can be analyzed; so the validity of the definition must be checked. To do this, one can use the following.

Lemma. A proper initial segment of a term is not a term; that is, if a string $\alpha_0\alpha_1 \cdots \alpha_n$ of symbols α_i is a term, and m < n, then $\alpha_0\alpha_1 \ldots \alpha_m$ is not a term.

Proof. The claim is trivially true for terms of length 1. Suppose it is false for a term t of length k+1. Then t is $ft_0 \cdots t_{n-1}$ for some terms t_i , but t has a proper initial segment of the form $fu_0 \cdots u_{m-1}$, where the u_i are terms. Then there is some least i such that t_i is not u_i ; but then also one of these is an initial segment of the other. Thus the claim fails for a term of length k or less—if it fails for a term of length k+1. By induction, the claim holds for terms of all lengths.

Lemma (unique readability of terms). Every term is uniquely of the form c, x_i or $ft_0 \cdots t_{n-1}$, where the t_i are terms.

Proof. If the analysis of a term as $ft_0 \cdots t_{n-1}$ is not unique, then (as in the proof of the previous lemma) one of the t_i can be assumed to be a proper initial segment of another term.

Finally, by induction on the length of terms, every *n*-ary term is also n + 1-ary and has an interpretation as such. So terms and their interpretations are well-defined. Now we can check that the several numbered requirements of terms are met:

- 0. Let t be c.
- 1. Let t be $fx_0 \cdots x_{n-1}$.
- 2. Let t be x_0 .
- 3. The required term t can be denoted $u(x_{\sigma(0)}, \ldots, x_{\sigma(m-1)})$, and can be defined inductively:
 - If u is c, then t is c.
 - If u is x_i , then t is $x_{\sigma(i)}$.
 - If u is $fu_0 \cdots u_{k-1}$, then t is $ft_0 \cdots t_{k-1}$, where t_i is $u_i(x_{\sigma(0)}, \ldots, x_{\sigma(m-1)})$.
- 4. The required term t can be denoted $u(t_0, \ldots, t_{m-1})$, and can be defined inductively:
 - If u is c, then t is c.
 - If u is x_i , then t is t_i .
 - If u is $fu_0 \cdots u_{k-1}$, then t is $fv_0 \cdots v_{k-1}$, where v_i is $u_i(t_0, \dots, t_{m-1})$.
- 5. Every interpretation $t^{\mathcal{M}}$ satisfies one of the requirements:

- (a) The nullary term c is a term t such that $t^{\mathcal{M}} = c^{\mathcal{M}}$.
- (b) Let u be the unary term x_0 (whose interpretation in \mathcal{M} , or id_M , is required); let σ be the map from 1 to i + 1 such that $\sigma(0) = i$; then x_i is an i + 1-ary term t such that $t^{\mathcal{M}}$ is $\mathbf{a} \mapsto u^{\mathcal{M}}(a_{\sigma(0)})$.
- (c) if an *n*-ary term *t* has a required interpretation, then the interpretation of *t* as an n + 1-ary term is also required, since this interpretation is $\mathbf{a} \mapsto t^{\mathcal{M}}(a_{\sigma(0)}, \ldots, a_{\sigma(n-1)})$, where σ is the inclusion of *n* in n + 1.
- (d) Let u be $fx_0 \cdots x_{m-1}$; then its interpretation in \mathcal{M} , namely $f^{\mathcal{M}}$, is required. Suppose the interpretations of the terms t_i are required; then so is the interpretation of $ft_0 \cdots t_{m-1}$, since this interpretation is $u^{\mathcal{M}} \circ (t_0^{\mathcal{M}}, \ldots, t_{m-1}^{\mathcal{M}})$.

Now we can move on to formulas. For each n, we want to define a set $\operatorname{Fm}^{n}(\mathcal{L})$, comprising the *n*-ary formulas of \mathcal{L} . Each ϕ in $\operatorname{Fm}^{n}(\mathcal{L})$ should have, for each \mathcal{M} , an interpretation $\phi^{\mathcal{M}}$, which is an *n*-ary relation on \mathcal{M} . We want the formulas and their interpretations to satisfy the following requirements.

- 0. There is ϕ in $\operatorname{Fm}^2(\mathcal{L})$ such that $\phi^{\mathcal{M}}$ is $\{(a,b) \in M^2 : a = b\}$ for each \mathcal{M} .
- 1. If R is n-ary, then there is ϕ in $\operatorname{Fm}^{n}(\mathcal{L})$ such that $\phi^{\mathcal{M}}$ is $R^{\mathcal{M}}$ for each \mathcal{M} .
- 2. For any *m*-ary term *F* of the signature of Boolean algebras, and for any $\psi_0, \ldots, \psi_{m-1}$ in $\operatorname{Fm}^n(\mathcal{L})$, there is ϕ in $\operatorname{Fm}^n(\mathcal{L})$ such that $\phi^{\mathcal{M}}$ is $F^{\mathcal{P}(M^n)}(\psi_0^{\mathcal{M}}, \ldots, \psi_{m-1}^{\mathcal{M}})$ for each \mathcal{M} .
- 3. For any t_0, \ldots, t_{m-1} in $\operatorname{Tm}^n(\mathcal{L})$, and for any ψ in $\operatorname{Fm}^m(\mathcal{L})$, there is ϕ in $\operatorname{Fm}^n(\mathcal{L})$ such that $\phi^{\mathcal{M}}$ is

$$\{\mathbf{a} \in M^n : (t_0^{\mathcal{M}}(\mathbf{a}), \dots, t_{m-1}^{\mathcal{M}}(\mathbf{a})) \in \psi^{\mathcal{M}}\}$$

for each \mathcal{M} .

4. For any u_0, \ldots, u_{n-1} in $\operatorname{Tm}^m(\mathcal{L})$, and for any ψ in $\operatorname{Fm}^m(\mathcal{L})$, there is ϕ in $\operatorname{Fm}^n(\mathcal{L})$ such that $\phi^{\mathcal{M}}$ is

$$\{(u_0^{\mathcal{M}}(\mathbf{a}),\ldots,u_{n-1}^{\mathcal{M}}(\mathbf{a}))\in M^n:\mathbf{a}\in\psi^{\mathcal{M}}\}$$

for each \mathcal{M} .

5. No formulas ϕ exist whose interpretations $\phi^{\mathcal{M}}$ are not required by the preceding clauses.

To meet these requirements, we propose to define the sets $\operatorname{Fm}^{n}(\mathcal{L})$ of *n*-ary formulas ϕ , and their interpretations $\phi^{\mathcal{M}}$, as follows.

(a) $\operatorname{Fm}^n(\mathcal{L})$ contains (t = u) whenever t and u are in $\operatorname{Tm}^n(\mathcal{L})$.

- (b) $\operatorname{Fm}^{n}(\mathcal{L})$ contains $Rt_{0}\cdots t_{m-1}$ whenever R is m-ary and t_{0},\ldots,t_{m-1} are in $\operatorname{Tm}^{n}(\mathcal{L})$.
- (c) $\operatorname{Fm}^{0}(\mathcal{L})$ contains \perp and \top ; and $\operatorname{Fm}^{n}(\mathcal{L})$ contains $\neg \psi$ and $(\psi \land \chi)$ and $(\psi \lor \chi)$ whenever $\psi, \chi \in \operatorname{Fm}^{n}(\mathcal{L})$. (The symbols \perp and \top and \neg and \land and \lor can be supposed distinct from any symbols in \mathcal{L} .)
- (d) $\operatorname{Fm}^{n}(\mathcal{L})$ contains $\exists x_{n} \psi$ and $\forall x_{n} \psi$ whenever $\psi \in \operatorname{Fm}^{n+1}(\mathcal{L})$.
- (e) $\operatorname{Fm}^{n}(\mathcal{L})$ contains no other strings of symbols than those required by the preceding clauses, and if $\phi \in \operatorname{Fm}^{n}(\mathcal{L})$, then for every \mathcal{M} the interpretation $\phi^{\mathcal{M}}$ is:
 - { $\mathbf{a} \in M^n : t^{\mathcal{M}}(\mathbf{a}) = u^{\mathcal{M}}(\mathbf{a})$ }, if ϕ is (t = u);
 - { $\mathbf{a} \in M^n : (t_0^{\mathcal{M}}(\mathbf{a}), \dots, t_{m-1}^{\mathcal{M}}(\mathbf{a})) \in R^{\mathcal{M}}$ }, if ϕ is $Rt_0 \cdots t_{m-1}$;
 - \emptyset , if ϕ is \bot ;
 - \emptyset^c , if ϕ is \top ;
 - $(\psi^{\mathcal{M}})^{c}$, if ϕ is $\neg \psi$;
 - $\psi^{\mathcal{M}} \cap \chi^{\mathcal{M}}$, if ϕ is $(\psi \wedge \chi)$;
 - $(\neg(\neg\psi\wedge\neg\chi))^{\mathcal{M}}$, if ϕ is $(\psi\vee\chi)$;
 - { $\mathbf{a} \in M^n : (\mathbf{a}, b) \in \psi^{\mathcal{M}}$, some b in M}, if ϕ is $\exists x_n \psi$;
 - $(\neg \exists x_n \neg \psi)^{\mathcal{M}}$, if ϕ is $\forall x_n \psi$.

Problem 5. Show that the proposed definition of $Fm^n(\mathcal{L})$ is valid and meets the requirements.

Now let $\operatorname{Fm}_{0}^{n}(\mathcal{L})$ be the smallest subset of $\operatorname{Fm}^{n}(\mathcal{L})$ that contains the formulas $Rt_{0}\cdots t_{m-1}$ and (t = u) and that contains $\neg \psi$ and $(\psi \wedge \chi)$ and $(\psi \vee \chi)$ when it contains ψ and χ . Let $\operatorname{Fm}_{p}^{n}(\mathcal{L})$ be the smallest subset of $\operatorname{Fm}^{n}(\mathcal{L})$ such that:

- $\operatorname{Fm}_{0}^{n}(\mathcal{L}) \subseteq \operatorname{Fm}_{p}^{n}(\mathcal{L});$
- $\operatorname{Fm}_{\mathbf{p}}^{n}(\mathcal{L})$ contains \perp and \top ;
- $\operatorname{Fm}_{p}^{n}(\mathcal{L})$ contains $\exists x_{n} \psi$ and $\forall x_{n} \psi$ when $\psi \in \operatorname{Fm}_{p}^{n+1}(\mathcal{L})$.

(The subscript p stands for *prenex*, which describes the elements of $\operatorname{Fm}_{p}^{n}(\mathcal{L})$.) Say that *n*-ary formulas ϕ and ψ are **equivalent** if their interpretations in \mathcal{M} are the same, for every \mathcal{M} .

Problem 6. Show that for every formula in $Fm^n(\mathcal{L})$ there is an equivalent formula in $Fm_p^n(\mathcal{L})$.