Some homework for Math 736, Model-Theory, given September 28, 2001.
Let \mathcal{L} be a signature, and let \mathcal{M} be a structure in $\mathfrak{M o d}(\mathcal{L})$.
Problem 1. We didn't actually define terms of \mathcal{L}; we simply asserted that terms t exist whose interpretations $t^{\mathcal{M}}$ have certain properties. Prove this assertion.

Problem 2. Prove the lemma that, if t is an n-ary term of \mathcal{L}, and u_{0}, \ldots, u_{n-1} are m-ary terms of \mathcal{L}, then there is an m-ary term of \mathcal{L} whose interpretation in \mathcal{M} is the map

$$
\mathbf{a} \mapsto t^{\mathcal{M}}\left(u_{0}^{\mathcal{M}}(\mathbf{a}), \ldots, u_{n-1}^{\mathcal{M}}(\mathbf{a})\right): M^{m} \rightarrow M
$$

Problem 3. Suppose that a structure in the signature $\{\wedge, \vee, \neg, 0,1\}$ can be expanded to a signature containing + in such a way that the identities $x \vee y=x+y+(x \wedge y)$ and $\neg x=x+1$ are satisfied; suppose further that this expansion, reduced to the signature $\{+, \wedge, 0,1\}$, is a Boolean ring. Then the original structure is, by definition, a Boolean algebra.

1. Prove that the Boolean algebras are precisely those structures $(B, \wedge, \vee, \neg, 0,1)$ whose reducts $(B, \wedge, 1)$ and $(B, \vee, 0)$ are monoids, and that satisfy the equations $\neg \neg x=x$, and $\neg(x \wedge y)=\neg x \wedge \neg y$, and also

$$
\begin{array}{rlrl}
x \wedge y & =y \wedge x, & x \vee y & =y \vee x, \\
x \wedge(y \vee z) & =(x \wedge y) \vee(x \wedge z), & x \vee(y \wedge z) & =(x \vee y) \wedge(x \vee z), \\
x \wedge \neg x & =0 & x \vee \neg x & =1 \\
x \wedge 0 & =0 & x \vee 1 & =1 .
\end{array}
$$

2. Find a structure $(C,+, \wedge, \curlyvee, \neg, 0,1)$ that satisfies

$$
x+y=(x \wedge \neg y) \curlyvee(y \wedge \neg x),
$$

and whose reduct $(C,+, \wedge, 0,1)$ is a Boolean ring, but whose reduct $(C, \wedge, \curlyvee, \neg, 0,1)$ is not a Boolean algebra.

Problem 4. Prove that the map $x \mapsto[x]$ from a Boolean algebra to the power-set of its Stone-space is an embedding of Boolean algebras.

