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2 Model-Theory to Compactness

0 Introduction

These notes are an attempt to develop model theory, as economically as possi-
ble, on a foundation of some familiarity with algebraic structures. References
include [1], [2] and [3].

1 The natural numbers

By one standard definition, the set ω of natural numbers is the smallest set
that contains the empty set and that contains x ∪ {x} whenever it contains
x. The empty set will be denoted 0 here, and x ∪ {x}, the successor of x,
can be denoted x′. The triple (ω, ′, 0) will turn out to be an example of a
structure.

Throughout these notes, n will be a natural number, understood as the
set {0, 1, 2, . . . , n− 1}, possibly empty; and i will range over the elements of
this set. Also m will be a natural number.

2 Cartesian powers

Let M be a set. The Cartesian power Mn is the set of functions from n
to M . Such a function will be denoted by a boldface letter, as a, but then
its value a(i) at i will be denoted ai. The function a can be identified with
the n-tuple (a0, . . . , an−1) of its values.

In particular, the power M0 has but a single member, 0; hence M0 = 1.
This is so, even if M = 0; however, 0n = 0 when n is positive (different from
0). The set M itself can be identified with the power M1.

Any function f : m → n determines the map

a 7→ (af(0), . . . , af(m−1)) : Mn → Mm,

no matter what set M is. In case m = 1, we have the coordinate projec-
tions a 7→ ai.

The Cartesian product A × B of sets A and B is identified with the
set of (ordered) pairs (a, b) such that a ∈ A and b ∈ B. There is a map

Mn ×Mm −→ Mn+m

(a,b) 7−→ (a0, . . . , an−1, b0, . . . , bm−1),

often considered an identification.
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3 Structures and signatures

A function on the set M is a map Mn → M ; the function then is n-ary—
its arity is n. A nullary (that is, 0-ary) function is a constant and can be
identified with an element of M .

An n-ary relation on M is a subset of Mn. There are two nullary
relations, namely 0 and 1. The relation of equality is binary (2-ary).

A structure is a set equipped with some distinguished constants and
with some functions and relations of various positive arities. The set then is
the universe of the structure. If the universe is M , then the structure might
be denoted M or just M again. However, the structure (ω, ′, 0) is denoted
N. (This structure is often considered to contain the binary functions of
addition and multiplication as well, but these are uniquely determined by
the successor-function.)

Examples. A set with no distinguished relations, functions or constants is
trivially a structure. Groups, rings and partially ordered sets are structures.
A vector space is a structure whose unary functions are the multiplications
by the scalars. A valued field can be understood as a structure when the
valuation ring is distinguished as a unary relation.

The signature of a structure contains a symbol for each function, re-
lation and constant in the structure; the function, relation or constant is
then the interpretation of the symbol. Notationally, the symbols are pri-
mary; their interpretations can be distinguished, if need be, by superscripts
indicating the structure.

Examples. The complete ordered field R has the signature {+,−, ·,6, 0, 1}.
The ordered field Q of rational numbers has the same signature. The bi-
nary function-symbol + is interpreted in R by addition of real numbers; the
interpretation is also denoted by +, or by +R if it should be distinguished
from addition +Q of rational numbers. To make its signature explicit, we
can write R as the tuple (R, +,−, ·, 6, 0, 1).

Throughout these notes, L will be a signature, and f , R and c will range
respectively over the function-, relation- and constant-symbols in L. The
structures with signature L compose the class Mod(L).

4 Homomorphisms and embeddings

Suppose M and N are in Mod(L), and h is a map M → N . (So, N must
be nonempty, unless M is empty.) Then h induces maps Mn → Nn in the
obvious way, even when n = 0; so, h(a)(i) = h(ai), and h(0) = 0. The map



4 Model-Theory to Compactness

h is a homomorphism if it preserves the functions, relations and constants
symbolized in L, that is,

• h(fM(a)) = fN(h(a));

• h(a) ∈ RN when a ∈ RM ;

• h(cM) = cN .

Any map preserves equality. A homomorphism is an embedding if it pre-
serves both inequality and the complements of the relations symbolized in
L.

Examples. A group-homomorphism is a homomorphism of groups; a group-
monomorphism is an embedding of groups. The zero-map on the ordered
field R can be seen as a homomorphism, but not an embedding. (It would
not even be a homomorphism if the signature of an ordered ring contained
< instead of 6.)

5 Boolean algebras

An essential and notationally exceptional example is the Boolean algebra of
subsets of a nonempty set Ω; this structure is the tuple

(P(Ω),∩,∪, c, ∅, Ω),

but we shall consider the signature of Boolean algebras to be the set

{∧,∨,¬, 0, 1}.

A Boolean ring is a (unital) ring in which every element is idempotent,
that is, satisfies

x2 = x.

In particular, in such a ring we have (x + y)2 = x + y, whence

xy + yx = 0;

replacing y with x, we get 2x = 0, so every element is its additive inverse;
hence also xy = yx, so the ring is commutative. We have x(1 + x) = 0, so if
x is a unit, then 1 + x = 0, so x = 1. Thus also every nonzero nonunit of a
Boolean ring is a zero-divisor. Hence the only Boolean integral domain is the
two-element ring {0, 1} or F2, and this is a field. Therefore prime ideals of
Boolean rings are maximal, since the quotient of a Boolean ring by an ideal
is Boolean.
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A structure (M,∧,∨,¬, 0, 1)—call it Ma—in the signature of Boolean
algebras determines a structure Mr with the same universe in the signature
of rings: This structure Mr—that is, (M, +, ·, 0, 1)—is given by the rules

x + y = (x ∧ ¬y) ∨ (y ∧ ¬x),
xy = x ∧ y

and the rule that 0 and 1 have the same interpretation in each structure. The
structure Ma is a Boolean algebra just in case Mr is a Boolean ring. Any
Boolean ring (M, +, ·, 0, 1) is determined in this way by the Boolean algebra
(M,∧,∨,¬, 0, 1) such that

x ∧ y = xy,
x ∨ y = x + y + xy,
¬x = 1 + x.

A Boolean algebra has a partial order 6 such that

x 6 y ⇐⇒ x ∧ y = x.

An ideal of a Boolean algebra is just an ideal of the corresponding ring.
A filter of a Boolean algebra is dual to an ideal, so F is a filter just in case
{¬x : x ∈ F} is an ideal. An ultrafilter is dual to a maximal ideal. So, F
is a filter just in case

1 ∈ F,
x, y ∈ F =⇒ x ∧ y ∈ F,
x ∈ F and x 6 y =⇒ y ∈ F,
0 /∈ F ;

also, a filter F is an ultrafilter just in case

x ∨ y ∈ F =⇒ x ∈ F or y ∈ F,

equivalently, x /∈ F =⇒ ¬x ∈ F .
The set of ultrafilters of a Boolean algebra is the Stone-space of the

algebra. For every element x of a Boolean algebra, the corresponding Stone-
space has a subset [x] comprising the ultrafilters containing x. Then

[x] ∩ [y] = [x ∧ y]
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since the elements of these sets are filters; since they are ultrafilters, we have
also

[x] ∪ [y] = [x ∨ y],
[x]c = [¬x].

Finally, [1] is the whole Stone-space, and [0] is empty. Therefore the map

x 7−→ [x]

is a homomorphism of Boolean algebras; it is an embedding, since [x] is
nonempty when x 6= 0.

Since the collection of sets [x] contains the whole Stone-space and the
empty set and is closed under finite unions, it is a basis for the closed sets
of a topology for the Stone-space. By definition then, every closed subset
is an intersection of some closed sets [x]. These basic closed sets are also
open—they are clopen. The topology is Hausdorff, since distinct points
are respectively contained in some disjoint sets [x] and [¬x].

Suppose B is a subset of a Boolean algebra. Then the following are
equivalent:

• the collection {[x] : x ∈ B} has the finite-intersection property,
meaning any finite sub-collection has nonempty intersection;

• the set B generates a filter of the algebra;

• B included in an ultrafilter of this algebra;

• {[x] : x ∈ B} has nonempty intersection.

That the first condition implies the last means that the topology of the
Stone-space is compact. Consequently, every clopen set is one of the sets
[x].

Of the nonempty set Ω, we can see the Boolean ring P(Ω) of its subsets
as a compact topological ring. For, we can identify any subset A of Ω with
its characteristic function, the map from Ω to F2 taking x to 1 just in
case x ∈ A. The set of such maps can be denoted FΩ

2 . With the discrete
topology, in which every subset is closed, F2 is a compact topological ring.
Therefore on FΩ

2 is induced a ring-structure and a compatible topology—
the product-topology or topology of pointwise convergence, compact
in this case since F2 is compact. The induced ring-structure makes the
bijection from P(Ω) to FΩ

2 a homomorphism. In the induced topology, every
finite subset of Ω determines for the zero-map on Ω an open neighborhood,
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comprising those maps into F2 that are zero on that finite subset. Translating
such a neighborhood by an element of FΩ

2 gives an open neighborhood of that
element, and every open subset of FΩ

2 is a union of such neighborhoods; the
finite unions are precisely the clopen subsets.

6 Functions and terms

Suppose M is in Mod(L). Various functions on M can be derived, by com-
position, from:

• the functions fM ,

• the constants cM , and

• the coordinate projections.

These compositions can be described without reference to M ; the result is
the terms of L.

The interpretation in M , or tM , of an n-ary term t of L will be an n-ary
function on M . Terms can be defined precisely as follows:

• Each constant-symbol c is also an n-ary term whose interpretation is
the constant map a 7→ cM on Mn.

• There is an n-ary term xi whose interpretation is the coordinate pro-
jection a 7→ ai on Mn.

• If t0, . . . , tn−1 are m-ary terms, and f is n-ary, then there is an m-ary
term f(t0, . . . , tn−1) whose interpretation is the map

a 7→ fM(tM0 (a), . . . , tMn−1(a)).

By this account, an n-ary term is also n + 1-ary. The nullary terms are the
constant terms.

Lemma. If t is an n-ary term, and u0, . . . , un−1 are m-ary terms, then
there is an m-ary term whose interpretation in M is the map

a 7→ tM(uM
0 (a), . . . , uM

n−1(a)).

The new term in the lemma can of course be denoted t(u0, . . . , un−1).
We can identify terms whose interpretations are indistinguishable in every

structure. In particular, if t is n-ary, but not (n− 1)-ary, then t is precisely
t(x0, . . . , xn−1), which we may abbreviate as t(x).
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If A is a subset of M , we let L(A) be the signature L augmented with
a constant-symbol for each element of A. The symbols and the elements
are generally not distinguished notationally, and an L-structure M naturally
determines an L(A)-structure, denoted MA if there is a need to distinguish.

Lemma. Every term of L(A) is t(a,x) for some term t of L and tuple a
from A.

7 Propositional logic

The terms in the signature of Boolean algebras—the Boolean terms—can
be considered as strings of symbols generated by the following rules:

• each constant-symbol 0 or 1 is a term;

• each symbol xi for a coordinate projection is a term;

• if t and u are terms, then so are (t ∧ u) and (t ∨ u) and ¬t.

A term here is n-ary just in case i < n whenever xi appears in the term.
Instead of (. . . (t0 ∗ t1) ∗ · · · ∗ tn−1) we can write

t0 ∗ · · · ∗ tn−1,

where ∗ is ∧ or ∨.

Lemma. Every n-ary function on F2 is the interpretation of an n-ary Boole-
an term.

Proof. Suppose f be an n-ary function on F2, and let a0, . . . , am−1 be the
elements of Fn

2 at which f is 1. If m = 0, then f is the interpretation of 0.
If m > 0, then f is the interpretation of

t0 ∨ · · · ∨ tm−1,

where tj is uj
0 ∧ . . . uj

n−1, where uj
i is xi, if aj

i = 1, and otherwise is ¬xi.

The Boolean terms can be considered as the propositional formulas com-
posing a propositional logic—call it PL. The constant-symbols 0 and 1 can
then be taken to stand for false and true statements, respectively; an ele-
ment of Fω

2 is a truth-assignment to the propositional variables xi, and
under such an assignment σ, a propositional formula t takes on the truth-
value

tF2(σ(0), . . . , σ(n− 1))
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if t is n-ary. Write 〈σ, t〉 for the truth-value of t under σ. A model for a set
of propositional formulas is a truth-assignment σ sending the set to 1 under
the map t 7→ 〈σ, t〉.

Theorem (Compactness for sentential logic). A set of propositional
formulas has a model if each finite subset does.

Proof. If a set of sentences t satisfies the hypothesis, then the collection of
closed subsets {σ : 〈σ, t〉 = 1} of Fω

2 has the finite-intersection property.

The sets {σ : 〈σ, t〉 = 1} are precisely the clopen subsets of Fω
2 .

8 Relations and formulas

From the relations RM and the interpretations tM of terms t, new relations
on M can be derived by various techniques. These relations will be the 0-
definable relations of M , and each of them will be the interpretation of
a formula of L. (The definable relations of M are the interpretations of
formulas of L(M).) Distinctions are made according to which techniques are
needed to derive the relations.

The atomic formulas are given thus:

• If t0 and t1 are n-ary terms, then there is an n-ary atomic formula
t0 = t1 whose interpretation (t0 = t1)M is {a ∈ Mn : tM0 (a) = tM1 (a)}.

• If t0, . . . , tn−1 are m-ary terms, and R is n-ary, then there is an m-ary
atomic formula R(t0, . . . , tn−1) whose interpretation R(t0, . . . , tn−1)M is
{a ∈ Mm : (tM0 (a), . . . , tMn−1(a)) ∈ RM}.

(In particular, R(x0, . . . , xn−1)M = RM .)
If t is an m-ary Boolean term, and φ0, . . . , φn−1 are n-ary atomic formulas,

then there is an n-ary basic or quantifier-free formula, say t(φ0, . . . , φn−1),
whose interpretation is

tP(Mn)(φM
0 , . . . , φM

n−1).

If we identify formulas with indistinguishable interpretations in every struc-
ture, then the set of basic formulas is a Boolean algebra generated by the
atomic formulas. The set of formulas is the smallest Boolean algebra con-
taining the atomic formulas and closed under the operation converting an
n + 1-ary formula φ into an n-ary formula ∃xn φ whose interpretation is the
image of φM under the map

(a0, . . . , an) 7→ (a0, . . . , an−1) : Mn+1 → Mn.
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The Boolean algebra of n-ary formulas of L can be denoted Fmn(L).
The formula ¬∃xn φ is also denoted ∀xn ¬φ, and ¬φ∨ψ is denoted φ → ψ.

If φ is an n-ary formula, and t0, . . . , tn−1 are m-ary terms, then there is an
m-ary formula φ(t0, . . . , tn−1) with the obvious interpretation; in particular,
if it is not also (n−1)-ary, then φ is the same as the formula φ(x0, . . . , xn−1).

The A-definable relations of M are the interpretations in M of formulas of
L(A). In particular, they are the sets φ(a0, . . . , am−1, x0, . . . , xn−1)M , where
φ is an m + n-ary formula of L, and a is a tuple from A.

Sentences are 0-ary formulas.

9 Substructures

Suppose M and N are members of Mod(L). We can now say that an em-
bedding of M in N is a map h : M → N such that

h−1(φN) = φM

for all basic formulas φ of L; if the same holds for all formulas φ of L, then
h is an elementary embedding. If the universe of N includes the universe
of M , and the inclusion-map is an embedding, we say M is a substructure
of N and write

M ⊆ N ;

if the inclusion-map is an elementary embedding, we write

M 4 N

and say M is an elementary substructure of N .

Lemma (Tarski–Vaught). Suppose M ⊆ N . Then M 4 N , provided that

φ(a, x0)N ∩M

is nonempty whenever φ(a, x0)N is, for all L-formulas φ and all tuples a from
M .

Proof. Let Σ comprise the formulas φ such that

φ(x0, . . . , xn−1)M = φ(x0, . . . , xn−1)N ∩Mn. (∗)

Then Σ contains all the basic formulas and is closed under the Boolean
operations. Suppose φ is in Σ and a is in Mn. Then

φ(a, x0)M = φ(a, x0)N ∩M.

By hypothesis then, φ(a, x0)M and φ(a, x0)N are alike empty or not. Hence
(∗) holds, mutatis mutandis, with ∃xn−1φ in place of φ. Therefore Σ =
Fm(L).
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10 Models and theories

Suppose φ is an n-ary formula of L, and a is an n-tuple of elements of M , so
that φ(a) is a sentence of L(M). We write

M |= φ(a)

if φ(a)M = 1, equivalently, a ∈ φM . The map h : M → N is an elementary
embedding just in case

M |= φ(a) ⇐⇒ N |= φ(h(a))

for all such φ and a.
If K is a subclass of Mod(L), then the theory Th(K) of K is the subset

of Fm0(L) comprising σ such that M |= σ whenever M ∈ K; this subset is
a filter, if K is nonempty; otherwise it contains every sentence. In general,
a theory of L is Fm0(L) or a filter of it; a consistent theory is a proper
filter; a complete theory is an ultrafilter. A model of a set Σ of sentences
is a structure M such that Σ ⊆ Th(M). We write

Σ |= σ

if every model of Σ is a model of σ (that is, of {σ}). We write

Σ ` σ

if σ is in the theory generated by Σ. If Σ ` σ, then Σ |= σ.

11 Compactness

It is a consequence of the following that Σ ` σ if Σ |= σ.

Theorem (Compactness). Every consistent theory has a model.

Proof. Let T be a consistent theory in the signature L. We shall extend L
to a signature L′, and extend T to a complete theory T ′ of L′. We shall
do this in such a way that, for every unary formula φ of L′, there will be a
constant-symbol cφ not appearing in φ such that

T ′ ` ∃x0 φ → φ(cφ).

Then T ′ and the constant-symbols cφ will determine a structure M in the
following way. The universe of M will consist of equivalence-classes [cφ] of
the symbols cφ, where

[cφ] = [cψ] ⇐⇒ T ′ ` cφ = cψ.
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Then we require
φM = {[c] : T ′ ` φ(c)} (∗)

for all basic formulas φ of L′ and all tuples c of symbols cφ. The requirements
(∗) do make sense. In particular, cM

φ = [cφ]. The requirements determine a
well-defined structure, since T ′ is complete.

If T ′ is as claimed, then (∗) holds for all formulas φ; we show this by
induction. If φ is an n-ary formula, and [c] is an (n − 1)-tuple from M , let
d be the constant-symbol determined by the unary formula φ(c, x0). If (∗)
holds for φ, then we have:

[c] ∈ (∃xn φ)M =⇒ M |= φ(c, [e]), some [e] in M
=⇒ T ′ ` φ(c, e)
=⇒ T ′ ` ∃x0 φ(c, x0)
=⇒ T ′ ` φ(c, d)
=⇒ M |= (c, [d])

=⇒ [c] ∈ (∃xn φ)M ;

so (∗) holds with ∃xn φ in place of φ.
Once (∗) holds for all formulas φ, then in particular it holds when φ is a

sentence in T ; so M |= T .
It remains to find T ′ as desired. First we construct a chain L = L0 ⊆

L1 ⊆ . . . of signatures, where Ln+1−Ln consists of a constant-symbol cφ for
each unary formula φ in Ln. Taking the union of the chain gives L′.

Now we work in the Stone space of Fm0(L′). We claim that the collection

{[σ] : σ ∈ T} ∪ {[∀x0 ¬φ ∨ φ(cφ)] : φ ∈ Fm1(L′)}

of closed sets has the finite-intersection property; from this, by compactness,
we can take T ′ to be an element of the intersection.

To establish the f.i.p., suppose that [ψ] is a nonempty finite intersection
of sets in the collection. Then ψ ∈ Fm0(Ln) for some n. If φ ∈ Fm1(L′) −
Fm1(Ln−1), then cφ does not appear in ψ. If also [ψ] ∩ [∀x0 ¬φ] is empty,
then

[ψ] ∩ [φ(cφ)]

is nonempty; for, if M |= ψ∧∃x0 φ, then we may assume M |= ψ∧φ(cφ).

Theorem. Suppose N ∈ Mod(L), and κ is a cardinal such that

ℵ0 + |L| 6 κ 6 |N |.

Then there is M in Mod(L) such that M 4 N and |M | = κ.
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Proof. Use the proof of Compactness, with Th(N) for T . We can choose
T ′, and we can choose cN

φ in N , so that N |= T ′. Then we may assume
M ⊆ N , and so M 4 N by the Tarski–Vaught test. By construction,
|M | 6 |L′| = ℵ0 + |L|.

To ensure M = κ, we first add κ-many new constant-symbols to L and
let their interpretations in N be distinct.

Example. In the signature {∈} of set-theory, any infinite structure has a
countably infinite elementary substructure, even though the power-set of an
infinite set is uncountable.

Corollary. Suppose A is an infinite L-structure and |A| + |L| 6 κ. Then
there is M in Mod(L) such that A 4 M and |M | = κ.

Proof. Let {cµ : µ < κ} be a set of new constant-symbols, and let T be the
theory generated by Th(AA) and {cµ 6= cν : µ 6= ν}. Use Compactness to get
a model N of T ; then use the last Theorem to get M as desired.
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