Model-Theory to Compactness

David Pierce

September 19, 2001

Contents

0	Introduction	2
1	The natural numbers	2
2	Cartesian powers	2
3	Structures and signatures	3
4	Homomorphisms and embeddings	3
5	Boolean algebras	4
6	Functions and terms	7
7	Propositional logic	8
8	Relations and formulas	9
9	Substructures	10
10	Models and theories	11
11	Compactness	11

0 Introduction

These notes are an attempt to develop model theory, as economically as possible, on a foundation of some familiarity with algebraic structures. References include [1], [2] and [3].

1 The natural numbers

By one standard definition, the set ω of **natural numbers** is the smallest set that contains the empty set and that contains $x \cup \{x\}$ whenever it contains x. The empty set will be denoted 0 here, and $x \cup \{x\}$, the **successor** of x, can be denoted x'. The triple $(\omega, ', 0)$ will turn out to be an example of a *structure*.

Throughout these notes, n will be a natural number, understood as the set $\{0, 1, 2, \ldots, n-1\}$, possibly empty; and i will range over the elements of this set. Also m will be a natural number.

2 Cartesian powers

Let M be a set. The **Cartesian power** M^n is the set of functions from n to M. Such a function will be denoted by a boldface letter, as \mathbf{a} , but then its value $\mathbf{a}(i)$ at i will be denoted a_i . The function \mathbf{a} can be identified with the *n*-tuple (a_0, \ldots, a_{n-1}) of its values.

In particular, the power M^0 has but a single member, 0; hence $M^0 = 1$. This is so, even if M = 0; however, $0^n = 0$ when n is *positive* (different from 0). The set M itself can be identified with the power M^1 .

Any function $f: m \to n$ determines the map

$$\mathbf{a} \mapsto (a_{f(0)}, \ldots, a_{f(m-1)}) : M^n \to M^m,$$

no matter what set M is. In case m = 1, we have the **coordinate projections** $\mathbf{a} \mapsto a_i$.

The **Cartesian product** $A \times B$ of sets A and B is identified with the set of (ordered) pairs (a, b) such that $a \in A$ and $b \in B$. There is a map

$$M^{n} \times M^{m} \longrightarrow M^{n+m}$$

(**a**, **b**) $\longmapsto (a_{0}, \dots, a_{n-1}, b_{0}, \dots, b_{m-1}),$

often considered an identification.

3 Structures and signatures

A function on the set M is a map $M^n \to M$; the function then is *n*-ary its **arity** is *n*. A nullary (that is, 0-ary) function is a **constant** and can be identified with an element of M.

An *n*-ary relation on M is a subset of M^n . There are two nullary relations, namely 0 and 1. The relation of *equality* is binary (2-ary).

A structure is a set equipped with some distinguished constants and with some functions and relations of various positive arities. The set then is the **universe** of the structure. If the universe is M, then the structure might be denoted \mathcal{M} or just M again. However, the structure $(\omega, ', 0)$ is denoted **N**. (This structure is often considered to contain the binary functions of addition and multiplication as well, but these are uniquely determined by the successor-function.)

Examples. A set with no distinguished relations, functions or constants is trivially a structure. Groups, rings and partially ordered sets are structures. A vector space is a structure whose unary functions are the multiplications by the scalars. A valued field can be understood as a structure when the valuation ring is distinguished as a unary relation.

The **signature** of a structure contains a **symbol** for each function, relation and constant in the structure; the function, relation or constant is then the **interpretation** of the symbol. Notationally, the symbols are primary; their interpretations can be distinguished, if need be, by superscripts indicating the structure.

Examples. The complete ordered field **R** has the signature $\{+, -, \cdot, \leq, 0, 1\}$. The ordered field **Q** of rational numbers has the same signature. The binary function-symbol + is interpreted in **R** by addition of real numbers; the interpretation is also denoted by +, or by $+^{\mathbf{R}}$ if it should be distinguished from addition $+^{\mathbf{Q}}$ of rational numbers. To make its signature explicit, we can write **R** as the tuple $(\mathbf{R}, +, -, \cdot, \leq, 0, 1)$.

Throughout these notes, \mathcal{L} will be a signature, and f, R and c will range respectively over the function-, relation- and constant-symbols in \mathcal{L} . The structures with signature \mathcal{L} compose the class $\mathfrak{Mod}(\mathcal{L})$.

4 Homomorphisms and embeddings

Suppose M and N are in $\mathfrak{Mod}(\mathcal{L})$, and h is a map $M \to N$. (So, N must be nonempty, unless M is empty.) Then h induces maps $M^n \to N^n$ in the obvious way, even when n = 0; so, $h(\mathbf{a})(i) = h(a_i)$, and h(0) = 0. The map h is a **homomorphism** if it *preserves* the functions, relations and constants symbolized in \mathcal{L} , that is,

- $h(f^M(\mathbf{a})) = f^N(h(\mathbf{a}));$
- $h(\mathbf{a}) \in \mathbb{R}^N$ when $\mathbf{a} \in \mathbb{R}^M$;
- $h(c^M) = c^N$.

Any map preserves *equality*. A homomorphism is an **embedding** if it preserves both inequality and the complements of the relations symbolized in \mathcal{L} .

Examples. A group-homomorphism is a homomorphism of groups; a groupmonomorphism is an embedding of groups. The zero-map on the ordered field \mathbf{R} can be seen as a homomorphism, but not an embedding. (It would not even be a homomorphism if the signature of an ordered ring contained < instead of \leq .)

5 Boolean algebras

An essential and notationally exceptional example is the *Boolean algebra* of subsets of a nonempty set Ω ; this structure is the tuple

$$(\mathcal{P}(\Omega), \cap, \cup, {}^{c}, \emptyset, \Omega),$$

but we shall consider the signature of Boolean algebras to be the set

$$\{\wedge, \vee, \neg, 0, 1\}.$$

A **Boolean ring** is a (unital) ring in which every element is idempotent, that is, satisfies

$$x^2 = x$$

In particular, in such a ring we have $(x + y)^2 = x + y$, whence

$$xy + yx = 0;$$

replacing y with x, we get 2x = 0, so every element is its additive inverse; hence also xy = yx, so the ring is commutative. We have x(1 + x) = 0, so if x is a unit, then 1 + x = 0, so x = 1. Thus also every nonzero nonunit of a Boolean ring is a zero-divisor. Hence the only Boolean integral domain is the two-element ring $\{0, 1\}$ or \mathbf{F}_2 , and this is a field. Therefore prime ideals of Boolean rings are maximal, since the quotient of a Boolean ring by an ideal is Boolean. A structure $(M, \wedge, \vee, \neg, 0, 1)$ —call it \mathcal{M}^{a} —in the signature of Boolean algebras determines a structure \mathcal{M}^{r} with the same universe in the signature of rings: This structure \mathcal{M}^{r} —that is, $(M, +, \cdot, 0, 1)$ —is given by the rules

$$\begin{aligned} x+y &= (x \wedge \neg y) \lor (y \wedge \neg x), \\ xy &= x \wedge y \end{aligned}$$

and the rule that 0 and 1 have the same interpretation in each structure. The structure \mathcal{M}^{a} is a **Boolean algebra** just in case \mathcal{M}^{r} is a Boolean ring. Any Boolean ring $(M, +, \cdot, 0, 1)$ is determined in this way by the Boolean algebra $(M, \wedge, \vee, \neg, 0, 1)$ such that

$$\begin{aligned} x \wedge y &= xy, \\ x \vee y &= x + y + xy, \\ \neg x &= 1 + x. \end{aligned}$$

A Boolean algebra has a partial order \leq such that

$$x \leqslant y \iff x \land y = x.$$

An **ideal** of a Boolean algebra is just an ideal of the corresponding ring. A **filter** of a Boolean algebra is *dual* to an ideal, so F is a filter just in case $\{\neg x : x \in F\}$ is an ideal. An **ultrafilter** is dual to a maximal ideal. So, F is a filter just in case

$$1 \in F,$$

$$x, y \in F \implies x \land y \in F,$$

$$x \in F \text{ and } x \leqslant y \implies y \in F,$$

$$0 \notin F;$$

also, a filter F is an ultrafilter just in case

$$x \lor y \in F \implies x \in F \text{ or } y \in F,$$

equivalently, $x \notin F \implies \neg x \in F$.

The set of ultrafilters of a Boolean algebra is the **Stone-space** of the algebra. For every element x of a Boolean algebra, the corresponding Stone-space has a subset [x] comprising the ultrafilters containing x. Then

$$[x] \cap [y] = [x \land y]$$

since the elements of these sets are filters; since they are ultrafilters, we have also

$$[x] \cup [y] = [x \lor y],$$
$$[x]^c = [\neg x].$$

Finally, [1] is the whole Stone-space, and [0] is empty. Therefore the map

$$x \longmapsto [x]$$

is a homomorphism of Boolean algebras; it is an embedding, since [x] is nonempty when $x \neq 0$.

Since the collection of sets [x] contains the whole Stone-space and the empty set and is closed under finite unions, it is a **basis** for the **closed** sets of a **topology** for the Stone-space. By definition then, every closed subset is an intersection of some closed sets [x]. These basic closed sets are also open—they are **clopen**. The topology is **Hausdorff**, since distinct points are respectively contained in some disjoint sets [x] and $[\neg x]$.

Suppose B is a subset of a Boolean algebra. Then the following are equivalent:

- the collection $\{[x] : x \in B\}$ has the finite-intersection property, meaning any finite sub-collection has nonempty intersection;
- the set *B* generates a filter of the algebra;
- *B* included in an ultrafilter of this algebra;
- $\{[x] : x \in B\}$ has nonempty intersection.

That the first condition implies the last means that the topology of the Stone-space is **compact**. Consequently, every clopen set is one of the sets [x].

Of the nonempty set Ω , we can see the Boolean ring $\mathcal{P}(\Omega)$ of its subsets as a compact **topological ring**. For, we can identify any subset A of Ω with its **characteristic function**, the map from Ω to \mathbf{F}_2 taking x to 1 just in case $x \in A$. The set of such maps can be denoted \mathbf{F}_2^{Ω} . With the **discrete** topology, in which every subset is closed, \mathbf{F}_2 is a compact topological ring. Therefore on \mathbf{F}_2^{Ω} is induced a ring-structure and a compatible topology the **product**-topology or topology of **pointwise convergence**, compact in this case since \mathbf{F}_2 is compact. The induced ring-structure makes the bijection from $\mathcal{P}(\Omega)$ to \mathbf{F}_2^{Ω} a homomorphism. In the induced topology, every finite subset of Ω determines for the zero-map on Ω an open neighborhood, comprising those maps into \mathbf{F}_2 that are zero on that finite subset. Translating such a neighborhood by an element of \mathbf{F}_2^{Ω} gives an open neighborhood of that element, and every open subset of \mathbf{F}_2^{Ω} is a union of such neighborhoods; the finite unions are precisely the clopen subsets.

6 Functions and terms

Suppose M is in $\mathfrak{Mod}(\mathcal{L})$. Various functions on M can be derived, by composition, from:

- the functions f^M ,
- the constants c^M , and
- the coordinate projections.

These compositions can be described without reference to M; the result is the **terms** of \mathcal{L} .

The **interpretation** in M, or t^M , of an *n*-ary term t of \mathcal{L} will be an *n*-ary function on M. Terms can be defined precisely as follows:

- Each constant-symbol c is also an n-ary term whose interpretation is the constant map $\mathbf{a} \mapsto c^M$ on M^n .
- There is an *n*-ary term x_i whose interpretation is the coordinate projection $\mathbf{a} \mapsto a_i$ on M^n .
- If t_0, \ldots, t_{n-1} are *m*-ary terms, and *f* is *n*-ary, then there is an *m*-ary term $f(t_0, \ldots, t_{n-1})$ whose interpretation is the map

$$\mathbf{a} \mapsto f^M(t_0^M(\mathbf{a}),\ldots,t_{n-1}^M(\mathbf{a}))$$

By this account, an *n*-ary term is also n + 1-ary. The nullary terms are the **constant** terms.

Lemma. If t is an n-ary term, and u_0, \ldots, u_{n-1} are m-ary terms, then there is an m-ary term whose interpretation in M is the map

$$\mathbf{a} \mapsto t^M(u_0^M(\mathbf{a}),\ldots,u_{n-1}^M(\mathbf{a})).$$

The new term in the lemma can of course be denoted $t(u_0, \ldots, u_{n-1})$.

We can identify terms whose interpretations are indistinguishable in every structure. In particular, if t is n-ary, but not (n-1)-ary, then t is precisely $t(x_0, \ldots, x_{n-1})$, which we may abbreviate as $t(\mathbf{x})$.

If A is a subset of M, we let $\mathcal{L}(A)$ be the signature \mathcal{L} augmented with a constant-symbol for each element of A. The symbols and the elements are generally not distinguished notationally, and an \mathcal{L} -structure M naturally determines an $\mathcal{L}(A)$ -structure, denoted M_A if there is a need to distinguish.

Lemma. Every term of $\mathcal{L}(A)$ is $t(\mathbf{a}, \mathbf{x})$ for some term t of \mathcal{L} and tuple **a** from A.

7 Propositional logic

The terms in the signature of Boolean algebras—the **Boolean terms**—can be considered as strings of symbols generated by the following rules:

- each constant-symbol 0 or 1 is a term;
- each symbol x_i for a coordinate projection is a term;
- if t and u are terms, then so are $(t \wedge u)$ and $(t \vee u)$ and $\neg t$.

A term here is *n*-ary just in case i < n whenever x_i appears in the term. Instead of $(\dots (t_0 * t_1) * \dots * t_{n-1})$ we can write

$$t_0 \ast \cdots \ast t_{n-1},$$

where * is \land or \lor .

Lemma. Every n-ary function on \mathbf{F}_2 is the interpretation of an n-ary Boolean term.

Proof. Suppose f be an n-ary function on \mathbf{F}_2 , and let $\mathbf{a}^0, \ldots, \mathbf{a}^{m-1}$ be the elements of \mathbf{F}_2^n at which f is 1. If m = 0, then f is the interpretation of 0. If m > 0, then f is the interpretation of

$$t^0 \vee \cdots \vee t^{m-1},$$

where t^j is $u_0^j \wedge \ldots u_{n-1}^j$, where u_i^j is x_i , if $a_i^j = 1$, and otherwise is $\neg x_i$. \Box

The Boolean terms can be considered as the *propositional formulas* composing a *propositional logic*—call it PL. The constant-symbols 0 and 1 can then be taken to stand for **false** and **true** statements, respectively; an element of \mathbf{F}_2^{ω} is a **truth-assignment** to the **propositional variables** x_i , and under such an assignment σ , a propositional formula t takes on the **truth-value**

$$t^{\mathbf{F}_2}(\sigma(0),\ldots,\sigma(n-1))$$

if t is n-ary. Write $\langle \sigma, t \rangle$ for the truth-value of t under σ . A model for a set of propositional formulas is a truth-assignment σ sending the set to 1 under the map $t \mapsto \langle \sigma, t \rangle$.

Theorem (Compactness for sentential logic). A set of propositional formulas has a model if each finite subset does.

Proof. If a set of sentences t satisfies the hypothesis, then the collection of closed subsets $\{\sigma : \langle \sigma, t \rangle = 1\}$ of \mathbf{F}_2^{ω} has the finite-intersection property. \Box

The sets $\{\sigma : \langle \sigma, t \rangle = 1\}$ are precisely the clopen subsets of \mathbf{F}_2^{ω} .

8 Relations and formulas

From the relations \mathbb{R}^M and the interpretations t^M of terms t, new relations on M can be derived by various techniques. These relations will be the 0**definable** relations of M, and each of them will be the interpretation of a **formula** of \mathcal{L} . (The **definable** relations of M are the interpretations of formulas of $\mathcal{L}(M)$.) Distinctions are made according to which techniques are needed to derive the relations.

The **atomic** formulas are given thus:

- If t_0 and t_1 are *n*-ary terms, then there is an *n*-ary atomic formula $t_0 = t_1$ whose interpretation $(t_0 = t_1)^M$ is $\{\mathbf{a} \in M^n : t_0^M(\mathbf{a}) = t_1^M(\mathbf{a})\}$.
- If t_0, \ldots, t_{n-1} are *m*-ary terms, and *R* is *n*-ary, then there is an *m*-ary atomic formula $R(t_0, \ldots, t_{n-1})$ whose interpretation $R(t_0, \ldots, t_{n-1})^M$ is $\{\mathbf{a} \in M^m : (t_0^M(\mathbf{a}), \ldots, t_{n-1}^M(\mathbf{a})) \in R^M\}.$

(In particular, $R(x_0, ..., x_{n-1})^M = R^M$.)

If t is an *m*-ary Boolean term, and $\phi_0, \ldots, \phi_{n-1}$ are *n*-ary atomic formulas, then there is an *n*-ary **basic** or **quantifier-free** formula, say $t(\phi_0, \ldots, \phi_{n-1})$, whose interpretation is

$$t^{\mathcal{P}(M^n)}(\phi_0^M,\ldots,\phi_{n-1}^M).$$

If we identify formulas with indistinguishable interpretations in every structure, then the set of basic formulas is a Boolean algebra generated by the atomic formulas. The set of **formulas** is the smallest Boolean algebra containing the atomic formulas and closed under the operation converting an n + 1-ary formula ϕ into an *n*-ary formula $\exists x_n \phi$ whose interpretation is the image of ϕ^M under the map

$$(a_0,\ldots,a_n)\mapsto (a_0,\ldots,a_{n-1}): M^{n+1}\to M^n.$$

The Boolean algebra of *n*-ary formulas of \mathcal{L} can be denoted $\operatorname{Fm}^{n}(\mathcal{L})$.

The formula $\neg \exists x_n \phi$ is also denoted $\forall x_n \neg \phi$, and $\neg \phi \lor \psi$ is denoted $\phi \rightarrow \psi$. If ϕ is an *n*-ary formula, and t_0, \ldots, t_{n-1} are *m*-ary terms, then there is an *m*-ary formula $\phi(t_0, \ldots, t_{n-1})$ with the obvious interpretation; in particular, if it is not also (n-1)-ary, then ϕ is the same as the formula $\phi(x_0, \ldots, x_{n-1})$.

The A-definable relations of M are the interpretations in M of formulas of $\mathcal{L}(A)$. In particular, they are the sets $\phi(a_0, \ldots, a_{m-1}, x_0, \ldots, x_{n-1})^M$, where ϕ is an m + n-ary formula of \mathcal{L} , and **a** is a tuple from A.

Sentences are 0-ary formulas.

9 Substructures

Suppose M and N are members of $\mathfrak{Mod}(\mathcal{L})$. We can now say that an embedding of M in N is a map $h: M \to N$ such that

$$h^{-1}(\phi^N) = \phi^M$$

for all basic formulas ϕ of \mathcal{L} ; if the same holds for *all* formulas ϕ of \mathcal{L} , then h is an **elementary embedding**. If the universe of N includes the universe of M, and the inclusion-map is an embedding, we say M is a **substructure** of N and write

$$M \subseteq N$$

if the inclusion-map is an elementary embedding, we write

 $M \preccurlyeq N$

and say M is an **elementary** substructure of N.

Lemma (Tarski–Vaught). Suppose $M \subseteq N$. Then $M \preccurlyeq N$, provided that

 $\phi(\mathbf{a}, x_0)^N \cap M$

is nonempty whenever $\phi(\mathbf{a}, x_0)^N$ is, for all \mathcal{L} -formulas ϕ and all tuples \mathbf{a} from M.

Proof. Let Σ comprise the formulas ϕ such that

$$\phi(x_0, \dots, x_{n-1})^M = \phi(x_0, \dots, x_{n-1})^N \cap M^n.$$
(*)

Then Σ contains all the basic formulas and is closed under the Boolean operations. Suppose ϕ is in Σ and **a** is in M^n . Then

$$\phi(\mathbf{a}, x_0)^M = \phi(\mathbf{a}, x_0)^N \cap M.$$

By hypothesis then, $\phi(\mathbf{a}, x_0)^M$ and $\phi(\mathbf{a}, x_0)^N$ are alike empty or not. Hence (*) holds, *mutatis mutandis*, with $\exists x_{n-1}\phi$ in place of ϕ . Therefore $\Sigma = \operatorname{Fm}(\mathcal{L})$.

10 Models and theories

Suppose ϕ is an *n*-ary formula of \mathcal{L} , and **a** is an *n*-tuple of elements of M, so that $\phi(\mathbf{a})$ is a sentence of $\mathcal{L}(M)$. We write

$$M \models \phi(\mathbf{a})$$

if $\phi(\mathbf{a})^M = 1$, equivalently, $\mathbf{a} \in \phi^M$. The map $h: M \to N$ is an elementary embedding just in case

$$M \models \phi(\mathbf{a}) \iff N \models \phi(h(\mathbf{a}))$$

for all such ϕ and **a**.

If \mathcal{K} is a subclass of $\mathfrak{Mod}(\mathcal{L})$, then the **theory** $\mathrm{Th}(\mathcal{K})$ of \mathcal{K} is the subset of $\mathrm{Fm}^0(\mathcal{L})$ comprising σ such that $M \models \sigma$ whenever $M \in \mathcal{K}$; this subset is a filter, if \mathcal{K} is nonempty; otherwise it contains every sentence. In general, a **theory** of \mathcal{L} is $\mathrm{Fm}^0(\mathcal{L})$ or a filter of it; a **consistent** theory is a proper filter; a **complete** theory is an ultrafilter. A **model** of a set Σ of sentences is a structure M such that $\Sigma \subseteq \mathrm{Th}(M)$. We write

 $\Sigma \models \sigma$

if every model of Σ is a model of σ (that is, of $\{\sigma\}$). We write

 $\Sigma \vdash \sigma$

if σ is in the theory generated by Σ . If $\Sigma \vdash \sigma$, then $\Sigma \models \sigma$.

11 Compactness

It is a consequence of the following that $\Sigma \vdash \sigma$ if $\Sigma \models \sigma$.

Theorem (Compactness). Every consistent theory has a model.

Proof. Let T be a consistent theory in the signature \mathcal{L} . We shall extend \mathcal{L} to a signature \mathcal{L}' , and extend T to a complete theory T' of \mathcal{L}' . We shall do this in such a way that, for every unary formula ϕ of \mathcal{L}' , there will be a constant-symbol c_{ϕ} not appearing in ϕ such that

$$T' \vdash \exists x_0 \phi \to \phi(c_\phi).$$

Then T' and the constant-symbols c_{ϕ} will determine a structure M in the following way. The universe of M will consist of equivalence-classes $[c_{\phi}]$ of the symbols c_{ϕ} , where

$$[c_{\phi}] = [c_{\psi}] \iff T' \vdash c_{\phi} = c_{\psi}.$$

Then we require

$$\phi^M = \{ [\mathbf{c}] : T' \vdash \phi(\mathbf{c}) \} \tag{(*)}$$

for all basic formulas ϕ of \mathcal{L}' and all tuples **c** of symbols c_{ϕ} . The requirements (*) do make sense. In particular, $c_{\phi}^{M} = [c_{\phi}]$. The requirements determine a well-defined structure, since T' is complete.

If T' is as claimed, then (*) holds for all formulas ϕ ; we show this by induction. If ϕ is an *n*-ary formula, and [**c**] is an (n-1)-tuple from M, let d be the constant-symbol determined by the unary formula $\phi(\mathbf{c}, x_0)$. If (*) holds for ϕ , then we have:

$$[\mathbf{c}] \in (\exists x_n \phi)^M \implies M \models \phi(\mathbf{c}, [e]), \text{ some } [e] \text{ in } M$$
$$\implies T' \vdash \phi(\mathbf{c}, e)$$
$$\implies T' \vdash \exists x_0 \phi(\mathbf{c}, x_0)$$
$$\implies T' \vdash \phi(\mathbf{c}, d)$$
$$\implies M \models (\mathbf{c}, [d])$$
$$\implies [\mathbf{c}] \in (\exists x_n \phi)^M;$$

so (*) holds with $\exists x_n \phi$ in place of ϕ .

Once (*) holds for all formulas ϕ , then in particular it holds when ϕ is a sentence in T; so $M \models T$.

It remains to find T' as desired. First we construct a chain $\mathcal{L} = \mathcal{L}_0 \subseteq \mathcal{L}_1 \subseteq \ldots$ of signatures, where $\mathcal{L}_{n+1} - \mathcal{L}_n$ consists of a constant-symbol c_{ϕ} for each unary formula ϕ in \mathcal{L}_n . Taking the union of the chain gives \mathcal{L}' .

Now we work in the Stone space of $\operatorname{Fm}^{0}(\mathcal{L}')$. We claim that the collection

$$\{[\sigma]: \sigma \in T\} \cup \{[\forall x_0 \neg \phi \lor \phi(c_\phi)]: \phi \in \operatorname{Fm}^1(\mathcal{L}')\}$$

of closed sets has the finite-intersection property; from this, by compactness, we can take T' to be an element of the intersection.

To establish the f.i.p., suppose that $[\psi]$ is a nonempty finite intersection of sets in the collection. Then $\psi \in \operatorname{Fm}^0(\mathcal{L}_n)$ for some n. If $\phi \in \operatorname{Fm}^1(\mathcal{L}') - \operatorname{Fm}^1(\mathcal{L}_{n-1})$, then c_{ϕ} does not appear in ψ . If also $[\psi] \cap [\forall x_0 \neg \phi]$ is empty, then

 $[\psi] \cap [\phi(c_{\phi})]$

is nonempty; for, if $M \models \psi \land \exists x_0 \phi$, then we may assume $M \models \psi \land \phi(c_\phi)$. \Box

Theorem. Suppose $N \in \mathfrak{Mod}(\mathcal{L})$, and κ is a cardinal such that

$$\aleph_0 + |\mathcal{L}| \leqslant \kappa \leqslant |N|.$$

Then there is M in $\mathfrak{Mod}(\mathcal{L})$ such that $M \preccurlyeq N$ and $|M| = \kappa$.

Proof. Use the proof of Compactness, with $\operatorname{Th}(N)$ for T. We can choose T', and we can choose c_{ϕ}^{N} in N, so that $N \models T'$. Then we may assume $M \subseteq N$, and so $M \preccurlyeq N$ by the Tarski–Vaught test. By construction, $|M| \leqslant |\mathcal{L}'| = \aleph_0 + |\mathcal{L}|$.

To ensure $M = \kappa$, we first add κ -many new constant-symbols to \mathcal{L} and let their interpretations in N be distinct.

Example. In the signature $\{\in\}$ of set-theory, any infinite structure has a countably infinite elementary substructure, even though the power-set of an infinite set is uncountable.

Corollary. Suppose A is an infinite \mathcal{L} -structure and $|A| + |\mathcal{L}| \leq \kappa$. Then there is M in $\mathfrak{Mod}(\mathcal{L})$ such that $A \leq M$ and $|M| = \kappa$.

Proof. Let $\{c_{\mu} : \mu < \kappa\}$ be a set of new constant-symbols, and let T be the theory generated by $\text{Th}(A_A)$ and $\{c_{\mu} \neq c_{\nu} : \mu \neq \nu\}$. Use Compactness to get a model N of T; then use the last Theorem to get M as desired. \Box

References

- C. C. Chang and H. J. Keisler. *Model theory*. North-Holland Publishing Co., Amsterdam, third edition, 1990.
- [2] Wilfrid Hodges. *Model Theory*. Cambridge University Press, 1993.
- [3] Bruno Poizat. A course in model theory. Springer-Verlag, New York, 2000. An introduction to contemporary mathematical logic, Translated from the French by Moses Klein and revised by the author.