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0 Introduction

These notes are an attempt to develop model theory, as economically as pos-
sible, on a foundation of some familiarity with algebraic structures. (Formal
definitions of these structures are given in § 6.) References for model-theory
include [1], [2] and [3].

Words in boldface are technical terms and are often being defined, implicitly
or explicitly, by the sentence in which they occur.

1 The natural numbers

By one standard definition, the set ω of natural numbers is the smallest set
that contains the empty set and that contains x ∪ {x} whenever it contains x.
The empty set will be denoted 0 here, and x ∪ {x}, the successor of x, can be
denoted x′. The triple (ω, ′, 0) will turn out to be an example of a structure.

Throughout these notes, n will be a natural number, understood as the set
{0, 1, 2, . . . , n − 1}, possibly empty; and i will range over the elements of this
set. Also m will be a natural number.
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2 Cartesian powers

Let M be a set. The Cartesian power Mn is the set of functions from n to
M . Such a function will be denoted by a boldface letter, as a, but then its value
a(i) at i will be denoted ai. The function a can be identified with the n-tuple
(a0, . . . , an−1) of its values.

In particular, the power M0 has but a single member, () or 0; hence M0 = 1.
This is so, even if M = 0; however, 0n = 0 when n is positive (different from 0).
The set M itself can be identified with the power M1.

Any function f : m → n determines the map

a 7→ (af(0), . . . , af(m−1)) : Mn → Mm,

no matter what set M is. In case m = 1, we have the coordinate projections
a 7→ ai.

The Cartesian product A × B of sets A and B is identified with the set
of (ordered) pairs (a, b) such that a ∈ A and b ∈ B. There is a map

Mn ×Mm −→ Mn+m

(a,b) 7−→ (a0, . . . , an−1, b0, . . . , bm−1),

often considered an identification.

3 Structures and signatures

A function on the set M is a map Mn → M ; the function then is n-ary—
its arity is n. A nullary (that is, 0-ary) function is a constant and can be
identified with an element of M .

An n-ary relation on M is a subset of Mn. There are two nullary relations,
namely 0 and 1. The relation of equality is binary (2-ary).

A structure is a set equipped with some distinguished constants and with
some functions and relations of various positive arities. The set then is the
universe of the structure. If the universe is M , then the structure might be
denoted M or just M again. However, the structure (ω, ′, 0) is denoted N.
(This structure is often considered to contain the binary functions of addition
and multiplication as well, but these are uniquely determined by the successor-
function.)

Examples. A set with no distinguished relations, functions or constants is triv-
ially a structure. Groups, rings and partially ordered sets are structures. A
vector space is a structure whose unary functions are the multiplications by the
scalars. A valued field can be understood as a structure when the valuation ring
is distinguished as a unary relation.

The signature of a structure contains a symbol for each function, relation
and constant in the structure; the function, relation or constant is then the
interpretation of the symbol. Notationally, the symbols are primary; their
interpretations can be distinguished, if need be, by superscripts indicating the
structure.

Examples. The complete ordered field R has the signature {+,−, ·,6, 0, 1}. The
ordered field Q of rational numbers has the same signature. The binary function-
symbol + is interpreted in R by addition of real numbers; the interpretation is
also denoted by +, or by +R if it should be distinguished from addition +Q of
rational numbers. To make its signature explicit, we can write R as the tuple
(R, +,−, ·,6, 0, 1); in the latter notation, we can understand R as the set of
real numbers.

A structure in a given signature, say L′, can be understood as a structure
with a smaller signature, say L: just ignore the interpretations of the symbols
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in L′ − L. The structure in L is then a reduct of the structure in L′, which is
in turn an expansion of the structure in L.

Example. The abelian group (R, +,−, 0) is a reduct of the ordered field
(R, +,−, ·, 6, 0, 1); the group can be expanded to the ordered field.

Throughout these notes, L will be a signature, and f , R and c will range
respectively over the function-, relation- and constant-symbols in L. The struc-
tures with signature L compose the class Mod(L).

4 Homomorphisms and embeddings

Suppose M and N are in Mod(L), and h is a map M → N . (So, N must
be nonempty, unless M is empty.) Then h induces maps Mn → Nn in the
obvious way, even when n = 0; so, h(a)(i) = h(ai), and h(0) = 0. The map h
is a homomorphism from M to N if it preserves the functions, relations and
constants symbolized in L, that is,

• h(fM(a)) = fN (h(a));

• h(a) ∈ RN when a ∈ RM;

• h(cM) = cN .

Any map preserves equality. A homomorphism is an embedding if it preserves
both inequality and the complements of the relations symbolized in L. In par-
ticular, the underlying map of an embedding is injective (or one-to-one); if it is
also surjective (or onto), then the embedding is an isomorphism.

We may confuse a structure with its isomorphism-class.

Examples. A group-homomorphism is a homomorphism of groups; a group-
monomorphism is an embedding of groups; a group-isomorphism is an isomor-
phism of groups.

If M ⊆ N , and the inclusion-map of M in N is an embedding of M in N ,
then we write

M⊆ N

and say that M is a substructure of N .

Example. A subgroup of a group is a substructure of a group, and in fact any
substructure of a group is a subgroup. However, while Z is a substructure of R,
it is not a subfield (because it is not a field).

5 Functions and terms

Suppose M is in Mod(L). Various functions on M can be derived, by compo-
sition, from:

• the functions fM,

• the constants cM, and

• the coordinate projections.

These compositions can be described without reference to M; the result is the
terms of L.

The interpretation tM in M of an n-ary term t of L will be an n-ary
function on M . Terms can be defined as strings of symbols so that the following
hold:

• Each constant-symbol c is also an n-ary term whose interpretation in M
is the constant map a 7→ cM on Mn.
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• There is an n-ary term xi whose interpretation in M is the coordinate
projection a 7→ ai on Mn.

• If t0, . . . , tn−1 are m-ary terms, and f is n-ary, then there is an m-ary
term—call it f(t0, . . . , tn−1)—whose interpretation is the map

a 7→ fM(tM0 (a), . . . , tMn−1(a)).

By this account, an n-ary term is also n + 1-ary. The nullary terms are the
constant terms; the terms xi are the variables.

Lemma. If t is an n-ary term, and u0, . . . , un−1 are m-ary terms, then there
is an m-ary term whose interpretation in M is the map

a 7→ tM(uM0 (a), . . . , uMn−1(a)).

The new term in the lemma can of course be denoted t(u0, . . . , un−1).
We can identify terms whose interpretations are indistinguishable in every

structure. In particular, if t is n-ary, but not (n − 1)-ary, then t is precisely
t(x0, . . . , xn−1), which we may abbreviate as t(x). Sometimes letters like x, y
and z are used for variables.

If A is a subset of M , we let L(A) be the signature L augmented with
a constant-symbol for each element of A. The symbols and the elements are
generally not distinguished notationally, and an L-structure M naturally deter-
mines an L(A)-structure, denoted MA if there is a need to distinguish.

Lemma. Every term of L(A) is t(a,x) for some term t of L and tuple a from
A.

6 Algebras

Suppose M∈ Mod(L). An equation

t = u

of n-ary terms of L is an identity of M if tM = uM; we can then write

M |= t = u

and say that M is a model of t = u or that M satisfies the identity.
Suppose L contains no relation-symbols. An element of Mod(L) can be

called an algebra. A set of equations of terms of L determines a variety of L
(namely the subclass of Mod(L) comprising each structure that is a model of
each equation.) A substructure of an element of a variety is also in the variety.

Several standard classes of mathematical structures are varieties or sub-
classes of these, in signatures comprising some of:

0. the constant-symbols 0 and 1, for zero and one;

1. the unary function-symbols − and −1, for additive and multiplicative
inversion;

2. the binary function-symbols + and ·, for addition and multiplication.

Specific signatures involving these symbols are sometimes named thus:

The set: . . . is the signature of:
{·} semi-groups

{·, 1} monoids
{·,−1 , 1} groups
{+,−, 0} abelian groups

{+,−, ·, 0, 1} rings
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The corresponding structures will be defined presently. First, terms with these
symbols are customarily written so that:

• 0, 1 and the variables xi are terms;

• if t is a term, then so are (−t) and t−1;

• if t and u are terms, then so are (t + u) and (t · u).

Abbreviations of terms are also customary, so that, for example:
outer brackets can be removed;
tu means t · u;
t− u means t +−u;
t ∗ u ∗ v means ((t ∗ u) ∗ v), where each ∗ is the same symbol + or ·; and
t + uv means t + (uv).

A semi-group is a model of the identity

x(yz) = xyz.

Examples. The empty set is the universe of a semi-group. The structure (M,_)
is a semi-group, where M comprises the strings

|| · · · |

consisting of some (positive, finite) number of strokes, and _ is concatenation
of strings.

A monoid is a semi-group satisfying the identities

x · 1 = x,

1 · x = x.

Examples. Let M comprise the functions from some set to itself; let ◦ be func-
tional composition; and let id be the identity-function on M . Then (M, ◦, id) is
a monoid. So is (ω, +, 0).

A group is a monoid satisfying

x · x−1 = 1,

x−1 · x = 1.

The group is abelian if it satisfies xy = yx—though, as noted, an abelian group
is usually ‘written additively,’ with the signature {+,−, 0}.
Examples. The group (Z,+,−, 0) of integers is abelian; so is the group
(S, ·,−1 , 1), where S is the circle {z ∈ C : |z| = 1}, comprising the complex
numbers of modulus 1.

A ring is a structure (R, +,−, ·, 0, 1) such that:

• (R, +,−, 0) is an abelian group;

• (R, ·, 1) is a monoid;

• the identities x(y + z) = xy + xz and (x + y)z = xz + yz are satisfied.

By this definition, there is a ring, the trivial ring, satisfying 0 = 1, but its
universe comprises a unique element.

A ring is commutative if it satisfies xy = yx. In a commutative ring, an
element a is called:

• a zero-divisor if a 6= 0, but ab = 0 for some non-zero b in the ring;

• a unit if ab = 1 for some b in the ring.
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Then a zero-divisor cannot be a unit, and zero is a unit only in the trivial ring.
The set of units of a commutative ring R is denoted

R×.

Then (R×, ·, 1) is a (well-defined) monoid and can be expanded to a group. A
non-trivial ring is an integral domain if it is commutative and contains no
zero-divisors.

Henceforth in this section, let ring mean non-trivial commutative ring, and
let (R, +,−, ·, 0, 1) be such a ring. Then R is an integral domain just in case
(R − {0}, ·, 1) is a well-defined monoid. If this monoid can be expanded to
a group, then R is a field. Hence R is a field just in case R× comprises all
non-zero elements of R.

Examples. The sets Q, of rational numbers; R, of real numbers; and C, of
complex numbers—each is the universe of a field. So is their subset {0, 1}
(though the resulting field is not a substructure of these). Over any field K can
be formed the polynomial-ring

K[x0, . . . , xn−1],

which can be defined as follows. First say that n-ary terms t and u of L(K)
are equivalent if the identity t = u is satisfied in every field of which K is a
substructure. (If K is infinite, it is enough that tK = uK .) Then K[x0, . . . , xn−1]
comprises the equivalence-classes of the n-ary terms of L(K).

The signature of R-modules is the signature of abelian groups, with a unary
function-symbol for each element of R. A structure with this signature is an
R-module just in case the structure is an abelian group satisfying all identities

r(x + y) = rx + ry,

(r + s)x = rx + sx,

r(sx) = rsx,

1(x) = x,

where r and s are in R.

Example. Every Cartesian power of R is an R-module; in particular, R is an
R-module.

A submodule of R is a substructure of R when R is considered as an R-
module. Any subset A of R generates the submodule

(A),

which is the smallest submodule including A. A proper submodule of R is an
ideal of R (although R is sometimes called an improper ideal of itself). If I is
an ideal of R, then the quotient R/I is a ring, whose elements are the cosets
r + I, where r ∈ R. (Here r + I = {r + a : a ∈ I}.)

Example. Any two integers a and b have a greatest common divisor, some-
times denoted (a, b), which can be found by the Euclidean algorithm; this integer
generates the submodule of Z that is also denoted (a, b). Thus every ideal of Z
is principal—generated by a single element. If n is a non-zero integer, then the
quotient Z/(n) is finite, and its universe can be identified with n. The quotient
Z/(0) is Z itself.

If h : R → S is a homomorphism of rings, then its kernel comprises a in R
such that h(a) = 0; this kernel is an ideal of R. Every ideal I of R is the kernel
of the quotient-map from R to R/I.
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Example. Suppose a ∈ Cm. Then there is a ring-homomorphism from
C[x0, . . . , xn+m−1] to C[x0, . . . , xn−1], namely

t(x0, . . . , xn+m−1) 7−→ t(x0, . . . , xn−1,a).

The kernel is an ideal.

An ideal I of R is prime if the complement R− I is closed under multipli-
cation. An ideal of R is maximal if no ideal of R properly includes it.

Theorem. Suppose I is an ideal of the commutative ring R. Then:

• I is prime if and only if R/I is an integral domain;

• I is maximal if and only if R/I is a field.

A corollary of the theorem is that maximal ideals are prime.

Examples. The prime ideals of Z are the ideals (p), where p is a prime number;
these ideals are maximal. Hence the quotients Z/(p) are fields, which can be
denoted Fp. The quotient C[x]/(x2) is not an integral domain, since (x2) is not
prime. The quotient C[x]/(x) is just C, so (x) is a maximal ideal.

7 Boolean algebras

An essential and notationally exceptional example is the Boolean algebra of
subsets of a set Ω; this structure is the tuple

(P(Ω),∩,∪, c, ∅,Ω),

but we shall consider the signature of Boolean algebras to be the set

{∧,∨,¬, 0, 1}.

A Boolean ring is a ring satisfying

x2 = x.

In particular, such a ring satisfies (x + y)2 = x + y, hence

xy + yx = 0;

replacing y with x, we get 2x = 0, hence

−x = x;

so the signature of Boolean rings can be considered to be {+, ·, 0, 1}. We also
get xy = yx, so the ring is commutative. We have x(1+x) = 0, so if x is a unit,
then 1 + x = 0, so x = 1. Thus also every nonzero nonunit of a Boolean ring
is a zero-divisor. Hence the only Boolean integral domain is the two-element
ring {0, 1}, which is the field F2. Therefore prime ideals of Boolean rings are
maximal, since the quotient of a Boolean ring by an ideal is Boolean.

In terms in the signature of Boolean algebras, customarily negation (¬)
has priority over conjunction (∧) and disjunction (∨). A structure in this
signature is a Boolean algebra if it can be expanded to a signature containing
+ in such a way that:

• the identities

x ∨ y = x + y + (x ∧ y),

¬x = x + 1

are satisfied, and
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• this expansion, reduced to the signature {+,∧, 0, 1}, is a Boolean ring.

If such an expansion is possible, then it is obtained by defining

x + y = (x ∧ ¬y) ∨ (y ∧ ¬x).

The algebra (P(Ω),∩,∪, c, ∅,Ω) is a Boolean algebra, since the required expan-
sion is obtained by interpreting + as symmetric difference, M.

Any Boolean algebra has a partial order 6 such that

x 6 y ⇐⇒ x ∧ y = x;

its interpretation in P(Ω) is inclusion (⊆).
An ideal of a Boolean algebra is just an ideal of the corresponding ring.

A filter of a Boolean algebra is dual to an ideal, so F is a filter just in case
{¬x : x ∈ F} is an ideal. An ultrafilter is dual to a maximal ideal. So, F is a
filter just in case

1 ∈ F,

x, y ∈ F =⇒ x ∧ y ∈ F,

x ∈ F and x 6 y =⇒ y ∈ F,

0 /∈ F ;

also, a filter F is an ultrafilter just in case

x ∨ y ∈ F =⇒ x ∈ F or y ∈ F,

equivalently, x /∈ F =⇒ ¬x ∈ F .
The set of ultrafilters of a Boolean algebra is the Stone-space of the algebra.

For every element x of a Boolean algebra, the corresponding Stone-space has a
subset [x] comprising the ultrafilters containing x. Then

[x] ∩ [y] = [x ∧ y]

since the elements of these sets are filters; since they are ultrafilters, we have
also

[x] ∪ [y] = [x ∨ y],

[x]c = [¬x].

Finally, [1] is the whole Stone-space, and [0] is empty. Therefore the map

x 7−→ [x]

is a homomorphism of Boolean algebras; it is an embedding, since [x] is non-
empty when x 6= 0.

A lower bound of a subset A of a Boolean algebra is an element a of the
algebra such that

a 6 x

whenever x ∈ A; this lower bound is an infimum of A if b 6 a whenever b is a
lower bound of A. Infima are unique when they exist; but they may not exist.
However,

inf{x, y} = x ∧ y,

so infima of finite sets exist. Also, if A ⊆ P(Ω), then inf A is the intersection
of A. Thus every Boolean algebra embeds in an algebra where infima exist.
However, an embedding need not preserve infima.
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Example. Let A comprise the cofinite subsets of ω. Then inf A = ∅. However,
A is a filter of P(ω), so A is included in an ultrafilter F . In the Stone-space,

F ∈ [x]

whenever x ∈ A; so [∅] is not the infimum of {[x] : x ∈ A}.
A topology for a set Ω is a substructure of (P(Ω),∩,∪, 0, 1) that is closed

under arbitrary intersection. (So the topology contains, for each of its subsets,
the infimum that exists in P(Ω).) The elements of the topology are the closed
sets; their complements are open. A basis for a topology is just a substructure
of (P(Ω),∪, 0, 1); the closed sets are then intersections of sets in the basis.

A topology is Hausdorff if any two distinct elements of the underlying set
are contained in disjoint open sets.

A subset of P(Ω) has the finite-intersection property if it generates a
(proper) filter. A topology for Ω is compact if every collection of closed sets
with the finite-intersection property has non-empty intersection. It is enough
that these closed sets be in the basis, if there is one.

In particular, the subsets [x] of a Stone-space compose a basis for a topology,
and these basic sets are clopen. The topology is Hausdorff, since two distinct
points of the space are respectively contained in some disjoint sets [x] and [¬x].

Suppose B is a subset of a Boolean algebra. Then the following are equiva-
lent:

• the collection {[x] : x ∈ B} has the finite-intersection property;

• the set B generates a filter of the algebra;

• B included in an ultrafilter of this algebra;

• {[x] : x ∈ B} has nonempty intersection.

Thus the topology of the Stone-space is compact. Consequently, every clopen
set is one of the sets [x].

Of the nonempty set Ω, we can see the Boolean ring P(Ω) of its subsets
as a compact topological ring. For, we can identify any subset A of Ω with
its characteristic function, the map from Ω to F2 taking x to 1 just in case
x ∈ A. The set of such maps can be denoted FΩ

2 . With the discrete topology,
in which every subset is closed, F2 is a compact topological ring. Therefore
on FΩ

2 is induced a ring-structure and a compatible topology—the product-
topology or topology of pointwise convergence, compact in this case since
F2 is compact. The induced ring-structure makes the bijection from P(Ω) to FΩ

2
a homomorphism. In the induced topology, every finite subset of Ω determines
for the zero-map on Ω an open neighborhood, comprising those maps into F2

that are zero on that finite subset. Translating such a neighborhood by an
element of FΩ

2 gives an open neighborhood of that element, and every open
subset of FΩ

2 is a union of such neighborhoods; the finite unions are precisely
the clopen subsets.

8 Propositional logic

The terms in the signature of Boolean algebras—the Boolean terms—can be
considered as strings of symbols generated by the following rules:

• each constant-symbol 0 or 1 is a term;

• each symbol xi for a coordinate projection is a term;

• if t and u are terms, then so are (t ∧ u) and (t ∨ u) and ¬t.
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A term here is n-ary just in case i < n whenever xi appears in the term. Instead
of (· · · (((t0 ∗ t1) ∗ t2) ∗ · · · ∗ tn−1) we can write

t0 ∗ t1 ∗ t2 ∗ · · · ∗ tn−1,

where each ∗ is (independently) ∧ or ∨.

Lemma. Every n-ary function on F2 is the interpretation of an n-ary Boolean
term.

Proof. Suppose f be an n-ary function on F2, and let a0, . . . , am−1 be the
elements of Fn

2 at which f is 1. If m = 0, then f is the interpretation of 0. If
m > 0, then f is the interpretation of

t0 ∨ · · · ∨ tm−1,

where tj is uj
0 ∧ · · · ∧ uj

n−1, where uj
i is xi, if aj

i = 1, and otherwise is ¬xi.

The Boolean terms can be considered as the propositional formulas compos-
ing a propositional logic. The constant-symbols 0 and 1 can then be taken to
stand for false and true statements, respectively; an element of Fω

2 is a truth-
assignment to the propositional variables xi, and under such an assignment
σ, a propositional formula t takes on the truth-value

tF2(σ(0), . . . , σ(n− 1))

if t is n-ary. Write 〈σ, t〉 for the truth-value of t under σ. A model for a set of
propositional formulas is a truth-assignment σ sending the set to 1 under the
map t 7→ 〈σ, t〉.

Theorem (Compactness for sentential logic). A set of propositional for-
mulas has a model if each finite subset does.

Proof. If a set of sentences t satisfies the hypothesis, then the collection of closed
subsets {σ : 〈σ, t〉 = 1} of Fω

2 has the finite-intersection property.

The sets {σ : 〈σ, t〉 = 1} are precisely the clopen subsets of Fω
2 .

9 Relations and formulas

From the relations RM and the interpretations tM of terms t, new relations on
M can be derived by various techniques. These relations will be the 0-definable
relations of M, and each of them will be the interpretation of a formula of L.
(The definable relations of M are the interpretations of formulas of L(M).)
Distinctions are made according to which techniques are needed to derive the
relations.

The atomic formulas are given thus:

• If t and u are n-ary terms, then there is an n-ary atomic formula t = u
whose interpretation (t = u)M is {a ∈ Mn : tM(a) = uM(a)}.

• If t0, . . . , tn−1 are m-ary terms, and R is n-ary, then there is an m-
ary atomic formula—call it R(t0, . . . , tn−1)—whose interpretation is {a ∈
Mm : (tM0 (a), . . . , tMn−1(a)) ∈ RM}.

(In particular, R(x0, . . . , xn−1)M = RM.)
A literal is an atomic formula or its negation. The negation of an atomic

formula α can be written
¬α,

but the negation of t = u is also t 6= u. The interpretation in M of ¬α is the
complement of αM.
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A literal is an example of a basic or quantifier-free formula. If t is an n-ary
Boolean term, and φ0, . . . , φn−1 are m-ary atomic formulas, then there is an m-
ary basic or quantifier-free formula, say t(φ0, . . . , φn−1), whose interpretation
in M is

tP(Mm)(φM0 , . . . , φMn−1).

If we identify formulas that have indistinguishable interpretations in every struc-
ture, then the set of basic formulas is a Boolean algebra generated by the atomic
formulas. (This assumes that the Boolean terms 0 and 1 are also n-ary formu-
las. If n > 0, then these are identified respectively with x0 6= 0 and x0 = x0. If
n = 0, then the formulas might be written ⊥ and >; but some model-theorists
don’t use such formulas.)

The set of formulas is then the smallest Boolean algebra containing the
atomic formulas and closed under the operation of existential quantifica-
tion; this converts an n + 1-ary formula φ into an n-ary formula ∃xn φ whose
interpretation is the image of φM under the map

(a0, . . . , an) 7→ (a0, . . . , an−1) : Mn+1 → Mn.

The Boolean algebra of n-ary formulas of L can be denoted Fmn(L).
The formula ¬∃xn φ is also denoted ∀xn ¬φ, and ¬φ ∨ ψ is denoted φ → ψ.

Lemma. If φ is an n-ary formula, and t0, . . . , tn−1 are m-ary terms, then
there is an m-ary formula φ(t0, . . . , tn−1) with the obvious interpretation.

In particular, if it is not also n− 1-ary, then an n-ary formula φ is the same
as the formula φ(x0, . . . , xn−1).

The A-definable relations of M are the interpretations in M of formulas of
L(A). In particular, they are the sets φ(a0, . . . , am−1, x0, . . . , xn−1)M, where φ
is an m + n-ary formula of L, and a is a tuple from A.

Sentences are 0-ary formulas.

10 Elementary embeddings

SupposeM and N are members of Mod(L). We can now say that an embedding
of M in N is a map h : M → N such that

h−1(φN ) = φM

for all basic formulas φ of L (or just all literals of L); if the same holds for all
formulas φ of L, then h is an elementary embedding. If M ⊆ N , and the
inclusion-map of M in N is an elementary embedding, we write

M 4 N

and say M is an elementary substructure of N .

Lemma (Tarski–Vaught). Suppose M⊆ N . Then M 4 N , provided that

φ(a, x0)N ∩M

is nonempty whenever φ(a, x0)N is, for all L-formulas φ and all tuples a from
M .

Proof. Let Σ comprise the formulas φ such that

φ(x0, . . . , xn−1)M = φ(x0, . . . , xn−1)N ∩Mn. (∗)

Then Σ contains all the basic formulas and is closed under the Boolean opera-
tions. Suppose φ is in Σ and a is in Mn. Then

φ(a, x0)M = φ(a, x0)N ∩M.

By hypothesis then, φ(a, x0)M and φ(a, x0)N are alike empty or not. Hence (∗)
holds, mutatis mutandis, with ∃xn−1φ in place of φ. Therefore Σ = Fm(L).



12 Model-Theory to Compactness

11 Models and theories

Suppose φ ∈ Fmn(L), and a ∈ Mn, so that φ(a) ∈ Fm0(L(M)). Then

φ(a)M = {() ∈ M0 : (aM0 (), . . . , aMn−1()) ∈ φM}
= {() ∈ M0 : a ∈ φM}.

So φ(a)M = 1 if a ∈ φM, and in this case we write

M |= φ(a);

if a ∈ Mn − φM, then φ(a)M = 0, and M |= ¬φ(a). The map h : M → N is
an elementary embedding just in case

M |= φ(a) ⇐⇒ N |= φ(h(a))

for all such φ and a.
If K is a subclass of Mod(L), then the theory Th(K) of K is the subset of

Fm0(L) comprising σ such that M |= σ whenever M∈ K; this subset is a filter,
if K is nonempty; otherwise it contains every sentence. In general, a theory of
L is Fm0(L) or a filter of it; a consistent theory is a proper filter; a complete
theory is an ultrafilter. A model of a set Σ of sentences is a structure M such
that Σ ⊆ Th(M). We write

Σ |= σ

if every model of Σ is a model of σ (that is, of {σ}). We write

Σ ` σ

if σ is in the theory generated by Σ. If Σ ` σ, then Σ |= σ.

12 Compactness

It is a consequence of the following that Σ ` σ if Σ |= σ.

Theorem (Compactness). Every consistent theory has a model.

Proof. Let T be a consistent theory in the signature L. We shall extend L to a
signature L′, and extend T to a complete theory T ′ of L′. We shall do this in
such a way that, for every unary formula φ of L′, there will be a constant-symbol
cφ not appearing in φ such that

T ′ ` ∃x0 φ → φ(cφ).

Then T ′ and the constant-symbols cφ will determine a structure M in the
following way. The universe of M will consist of equivalence-classes [cφ] of the
symbols cφ, where

[cφ] = [cψ] ⇐⇒ T ′ ` cφ = cψ.

Then we require
φM = {[c] : T ′ ` φ(c)} (∗)

for all basic formulas φ of L′ and all tuples c of symbols cφ. The requirements
(∗) do make sense. In particular, cMφ = [cφ]. The requirements determine a
well-defined structure, since T ′ is complete.

If T ′ is as claimed, then (∗) holds for all formulas φ; we show this by induc-
tion. If φ is an n-ary formula, and [c] is an (n− 1)-tuple from M , let d be the
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constant-symbol determined by the unary formula φ(c, x0). If (∗) holds for φ,
then we have:

[c] ∈ (∃xn φ)M =⇒ M |= φ(c, [e]), some [e] in M

=⇒ T ′ ` φ(c, e)

=⇒ T ′ ` ∃x0 φ(c, x0)

=⇒ T ′ ` φ(c, d)

=⇒ M |= (c, [d])

=⇒ [c] ∈ (∃xn φ)M;

so (∗) holds with ∃xn φ in place of φ.
Once (∗) holds for all formulas φ, then in particular it holds when φ is a

sentence in T ; so M |= T .
It remains to find T ′ as desired. First we construct a chain L = L0 ⊆ L1 ⊆

. . . of signatures, where Ln+1 − Ln consists of a constant-symbol cφ for each
unary formula φ in Ln. Taking the union of the chain gives L′.

Now we work in the Stone space of Fm0(L′). We claim that the collection

{[σ] : σ ∈ T} ∪ {[∀x0 ¬φ ∨ φ(cφ)] : φ ∈ Fm1(L′)}

of closed sets has the finite-intersection property; from this, by compactness, we
can take T ′ to be an element of the intersection.

To establish the f.i.p., suppose that [ψ] is a nonempty finite intersection
of sets in the collection. Then ψ ∈ Fm0(Ln) for some n. If φ ∈ Fm1(L′) −
Fm1(Ln−1), then cφ does not appear in ψ. If also [ψ] ∩ [∀x0 ¬φ] is empty, then

[ψ] ∩ [φ(cφ)]

is nonempty; for, if M |= ψ ∧ ∃x0 φ, then we may assume M |= ψ ∧ φ(cφ).

Theorem. Suppose N ∈ Mod(L), and κ is a cardinal such that

ℵ0 + |L| 6 κ 6 |N |.

Then there is M in Mod(L) such that M 4 N and |M | = κ.

Proof. Use the proof of Compactness, with Th(N ) for T . We can choose T ′,
and we can choose cNφ in N , so that N |= T ′. Then we may assume M ⊆ N , and
so M 4 N by the Tarski–Vaught test. By construction, |M | 6 |L′| = ℵ0 + |L|.

To ensure M = κ, we first add κ-many new constant-symbols to L and let
their interpretations in N be distinct.

Example. In the signature {∈} of set-theory, any infinite structure has a count-
ably infinite elementary substructure, even though the power-set of an infinite
set is uncountable.

Corollary. Suppose A is an infinite L-structure and |A|+ |L| 6 κ. Then there
is M in Mod(L) such that A 4 M and |M | = κ.

Proof. Let {cµ : µ < κ} be a set of new constant-symbols, and let T be the
theory generated by Th(AA) and {cµ 6= cν : µ 6= ν}. Use Compactness to get a
model N of T ; then use the last Theorem to get M as desired.
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