ELEMENTARY NUMBER THEORY II, EXAMINATION III SOLUTIONS

Problem 1. Suppose $\sqrt{2} = [a_0; a_1, a_2, \dots]$, and as usual let $p_n/q_n = [a_0; a_1, \dots, a_n]$. Find rational integers a, b, k, and ℓ such that

$$p_n + q_n \sqrt{2} = (a + b\sqrt{2})(k + \ell\sqrt{2})^n$$

for all positive rational integers n.

Solution. First compute the expansion of $\sqrt{2}$:

$$a_0 = 1,$$
 $\xi_0 = \sqrt{2} - 1;$
 $\frac{1}{\sqrt{2} - 1} = \sqrt{2} + 1,$ $a_1 = 2,$ $\xi_1 = \sqrt{2} - 1 = \xi_0.$

So $\sqrt{2} = [1, \overline{2}]$. In particular, the period has length 1, so

$$p_{n+1} + q_{n+1}\sqrt{2} = (p_n + q_n\sqrt{2})(p_0 + q_0\sqrt{2}).$$

Since $p_0/q_0 = 1/1$, we conclude

$$p_n + q_n \sqrt{2} = (1 + \sqrt{2})(1 + \sqrt{2})^n.$$

(This is justified by Theorem 20 of the notes. Alternatively, one may note that

$$\frac{p_{n+1}}{q_{n+1}} = \left[1, 1 + \frac{p_n}{q_n}\right] = 1 + \frac{q_n}{p_n + q_n} = \frac{p_n + 2q_n}{p_n + q_n}$$

and both fractions are irreducible, so $(p_n + q_n\sqrt{2})(1 + \sqrt{2}) = p_n + 2q_n + (p_n + q_n)\sqrt{2} = p_{n+1} + q_{n+1}\sqrt{2}$.)

Problem 2. Here Λ and M are lattices in some quadratic field.

- (a) Find $|\Lambda/M|$, that is, $(\Lambda: M)$, when
 - (i) $\Lambda = \langle \alpha, \beta \rangle, M = \langle 2\alpha, 3\beta \rangle;$
 - (ii) $\Lambda = \langle \alpha, \beta \rangle, M = \langle 2\alpha, \alpha + 3\beta \rangle.$

(b) Assuming $M \subseteq \Lambda$, find a number n such that $n\Lambda \subseteq M$.

Solution.

(a)

- (i) 6 (ii) 6
- (b) Let $n = (\Lambda : M)$. Indeed, we can write Λ as $\langle \alpha, \beta \rangle$, and then $M = \langle c\alpha, f\alpha + e\beta \rangle$ for some positive rational integers c, e, and f. Then $(\Lambda : M) = ce$, and $ce\Lambda = \langle ce\alpha, ce\beta \rangle \subseteq M$ since $ce\beta = c(f\alpha + e\beta) f(c\alpha)$.

Date: May 26, 2008.

Problem 3. In some quadratic field, find a lattice Λ such that $N(\Lambda) = 1$, but $\Lambda \neq \mathfrak{O}_{\Lambda}$.

Solution. One strategy is to find a lattice $\langle \alpha, \beta \rangle$ whose norm is k^2 for some k; then Λ can be $\langle \alpha/k, \beta/k \rangle$. Assuming the quadratic field K is $\mathbb{Q}(\sqrt{d})$, where $d \equiv 2$ or 3 (mod 4), we can try letting $\langle \alpha, \beta \rangle = \langle k^2, \ell + \sqrt{d} \rangle$, where ℓ will be chosen so that the order is $\langle 1, \sqrt{d} \rangle$, that is, \mathfrak{O}_K . To compute this order, we have

$$x = \frac{\ell + \sqrt{d}}{k^2} \implies k^2 x - \ell = \sqrt{d}$$
$$\implies k^4 x^2 - 2k^2 \ell x + \ell^2 - d = 0$$
$$\implies k^2 x^2 - 2\ell x + \frac{\ell^2 - d}{k^2} = 0.$$

It is enough now if $gcd(k, 2\ell) = 1$, while $k^2 \mid \ell^2 - d$. We can achieve this by letting k = 3, $\ell = 5$, and d = -2. So

$$\Lambda = \left\langle 3, \frac{5 + \sqrt{-2}}{3} \right\rangle$$

is one possibility.

Problem 4. Letting $K = \mathbb{Q}(\sqrt{5})$ and $\mathfrak{O} = \mathfrak{O}_K$, for each p in $\{2, 3, 5, 7, 11\}$, find the prime factorization of $p\mathfrak{O}$ in \mathfrak{O} .

Solution. In the notation of our last theorem, $\Delta = d = 5$. Then 5 ramifies in \mathfrak{O} , and

$$5\mathfrak{O} = \left\langle 5, \frac{5+\sqrt{5}}{2} \right\rangle^2.$$

Now we check solubility of $5 \equiv x^2 \pmod{4p}$ for the remaining p. There is no solution when $p \in \{2, 3, 7\}$. Indeed, when p = 2, just check the possibilities: $(\pm 1)^2 \equiv 1$; $(\pm 2)^2 \equiv 4$; $(\pm 3)^2 \equiv 1$; $4^2 \equiv 0$. In the other cases, we can show $5 \equiv x^2 \pmod{p}$ is insoluble by Legendre symbols and quadratic reciprocity: (5/3) = (2/3) = -1; (5/7) = (7/5) = (2/5) = -1. So 2, 3, and 7 are inert in \mathfrak{O} .

Finally, (5/11) = (11/5) = (1/5) = 1, and indeed $5 \equiv 7^2 \pmod{44}$. Then

$$11\mathfrak{O} = \left\langle 11, \frac{7+\sqrt{5}}{2} \right\rangle \left\langle 11, \frac{7-\sqrt{5}}{2} \right\rangle.$$

MATHEMATICS DEPT, MIDDLE EAST TECHNICAL UNIVERSITY, ANKARA 06531, TURKEY *E-mail address*: dpierce@metu.edu.tr *URL*: http://www.math.metu.edu.tr/~dpierce/