ELEMENTARY NUMBER THEORY II, EXAMINATION III SOLUTIONS

Problem 1. Suppose $\sqrt{ } 2=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$, and as usual let $p_{n} / q_{n}=\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$. Find rational integers a, b, k, and ℓ such that

$$
p_{n}+q_{n} \sqrt{ } 2=(a+b \sqrt{ } 2)(k+\ell \sqrt{ } 2)^{n}
$$

for all positive rational integers n.
Solution. First compute the expansion of $\sqrt{ } 2$:

$$
\begin{array}{ll}
& a_{0}=1, \\
\frac{1}{\sqrt{ } 2-1}=\sqrt{ } 2+1, & \xi_{0}=\sqrt{ } 2-1 ; \\
& a_{1}=2, \\
\xi_{1}=\sqrt{ } 2-1=\xi_{0}
\end{array}
$$

So $\sqrt{ } 2=[1, \overline{2}]$. In particular, the period has length 1 , so

$$
p_{n+1}+q_{n+1} \sqrt{ } 2=\left(p_{n}+q_{n} \sqrt{ } 2\right)\left(p_{0}+q_{0} \sqrt{ } 2\right)
$$

Since $p_{0} / q_{0}=1 / 1$, we conclude

$$
p_{n}+q_{n} \sqrt{ } 2=(1+\sqrt{ } 2)(1+\sqrt{ } 2)^{n}
$$

(This is justified by Theorem 20 of the notes. Alternatively, one may note that

$$
\frac{p_{n+1}}{q_{n+1}}=\left[1,1+\frac{p_{n}}{q_{n}}\right]=1+\frac{q_{n}}{p_{n}+q_{n}}=\frac{p_{n}+2 q_{n}}{p_{n}+q_{n}}
$$

and both fractions are irreducible, so $\left(p_{n}+q_{n} \sqrt{ } 2\right)(1+\sqrt{ } 2)=p_{n}+2 q_{n}+\left(p_{n}+q_{n}\right) \sqrt{ } 2=$ $p_{n+1}+q_{n+1} \sqrt{ } 2$.)

Problem 2. Here Λ and M are lattices in some quadratic field.
(a) Find $|\Lambda / M|$, that is, $(\Lambda: M)$, when
(i) $\Lambda=\langle\alpha, \beta\rangle, M=\langle 2 \alpha, 3 \beta\rangle$;
(ii) $\Lambda=\langle\alpha, \beta\rangle, M=\langle 2 \alpha, \alpha+3 \beta\rangle$.
(b) Assuming $M \subseteq \Lambda$, find a number n such that $n \Lambda \subseteq M$.

Solution.

(a)
(i) 6
(ii) 6
(b) Let $n=(\Lambda: M)$. Indeed, we can write Λ as $\langle\alpha, \beta\rangle$, and then $M=\langle c \alpha, f \alpha+e \beta\rangle$ for some positive rational integers c, e, and f. Then $(\Lambda: M)=c e$, and $c e \Lambda=$ $\langle c e \alpha, c e \beta\rangle \subseteq M$ since $c e \beta=c(f \alpha+e \beta)-f(c \alpha)$.

Problem 3. In some quadratic field, find a lattice Λ such that $\mathrm{N}(\Lambda)=1$, but $\Lambda \neq \mathfrak{O}_{\Lambda}$.
Solution. One strategy is to find a lattice $\langle\alpha, \beta\rangle$ whose norm is k^{2} for some k; then Λ can be $\langle\alpha / k, \beta / k\rangle$. Assuming the quadratic field K is $\mathbb{Q}(\sqrt{ } d)$, where $d \equiv 2$ or $3(\bmod 4)$, we can try letting $\langle\alpha, \beta\rangle=\left\langle k^{2}, \ell+\sqrt{ } d\right\rangle$, where ℓ will be chosen so that the order is $\langle 1, \sqrt{ } d\rangle$, that is, \mathfrak{O}_{K}. To compute this order, we have

$$
\begin{aligned}
x=\frac{\ell+\sqrt{ } d}{k^{2}} & \Longrightarrow k^{2} x-\ell=\sqrt{ } d \\
& \Longrightarrow k^{4} x^{2}-2 k^{2} \ell x+\ell^{2}-d=0 \\
& \Longrightarrow k^{2} x^{2}-2 \ell x+\frac{\ell^{2}-d}{k^{2}}=0 .
\end{aligned}
$$

It is enough now if $\operatorname{gcd}(k, 2 \ell)=1$, while $k^{2} \mid \ell^{2}-d$. We can achieve this by letting $k=3$, $\ell=5$, and $d=-2$. So

$$
\Lambda=\left\langle 3, \frac{5+\sqrt{ }-2}{3}\right\rangle
$$

is one possibility.

Problem 4. Letting $K=\mathbb{Q}(\sqrt{ } 5)$ and $\mathfrak{O}=\mathfrak{O}_{K}$, for each p in $\{2,3,5,7,11\}$, find the prime factorization of $p \mathfrak{O}$ in \mathfrak{O}.

Solution. In the notation of our last theorem, $\Delta=d=5$. Then 5 ramifies in \mathfrak{O}, and

$$
5 \mathfrak{O}=\left\langle 5, \frac{5+\sqrt{ } 5}{2}\right\rangle^{2}
$$

Now we check solubility of $5 \equiv x^{2}(\bmod 4 p)$ for the remaining p. There is no solution when $p \in\{2,3,7\}$. Indeed, when $p=2$, just check the possibilities: $(\pm 1)^{2} \equiv 1 ;(\pm 2)^{2} \equiv 4$; $(\pm 3)^{2} \equiv 1 ; 4^{2} \equiv 0$. In the other cases, we can show $5 \equiv x^{2}(\bmod p)$ is insoluble by Legendre symbols and quadratic reciprocity: $(5 / 3)=(2 / 3)=-1 ;(5 / 7)=(7 / 5)=$ $(2 / 5)=-1$. So 2,3 , and 7 are inert in \mathfrak{O}.

Finally, $(5 / 11)=(11 / 5)=(1 / 5)=1$, and indeed $5 \equiv 7^{2}(\bmod 44)$. Then

$$
11 \mathfrak{O}=\left\langle 11, \frac{7+\sqrt{ } 5}{2}\right\rangle\left\langle 11, \frac{7-\sqrt{ } 5}{2}\right\rangle .
$$

[^0]
[^0]: Mathematics Dept, Middle East Technical University, Ankara o6531, Turkey
 E-mail address: dpierce@metu.edu.tr
 URL: http://www.math.metu.edu.tr/~dpierce/

