ELEMENTARY NUMBER THEORY II, EXAMINATION I

DAVID PIERCE

Instructions. Take at most 90 minutes to write reasonably legible solutions on the blank sheets provided. You may want to do scratch-work first, on sheets that you will keep. But the sheets that you turn in should show sufficient work to justify your answers. You may keep this problem-sheet for future study. *Kolay gelsin.*

Problem 1. This problem involves the Gaussian integers. Let $\alpha = 40 + 5i$ and $\beta = 39i$.

- (i) Find a greatest common divisor of α and β .
- (ii) If γ is your answer to (i), solve

$$(40+5i)\cdot\xi + 39i\cdot\eta = \gamma.$$

Problem 2. This problem involves the Diophantine equation

$$2x^2 - 3y^2 = 2. (*)$$

- (i) Express $\sqrt{3/2}$ as a continued fraction.
- (ii) Find a positive solution to (*).
- (iii) Find a solution (a, b) to (*) in which each of a and b has two digits (in the usual decimal notation).
- (iv) Find a solution (a, b) to (*) in which each of a and b has three digits.

Problem 3. In class we found the bijection

$$t\longmapsto\left(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2}\right)$$

between \mathbb{Q} and the set of rational solutions (other than (-1,0)) to the equation

$$x^2 + y^2 = 1$$

(i) Find all rational solutions to the equation

$$x^2 + 3y^2 = 1.$$

- (ii) Find α in $\mathbb{Q}(i)$ such that $N(\alpha) = 1$, but α is not a Gaussian integer.
- (iii) Find β in $\mathbb{Q}(\sqrt{-3})$ such that $N(\beta) = 1$, but β is not an integer (that is, not an Eisenstein integer).

Problem 4.

(i) Find all distinct solutions (from \mathbb{Z}) of the Diophantine equation

$$x^2 + y^2 = 221$$

(ii) Find a factorization of 27 - 57i as a product of Gaussian primes.

MATHEMATICS DEPT, MIDDLE EAST TECHNICAL UNIVERSITY, ANKARA 06531, TURKEY E-mail address: dpierce@metu.edu.tr

URL: http://www.math.metu.edu.tr/~dpierce/

Date: March 24, 2008.