
METU MATH , Exam  solutions

David Pierce

Exam date: Thursday, December , 

Problem . Exactly one of 1458 and 1536 has a primitive root. Which one, and why?
Find a primitive root of the number that has one.

Solution. 1458 = 2 · 729 = 2 · 36 and 1536 = 3 · 512 = 3 · 29.
The numbers with primitive roots are just 2, 4, pk, and 2 · pk, where p is an odd prime.
Therefore 1458, but not 1536, has a primitive root.
φ(9) = 6, and

k 1 2 3 4 5 6

5k 5 −2 −1 4 2 1 mod9

so 5 is a primitive root of 9.
Then 5 is a primitive root of 36.
Since 5 is odd, it is a primitive root of 1458.

Remark. . A number of people computed φ(1458) and φ(1536), but this is of no prac-
tical use in this problem.
. Some people pointed out that if a is a primitive root of n, then aφ(n) ≡ 1 (mod n).
This is logically correct, but useless, since by Euler’s Theorem we have aφ(n) ≡ 1 (mod n)
whenever gcd(a, n) = 1 (not just when a is a primitive root).
. Our sequence of theorems about primitive roots of composite numbers is the following.
Throughout, p is an odd prime.
(i) If r is a primitive root of p, then r or r + p is a primitive root of p2.
(ii) If r is a primitive root of p2, then r is a primitive root of ps whenever s > 2.
(iii) If r is a primitive root of ps (where s > 2), then r or r + ps (whichever is odd) is a

primitive root of 2ps.
Some people misremembered this sequence, or wrongly combined two of its theorems.
For example, some wrote ‘If r is a primitive root of p, then r or r+ps (whichever is odd)
is a primitive root of 2ps.’ This assertion is false. It would be correct to say for example,
‘If r is a primitive root of p2, then r or r + p2 (whichever is odd) is a primitive root of
2ps.’ Using this, one might observe that 2 is a primitive root of 9, and therefore 11 is a
primitive root of 1458.







Problem . Remembering that p is always prime, define the arithmetic function ω by

ω(n) =
∑
p|n

1.

a. Define µ, preferably using ω.

b. Prove that, if m and n are co-prime, then ω(mn) = ω(m) +ω(n).

c. Prove that ∑
d|n

τ(d) · µ(d) = (−1)ω(n).

d. Find a simple description of the function f given by

f(n) =
∑
d|n

ω(d) · µ
(n
d

)
.

Solution. a. µ(n) =

{
0, if p2 | n for some p,
(−1)ω(n), if p2 | n for no p.

.

b. Assume m and n are co-prime. If p | mn, then

p | m ⇐⇒ p - n.

Therefore
ω(mn) =

∑
p|mn

1 =
∑
p|m

1 +
∑
p|n

1 = ω(m) +ω(n).

c. Each side of the equation is multiplicative, and∑
d|pk

τ(d) · µ(d) = τ(1) · µ(1) + τ(p) · µ(p) = 1− 2 = (−1)ω(pk).

d. By Möbius inversion,
ω(n) =

∑
d|n

f(d).

Since also ω(n) =
∑

p|n 1, we have

f(n) =

{
1, if n is prime,
0, if n is not prime.

Remark. . In my solution to part a, the condition ‘p2 | n for no p’ is equivalent to ‘p2 - n
for all p’. Similarly in part d.
. For part a, some people wrote (as part of their answer) ‘µ(n) = (−1)s if n = p1 · · · ps’.
Strictly, one must specify that the pi are all distinct. The best way that I know to do
this is to say p1 < · · · < ps.





. As an alternative solution to part b, one can write (as some people did) that, since m
and n are co-prime, we have

m = p1
m(1) · · · psm(s), n = q1

n(1) · · · qtn(t),

where the exponents are positive, p1 < · · · < ps, q1 < · · · < qt, and pi 6= qj in each case,
and therefore

ω(mn) = s+ t = ω(m) +ω(n).

This may be a clearer argument than the one I wrote above. I don’t know a good way
to make the argument just with the Σ-notation. Some people wrote

‘ω(mn) =
∑
pq|mn

1’,

which doesn’t make sense. (If it means anything, it means ω(mn) is the number of
factors d that mn has, where d is the product of two primes, possibly not distinct. This
is not what ω(mn) is.) Others wrote

‘ω(mn) =
∑
p|m

∑
q|n

1’;

this is meaningful, but false, since it makes ω(mn) equal to the product ω(m) ·ω(n).

. In part c, it doesn’t hurt to say why the two sides are multiplicative. The left-hand side
is multiplicative because the product of two multiplicative functions is multiplicative (we
didn’t prove this, but it’s fairly obvious), and if g is multiplicative, so is n 7→

∑
d|n g(d)

(we did prove this). The right-hand side is multiplicative by part b.

. In notation introduced in class, the function f in part d is given by f = ω ∗ µ, and
therefore ω = f ∗ 1 by Möbius inversion. It may not be immediately obvious that f
must be as in the solution above. But if f is that function, then indeed ω = f ∗ 1, and
therefore f = ω ∗ µ, as required. So f must be as given in the solution.





Problem . Find the least positive x such that

115117x ≡ 57 (mod 600).

Solution. 600 = 23 · 3 · 52, so φ(600) = 4 · 2 · 20 = 160. We compute 160

31)
5117
480

317
160

157

. Hence

5117 ≡ 157 ≡ −3 (mod 160).

Therefore

111557x ≡ 5 (mod 600)

⇐⇒ 11−3x ≡ 5 (mod 600)

⇐⇒ x ≡ 5 · 113 (mod 600).

But

113 = 121 · 11 = 1331 ≡ 131 (mod 600),

5 · 131 = 655 ≡ 55 (mod 600),

so the least positive solution is 55 .

Remark. Not too many problems here. I’m guessing this is the sort of problem that
the dershane prepares one for. According to the Wikipedia article ‘Long division’, my
notation for long division is what used in Anglophone countries; the notation I see on
papers, Francophone. But the symbolism b ) a (used in the former notation) for a/b is
traced to Michael Stifel of the University of Jena in Germany in  (see the Wikipedia
article ‘Division (mathematics)’).





Problem . a. Since 2 is a primitive root of 29, the function x 7→ log2 x from Z29
×

to Z28 is defined. Considering this as a function from {−14, . . . ,−1, 1, . . . 14} to
{−14, . . . , 14}, fill out the table below.

m 1 2 3 4 5 6 7 8 9
10 11 12 13 14

log2m

log2(−m)

b. With respect to the modulus 29, exactly one of the two congruences

x400 ≡ 13, x400 ≡ −13

has a solution. Find all of its solutions (modulo 29), and explain why the other
congruence has no solutions.

Solution. a.
m 1 2 3 4 5 6 7 8 9 10 11 12 13 14

log2m 0 1 5 2 −6 6 12 3 10 −5 −3 7 −10 13

log2(−m) 14 −13 −9 −12 8 −8 −2 −11 −4 9 11 −7 4 −1

b. For the first congruence, we have

x400 ≡ 13 (mod 29)

⇐⇒ 400 log x ≡ −10 (mod 28)

⇐⇒ 200 log x ≡ −5 (mod 14);

the congruence has no solution since gcd(200, 14) = 2, and 2 - −5. For the second
congruence:

x400 ≡ −13 (mod 29)

⇐⇒ 400 log x ≡ 4 (mod 28)

⇐⇒ 100 log x ≡ 1 (mod 7)

⇐⇒ 2 log x ≡ 1 (mod 7)

⇐⇒ log x ≡ 4 (mod 7)

⇐⇒ log x ≡ 4, 11,−10,−3 (mod 28)

⇐⇒ x ≡ −13,−11, 13, 11 (mod 29).

Remark. The quickest way I know to fill out the table is, keeping in mind

log2m ≡ k mod 28 ⇐⇒ 2k ≡ m mod 29,





to start out as follows,
m 1 2 3 4 5 6 7 8 9 10 11 12 13 14

log2m 0 1 2 3

log2(−m) 4

continuing to get
m 1 2 3 4 5 6 7 8 9 10 11 12 13 14

log2m 0 1 5 2 6 12 3 10 7 13

log2(−m) 14 8 9 11 4

then filling in the remaining spaces by using

logm− log(−m) ≡ log(−1) ≡ ±14 (mod 28).

Some people may have done something like this, but they put the logarithms into
the set {0, . . . , 27} rather than {−14, . . . , 14} as requested (this set could have been
{−13, . . . , 14}. Other people gave negative logarithms, but they were off by 1, as if the
modulus had been taken as 29 rather than 28. In solving the congruences, there were
various confusions about modulus.


