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Monday, November , 

The solutions to Problems  and , and especially the remarks on the problems, were
revised on November , .

Problem . Let ω = {0, 1, 2, . . . }. All variables in this problem range over ω. Given a
and b such that a 6= 0, we define

rem(b, a) = r,

if b = ax+ r for some x, and r < a.

a. Prove rem(a+ b, n) = rem(rem(a, n) + rem(b, n), n).

b. Prove rem(ab, n) = rem(rem(a, n) · rem(b, n), n).

Solution. a. For rem(c, n), write c′. Then for some x, y, and z in ω, we have

a = nx+ a′, b = ny + b′, a′ + b′ = nz + (a′ + b′)′,

hence a+ b = n(x+ y + z) + (a′ + b′)′. Since (a′ + b′)′ < n, we have

(a+ b)′ = (a′ + b′)′

as desired.
b. With the same notation, for some w in ω we have

a′ · b′ = nw + (a′ · b′)′,

so for some u in ω, we have ab = nu+ a′ · b′ = n(w + u) + (a′ · b′)′, and therefore (since
(a′ · b′)′ < n) we have

(ab)′ = (a′ · b′)′

as desired.

Remark. Books VII, VIII, and IX of Euclid’s Elements develop some of the theory of what
we would call the positive integers. If we allow also a zero, but not negative numbers,
then we could define

a ≡ b (mod n) ⇐⇒ rem(a, n) = rem(b, n).

This problem then could be used to establish the basic facts about congruence.



Remark. A number of students used the arrow “⇒” in their proofs. Such usage is a bad
habit, albeit a common one, even among teachers. Indeed, I learned this bad habit from
somebody who was otherwise one of my best teachers. Later I unlearned the habit.

In logic, the expression A⇒ B means

If A is true, then B is true.

One rarely wants to say this in proofs. Rather, one wants to say things like

A is true, and therefore B is true.

If this is what you want to say, then you should just say it in words.
In the expression “A ⇒ B”, the arrow is a verb, usually read as “implies”. When

somebody writes the arrow in a proof, the intended meaning seems usually to be that of
“which implies” or “and this implies”. But the arrow should not be loaded up with these
extra meanings.

One student used the arrow in place of the equals sign “=”. This usage must definitely
be avoided.

Another practice that should be avoided is drawing arrows to direct the reader’s eye.
It should be possible to read a proof left to right, top to bottom, in the usual fashion. If
you need to refer to something that came before, then just say so.

It is true that, when I grade papers, I may use arrows. This is in part because, when
you see your paper, I am there to explain what I meant by the arrow, if this is necessary.
But what you write on exam should make sense without need for additional explanation
by you.

If I ask you to prove a claim, I already know the claim is true. The point is not to
convince me that the claim is true, or even to convince me that you know the claim is
true. The point is to write a proof of the claim. The point is to write the sort of thing
that is found in research articles and books of mathematics, often labelled with the word
Proof.

Problem . Find integers k and `, both greater than 1, such that, for all positive inte-
gers n,

k | 196510n + `.

Solution. Since 196510n is odd, we can let ` = 3, k = 2.

Remark. This problem is based on Exercise . As it is stated, the problem has many
solutions.
(i) The solution given here is a special case of letting k be any number such that

1965 ≡ 1 (mod k), and then letting ` = 2k − 1 (or k − 1 if k > 2).
(ii) We could also let ` be a factor of 1965, and then let k be a factor of `.
(iii) Finally, since 11 - 1965, we have by Fermat 196510 ≡ 1 (mod 11), so we could let

k = 11 and ` = 10.

Problem . Find two positive integers a and b such that, for all integers m and n, the
integer am− bn is a solution of the congruences

x ≡ m (mod 999), x ≡ n (mod 1001).





Solution. A solution of the congruences takes the form

x ≡ m · 1001s+ n · 999t (mod 999 · 1001),

where 1001s ≡ 1 (mod 999) and 999t ≡ 1 (mod 1001). So we want

2s ≡ 1, s ≡ 500 (mod 999), −2t ≡ 1, t ≡ 500 (mod 1001).

Then the solution to the original congruences is

x ≡ m · 1001 · 500 + n · 999 · 500 ≡ 1001 · 500m− 999 · 501n (mod 999 · 1001).

So we can let a = 1001 · 500, b = 999 · 501.

Remark. This is just a Chinese Remainder Theorem problem with letters instead of
numbers.

Problem . Letting n =
∑408

j=1 j, find an integer k such that 0 6 k < 409 and

408! ≡ k (mod n).

Solution. We have n = 409 ·408/2; also 409 is prime, so by Wilson’s Theorem 408! ≡ −1
(mod 409). Then 408! ≡ 408 modulo both 409 and 408, hence modulo any divisor of the
least common multiple of these. But n is such a divisor. Thus we can let k = 408.

Remark. This problem is based on Exercise (a). A number of people argued as follows.

Since 408! ≡ −1 (409), we must have k ≡ −1 (409). Since it is required that
0 6 k < 409, it must be that k = 408.

But this argument does not prove 408! ≡ 408 (n). Maybe I made a mistake, and there
is no k meeting the stated conditions.

Problem . With justification, find an integer n, greater than 1, such that, for all integers
a,

an ≡ a (mod 1155).

Solution. We have 1155 = 3·5·7·11, and gcd(3−1, 5−1, 7−1, 11−1) = gcd(2, 4, 6, 10) =
60. Then we can let n = 61. Indeed, by Fermat,
• If 3 - a, then a2 ≡ 1 (3), so a60 ≡ 1 (3).
• If 5 - a, then a4 ≡ 1 (5), so a60 ≡ 1 (5).
• If 7 - a, then a6 ≡ 1 (7), so a60 ≡ 1 (7).
• If 11 - a, then a10 ≡ 1 (11), so a60 ≡ 1 (11).

Therefore, for all a, we have a61 ≡ a modulo any of 3, 5, 7, and 11, hence modulo their
least common multiple, which is 1155.

Remark. This problem is related to Exercise  and our discussion of absolute pseudo-
primes.

Problem . Let N = {1, 2, 3, . . . }. Suppose all we know about this set is:
(i) proofs by induction are possible;





(ii) addition can be defined on N, and it satisfies

x+ y = y + x, x+ (y + z) = (x+ y) + z;

(iii) multiplication can be defined by

x · 1 = x, x · (y + 1) = x · y + x.

Prove
x · y = y · x.

Solution. We use induction on y. As the base step, we show x ·1 = 1 ·x for all x. We do
this by induction: Trivially, 1 · 1 = 1 · 1. Suppose, as an inductive hypothesis, x · 1 = 1 ·x
for some x. Then

1 · (x+ 1) = 1 · x+ 1 [by definition of multiplication]
= x · 1 + 1 [by inductive hypothesis]
= x+ 1 [by definition of multiplication]
= (x+ 1) · 1. [by definition of multiplication]

By induction then, x · 1 = 1 · x.
Next we assume x · y = y ·x for all x, for some y, and we prove x · (y+1) = (y+1) ·x.

We do this by induction on x. By what we have already shown, 1 · (y + 1) = (y + 1) · 1.
Suppose, as an inductive hypothesis, x · (y + 1) = (y + 1) · x for some x. Then

(x+ 1) · (y + 1) = (x+ 1) · y + x+ 1 [by definition of multiplication]
= y · (x+ 1) + x+ 1 [by the first inductive hypothesis]
= y · x+ y + x+ 1 [by definition of multiplication]
= x · y + x+ y + 1 [by the first inductive hypothesis]
= x · (y + 1) + y + 1 [by definition of multiplication]
= (y + 1) · x+ y + 1 [by the second inductive hypothesis]
= (y + 1) · (x+ 1). [by definition of multiplication]

This completes the proof that x · (y + 1) = (y + 1) · x for all x. This completes the proof
that x · y = y · x for all x and y.

Remark. This is part of Exercise . I tried to write out a “first generation” proof: one
you might write without thinking of how to break it into parts. A proof that is easier to
follow is perhaps the “second generation” proof that goes as follows (see Lemma A. and
Theorem A.): First show

x · 1 = 1 · x (∗)
by induction on x, then show

(y + 1) · x = y · x+ x (†)

by induction on x, and finally show x · y = y · x by induction on x. In fact, almost
all students just assumed that (∗) and (†) were known; but they were not among the
propositions that the problem allowed you to use.




