ELEMENTARY NUMBER THEORY

DAVID PIERCE

These notes are based on my lectures, in the fall of 2007, in Elementary Number Theory (Math 365). I wrote from memory and from the handwritten notes that I used during the lectures. The main reference for the course was [1], but I used also [3]. The Tuesday lectures were two hours; Thursday, one. (Each hour is 50 minutes.)

There were three in-term examinations, on October 23 (Tuesday), November 27 (Tuesday), and December 27 (Thursday). On those days in class, I introduced no new material. Class was cancelled November 13 and 15, because was at the Centre Internationale de Rencontres Mathématiques. October 11 (Thursday) fell within the Şeker Bayramı; December 20 (Thursday), the Kurban Bayramı.

As the semester progressed, I made available on the web some notes (with exercises) called 'Foundations of number-theory' [7], along with ten more sets of exercises.

Contents

1. September 20, 2007 (Thursday) 3
2. September 25, 2007 (Tuesday) 4
3. September 27, 2007 (Thursday) 8
4. October 2, 2007 (Tuesday) 10
5. October 4, 2007 (Thursday) 14
6. October 9, 2007 (Tuesday) 17
7. October 16, 2007 (Tuesday) 20
8. October 18, 2007 (Thursday) 23
9. October 25, 2007 (Thursday) 24
10. October 30, 2007 (Tuesday) 26
11. November 1, 2007 (Thursday) 29
12. November 6, 2007 (Tuesday) 3^{1}
13. November 8, 2007 (Thursday) 36
14. November 20, 2007 (Tuesday) 3^{8}
15. November 22, 2007 (Thursday) 41
16. November 29, 2007 (Thursday) 42
17. December 4, 2007 (Tuesday) 43
18. December 6, 2007 (Thursday) 47
19. December 11, 2007 (Tuesday) 50
20. December 13, 2007 (Thursday) 54
21. December 18, 2007 (Tuesday) 56
22. December 25, 2007 (Tuesday) 60
References 62
[^0][^1]
1. September 20, 2007 (Thursday)

What can we say about the sequence

$$
3,6,10,15,21,28, \ldots ?
$$

We can add a couple of terms to the beginning, making it

$$
0,1,3,6,10,15,21,28, \ldots
$$

The terms increase by $1,2,3$, and so on. What do the numbers look like? They are the triangular numbers:

Let $t_{0}=0, t_{1}=1, t_{2}=3, \& c$. The recursive definition is

$$
t_{0}=0, \quad t_{n+1}=t_{n}+n+1
$$

There is a closed form:

$$
\begin{equation*}
t_{n}=\sum_{k=1}^{n} k=\binom{n+1}{2}=\frac{n(n+1)}{2} . \tag{*}
\end{equation*}
$$

We can prove this by induction: It is true when $n=0$ (or $n=1$), and if it is true when $n=k$, then

$$
t_{k+1}=t_{k}+k+1=\frac{k(k+1)}{2}+k+1=\frac{(k+1)(k+2)}{2},
$$

so it is true when $n=k+1$. By induction, $(*)$ is true for all n.
But why is equation $(*)$ true? This can be seen from a picture: two copies of t_{n} fit together to make a rectangle of $n(n+1)$ dots:

Similarly, $(n+1)^{2}=t_{n+1}+t_{n}$, since

$$
t_{n+1}+t_{n}=\frac{(n+1)(n+2)}{2}+\frac{n(n+1)}{2}=\frac{n+1}{2}(n+2+n)=(n+1)^{2}
$$

but this can be seen in a picture:

What can we say about the following sequence?

$$
1,3,5,7,9,11,13,15,17,19,21,23,25,27,29, \ldots
$$

It is the sequence of odd numbers. Also, the first n terms seem to add up to n^{2}, that is,

$$
n^{2}=\sum_{k=1}^{n}(2 k-1)
$$

We can prove this by induction: It is true when $n=0$, and if it is true when $n=k$, then

$$
(k+1)^{2}=k^{2}+2 k+1=\sum_{j=1}^{k}(2 j-1)+2 k+1=\sum_{j=1}^{k+1}(2 j-1),
$$

so it is true when $n=k+1$. Therefore (\dagger) is true for all n. A picture shows why:

Finally, observe:

$$
1, \underbrace{3,5}_{8}, \underbrace{7,9,11}_{27}, \underbrace{13,15,17,19}_{64}, \underbrace{21,23,25,27,29}_{125}, \ldots
$$

Does the pattern continue? As an exercise, write the suggested equation,

$$
n^{3}=\sum \ldots
$$

and prove it. (The theorem was apparently known to Nicomachus of Gerasa [6, II.20.5, p. 263], almost 2000 years ago.)

We are studying the natural numbers, $0,1,2, \ldots$ (Some people start with 1 instead.) They compose the set \mathbb{N}. Everything about \mathbb{N} follows from the following five conditions:
(a) there is a first natural number, zero (0);
(b) each n in \mathbb{N} has a successor, $\mathrm{s}(n)$;
(c) 0 is not a successor;
(d) distinct numbers have distinct successors: if $n \neq m$, then $\mathrm{s}(n) \neq \mathrm{s}(m)$;
(e) induction: if $A \subseteq \mathbb{N}$, and
(i) $0 \in A$, and
(ii) if $n \in A$, then $\mathrm{s}(n)$ is in A, then $A=\mathbb{N}$.

2. SEptember 25, 2007 (TUESDAY)

Theorem (Recursion). Suppose A is a set with an element b, and $f: A \rightarrow A$. Then there is a unique function g from \mathbb{N} to A such that
(a) $g(0)=b$, and
(b) $g(\mathrm{~s}(n))=f(g(n))$ for all n in \mathbb{N}.

For the proof, see [7]. By recursion, we define addition and multiplication:

$$
\begin{aligned}
m+0 & =m, & m \cdot 0 & =0, \\
m+\mathrm{s}(n) & =\mathrm{s}(m+n), & m \cdot \mathrm{~s}(n) & =m \cdot n+m .
\end{aligned}
$$

Then the usual properties can be proved, usually by induction (exercise; see [7]). We write 1 for $\mathrm{s}(0)$, so $\mathrm{s}(n)=n+1$.

Some books suggest wrongly that everything about \mathbb{N} is a consequence of:
Theorem (Well-Ordering Principle). Every non-empty subset of \mathbb{N} has a least element.
But what does least mean? The least element of A is some n such that
(a) $n \in A$;
(b) if $m \in A$, then $n \leqslant m$.

On \mathbb{N}, we define \leqslant by

$$
m \leqslant n \Longleftrightarrow m+k=n \text { for some } k \text { in } \mathbb{N} \text {. }
$$

Again, the usual properties can be proved (exercise; see [7]).

Let's try to prove the WOP (the Well-Ordering Principle). Suppose $A \subseteq \mathbb{N}$, and A has no least element. We want to show that A is empty, that is, $\mathbb{N} \backslash A=\mathbb{N}$. Try induction. For the base step, we cannot have $0 \in A$, since then 0 would be the least element of A. So $0 \notin A$.

For the inductive step, suppose $n \notin A$. This is not enough to establish $n+1 \notin A$, since maybe $n-1 \in A$, so $n+1$ can be in A without being least.

We need:
Theorem (Strong Induction). Suppose $A \subseteq \mathbb{N}$, and for all n in \mathbb{N}, if all predecessors of n belong to A, then $n \in A$. Then $A=\mathbb{N}$.

For the proof, see [7]. Now we can prove well-ordering: If A has no least element, and no member of the set $\{x \in \mathbb{N}: x<n\}$ belongs to A, then A must not belong either. Therefore, by strong induction, $A=\varnothing$.

Our course is Elementary Number Theory. Here 'elementary' does not mean easy; it means not involving mathematical analysis. For example, although the function given by

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} \mathrm{~d} x
$$

satisfies $\Gamma(n+1)=n \Gamma(n)$, and $\Gamma(1)=1$, so that $G(n+1)=n$!, we shall not study such facts.

Our main object of study is the integers, which compose the set

$$
\mathbb{N} \cup\{-x: x \in \mathbb{N} \backslash\{0\}\}
$$

denoted by \mathbb{Z}. Then we extend addition and multiplication and the ordering to \mathbb{Z}, and we define additive inversion on \mathbb{Z}, so that

$$
\begin{array}{rlrl}
a+(b+c) & =(a+b)+c & a \cdot(b \cdot c) & =(a \cdot b) \cdot c, \\
b+a & =a+b, & b \cdot a & =a \cdot b, \\
a+0 & =a, & a \cdot 1 & =a, \\
a+(-a) & =0, &
\end{array}
$$

$$
\begin{gathered}
a \cdot(b+c)=a \cdot b+a \cdot c \\
a<b \Rightarrow a+c<b+c \\
0<a \& 0<b \Rightarrow 0<a \cdot b
\end{gathered}
$$

So \mathbb{Z} is an ordered domain (but it is not necessary to know this term).
If $a \in \mathbb{Z}$, let the set $\{a x: x \in \mathbb{Z}\}$ be denoted by $\mathbb{Z} a$ or $a \mathbb{Z}$ or

$$
(a)
$$

Then $b \in(a)$ if and only if a divides b, which is denoted by

$$
a \mid b
$$

If $c-b \in(a)$, then we may also write

$$
b \equiv c \quad(\bmod a):
$$

b and c are congruent modulo a. Congruence is an equivalence-relation. The congru-ence-class of b modulo a is

$$
\{x \in \mathbb{Z}: b-x \in(a)\} .
$$

How many congruence-classes modulo a are there?
If $a=0$, then congruence modulo a is equality. Otherwise, there are $|a|$ congruenceclasses modulo a, namely the classes of $0,1, \ldots,|a|-1$. This is by:

Theorem (Division). If $a \neq 0$, and $b \in \mathbb{Z}$, then the system

$$
b=a x+y \& 0 \leqslant y<|a|
$$

has a unique solution.
Proof. The set $\{z \in \mathbb{N}: z=b-a x$ for some x in $\mathbb{Z}\}$ is non-empty (why?). Let r be its least element, and let q be such that $r=b-a q$. Then $b=a q+r$ and $0 \leqslant r<|a|$.

Consequently, every square has the form $3 n$ or $3 n+1$. Indeed, every number is $3 k$ or $3 k+1$ or $3 k+2$, and

$$
\begin{gathered}
(3 k)^{2}=9 k^{2}=3\left(3 k^{2}\right) \\
(3 k+1)^{2}=9 k^{2}+6 k+1=3\left(3 k^{2}+2 k\right)+1 \\
(3 k+2)^{2}=9 k^{2}+12 k+4=3\left(3 k^{2}+4 k+1\right)+1
\end{gathered}
$$

Alternatively, since ongruent numbers have congruent squares,

$$
\begin{gathered}
0^{2}=0, \\
1^{2}=1 \\
2^{2}=4 \equiv 1 \quad(\bmod 3)
\end{gathered}
$$

Similarly, every cube is $7 n$ or $7 n \pm 1$, since

$$
0^{3}=0, \quad 1^{3}=1, \quad 2^{3}=8=7+1 \equiv 1 \quad(\bmod 7), \quad \ldots
$$

Facts about divisibility:

$$
\begin{gather*}
a \mid 0 \\
0 \mid a \Longleftrightarrow a=0 \\
1|a \& a| a \\
a|b \& b \neq 0 \Rightarrow| a|\leqslant|b| \\
a|b \& b| c \Rightarrow a \mid c \\
a|b \& c| d \Rightarrow a c \mid b d \\
a|b \Rightarrow a| b x \tag{*}\\
a|b \& a| c \Rightarrow a \mid b+c
\end{gather*}
$$

By the last two implications, $(*)$ and (\dagger), if $a \mid b$ and $a \mid c$, then a divides every linear combination

$$
a x+b y
$$

of a and b. Let the set $\{a x+b y: x, y \in \mathbb{Z}\}$ of these linear combinations be denoted by

$$
(a, b)
$$

Then $(0,0)=(0)$. Otherwise, assuming one of a and b is not 0 , let n be the least positive element of (a, b). Then n divides a and b. Indeed, $a=n q+r$ and $0 \leqslant r<n$ for some q and r. Then $r=a-n q=a-(a x+b y) q=a(1-q x)+b(-q y)$ for some x and y, so $r \in(a, b)$, and hence $r=0$ by minimality of n, so $n \mid a$. Similarly, $n \mid b$.

Then n is the greatest common divisor of a and b. Why? If $d \mid a$ and $d \mid b$, then $d \mid n$, since n is a linear combination of a and b; so $d \leqslant|d| \leqslant|n|=n$. Therefore n is the greatest common divisor of a and b :

$$
n=\operatorname{gcd}(a, b)
$$

We have also

$$
(a, b)=(n)
$$

(so \mathbb{Z} is a principal ideal domain). Indeed, immediately, $(n) \subseteq(a, b)$. Also, as n divides a and b, it divides every element of (a, b), so $(a, b) \subseteq(n)$.

If $\operatorname{gcd}(a, b)=1$, then a and b are relatively prime or co-prime. So this is the case if and only if the equation

$$
a x+b y=1
$$

has a solution.
In general, if $\operatorname{gcd}(a, b)=n$, then

$$
\operatorname{gcd}\left(\frac{a}{n}, \frac{b}{n}\right)=1
$$

since both $a x+b y=n$ and $(a / n) x+(b / n) y=1$ have solutions.
Suppose a and b are co-prime, and each divides c; then so does $a b$. Indeed, the following have solutions:

$$
\begin{gathered}
a x+b y=1, \\
a c x+b c y=c, \\
a b s x+b a r y=c, \\
a b(s x+r y)=c,
\end{gathered}
$$

where $c=b s=a r$.
Lemma (Euclid, VII.30). If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.
Proof. Again, the following have solutions:

$$
\begin{gathered}
a x+b y=1 \\
a c x+b c y=c .
\end{gathered}
$$

Since $a \mid a c$ and $a \mid b c$, we are done.

How can we find solutions to an equation like the following?

$$
63 x+7=23 y
$$

Rewrite as

$$
63 x-23 y=-7
$$

For a solution, we must have

$$
\operatorname{gcd}(63,23) \mid 7
$$

But how do we know what the gcd is?
3. September 27, 2007 (ThURSDAY)

Recall that $(a, b)=\{$ linear combinations of a and $b\}$; its least positive element (if one of a and b is not 0$)$ is $\operatorname{gcd}(a, b)$. Let this be n. We showed

$$
\begin{equation*}
(a, b)=(n) \tag{*}
\end{equation*}
$$

The set $(a) \cap(b)$ consists of the common multiples of a and b; so its least positive element is the least common multiple of a and b, or

$$
\operatorname{lcm}(a, b)
$$

Suppose this is m. As we showed $(*)$, so we can show

$$
(a) \cap(b)=(m) .
$$

For example,

Note $5 \cdot 30=10 \cdot 15$. In general, since $a b \in(a) \cap(b)$, we have

$$
\operatorname{lcm}(a, b) \mid a b
$$

Theorem. $\operatorname{gcd}(a, b) \operatorname{lcm}(a, b)=|a b|$.
Proof. Let $n=\operatorname{gcd}(a, b)$ and $m=\operatorname{lcm}(a, b)$. We can solve

$$
\begin{gathered}
a x+b y=n \\
a m x+b m y=m n .
\end{gathered}
$$

But $a, b \mid m$, so $a b \mid a m, b m$, so $a b \mid m n$, hence

$$
|a b| \leqslant m n .
$$

Also, $m=a r=b s$ for some r and s; and $\operatorname{gcd}(r, s)=1$ by minimality of m as a divisor of a and b. Hence we can solve

$$
\begin{gathered}
s x+r y=1, \\
a b s x+a b r y=a b, \\
a m x+b m x=a b, \\
a x+b y=\frac{a b}{m}
\end{gathered}
$$

(using (\dagger)). As $n \mid a, b$, so $n \mid a b / m$, and hence

$$
|n| \leqslant \frac{|a b|}{m}
$$

(assuming $a b \neq 0$), so $m n \leqslant|a b|$. By this and $(\ddagger), m n=|a b|$.

How can we find $\operatorname{gcd}(a, b)$? The Euclidean algorithm. What is it? For example, $\operatorname{gcd}(9,12)=3$, by

$$
\begin{aligned}
12 & =9 \cdot 1+3 \\
9 & =3 \cdot 3+0
\end{aligned}
$$

In general, suppose $a_{0}>a_{1} \geqslant 0$. By strong recursion, define a_{2}, a_{3}, \ldots by

$$
a_{n}=a_{n+1} q+a_{n+2} \& 0 \leqslant a_{n+2}<a_{n+1}
$$

(for some q) if $a_{n+1} \neq 0$; but if $a_{n+1}=0$, then let $a_{n+2}=0$. Then the descending sequence

$$
a_{0}>a_{1}>a_{2}>\cdots
$$

must stop. That is, let a_{m} be the least element of $\left\{a_{n}: a_{n}>0\right\}$, so that $a_{m+1}=0$. Then

$$
\operatorname{gcd}\left(a_{0}, a_{1}\right)=a_{m}
$$

why? Because, if $a_{n+1} \neq 0$, then $\operatorname{gcd}\left(a_{n}, a_{n+1}\right)=\operatorname{gcd}\left(a_{n+1}, a_{n+2}\right)$ by (§); so, by induction,

$$
\operatorname{gcd}\left(a_{0}, a_{1}\right)=\operatorname{gcd}\left(a_{1}, a_{2}\right)=\cdots=\operatorname{gcd}\left(a_{m}, a_{m+1}\right)=\operatorname{gcd}\left(a_{m}, 0\right)=a_{m} .
$$

A cock costs 5 L ; a hen, 3 L ; 3 chicks, 1 L . Can we buy 100 birds with 100 L ? Let

$$
\begin{aligned}
& x=\# \text { cocks } \\
& y=\# \text { hens } \\
& z=\# \text { chicks }
\end{aligned}
$$

We want to solve

$$
\begin{gathered}
x+y+z=100 \\
5 x+3 y+\frac{1}{3} z=100
\end{gathered}
$$

Eliminate z and proceed:

$$
\begin{gather*}
z=100-x-y \\
15 x+9 y+z=300 \\
15 x+9 y+100-x-y=300 \\
14 x+8 y=200 \\
7 x+4 y=100
\end{gather*}
$$

Since $4 \mid 100$, one solution is $(0,25)$, that is, $x=0$ and $y=25$. Then $y=75$. So the answer to the original question is Yes. But can we include at least one cock? What are all the solutions?

Think of linear algebra. If $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ are two solutions to $(\|)$, then

$$
\begin{gathered}
7 x_{0}+4 y_{0}=100, \\
7 x_{1}+4 y_{1}=100, \\
7\left(x_{1}-x_{0}\right)+4\left(y_{1}-y_{0}\right)=0 .
\end{gathered}
$$

So we want to solve

$$
7 x+4 y=0 .
$$

Since $\operatorname{gcd}(7,4)=0$, the solutions are $(4 t,-7 t)$. (Here is a difference with the usual linear algebra.) So the original system ($\mathbb{\Phi})$ has the general solution

$$
(x, y, z)=(4 t, 25-7 t, 75+3 t)
$$

If we want all entries to be positive, this means

$$
\begin{gathered}
4 t>0, \quad 25-7 t>0, \quad 75+3 t>0 \\
t>0, \quad 7 t<25, \quad 3 t>-75 \\
0<t<\frac{25}{7} \\
0<t \leqslant 3
\end{gathered}
$$

So there are three solutions:

x	y	z
4	18	78
8	11	81
12	4	88

4. October 2, 2007 (Tuesday)

A curiosity (from 'On Teaching Mathematics' by V. I. Arnold):
1,
$3=1+1+1$,
$5=3+1+1=2+2+1=1+1+1+1+1$,
$7=5+1+1=4+2+1=3+3+1=3+2+2=$
$=3+1+1+1=2+2+1+1+1=1+1+1+1+1+1+1$,
$9=\cdots$.
Write the odd numbers as sums of odd numbers of summands. Then we have

n	$\#$ sums for n
1	1
3	2
5	4
7	8
9	16
11	29

Thus the pattern $2^{0}, 2^{1}, 2^{2}, \ldots$ breaks down. Is there a formula for the sequence of numbers of sums?

A positive integer is prime if it has exactly two distinct positive divisors. So, 1 is not prime. Also, p is prime if and only if $p>1$ and

$$
a|p \Rightarrow| a \mid \in\{1, p\}
$$

Let p and q always stand for primes. Then

$$
\operatorname{gcd}(a, p) \in\{1, p\}
$$

so either a and p are co-prime, or else $p \mid a$.
Suppose $p \mid a b$. Either $p \mid a$, or else $\operatorname{gcd}(a, p)=1$, so $p \mid b$ by Euclid's Lemma. Hence, by induction, if $p \mid a_{0} \cdots a_{n}$, then $p \mid a_{k}$ for some k. Indeed, the claim is true when n is

0 or 1 . Suppose it is true when $n=m$. Say $p \mid a_{0} \cdots a_{m+1}$. By the case $n=1$, we have that $p \mid a_{0} \cdots a_{m}$ or $p \mid a_{m+1}$. In the former situation, by the inductive hypothesis, $p \mid a_{k}$ for some k. So the claim holds when $n=m+1$.

Theorem (Fundamental, of Arithmetic). Every positive integer is uniquely a product

$$
p_{1} \cdots p_{n}
$$

of primes, where

$$
p_{1} \leqslant \cdots \leqslant p_{n}
$$

Proof. Note that 1 is such a product, where $n=0$. Suppose $m>1$. Let p_{1} be the least element of $\{x \in \mathbb{N}: x>1 \& x \mid m\}$. Then p_{1} must be prime; otherwise, if $a \mid p_{1}$, and $a>0$, but $a \notin\{1, p\}$, then $1<a<p$, but $a \mid m$, so the minimality of p_{1} is contradicted. Now let p_{2} be the least prime divisor of m / p_{1}, and so forth. We have

$$
m>\frac{m}{p_{1}}>\frac{m}{p_{1} p_{2}}>\cdots
$$

This must terminate in

$$
\frac{m}{p_{1} \ldots p_{n}}=1
$$

by the Well-Ordering Principle, so that $m=p_{1} \cdots p_{n}$.
For uniqueness, suppose also $m=q_{1} \cdots q_{\ell}$. Then $q_{1} \mid m$, so $q_{1} \mid p_{i}$ for some i, and therefore $q_{1}=p_{i}$. Hence

$$
p_{1} \leqslant p_{i}=q_{1} .
$$

By the symmetry of the argument, $q_{1} \leqslant p_{1}$, so $p_{1}=q_{1}$. Similarly, $p_{2}=q_{2}$, \&c., and $n=\ell$.

An analogous statement fails in some similar contexts. For example,

$$
(4+\sqrt{10})(4-\sqrt{10})=6=2 \cdot 3 ;
$$

but among the numbers $a+b \sqrt{10}$, the numbers $4 \pm \sqrt{10}, 2,3$ are "irreducible" (like primes). Such matters are studied in algebraic number theory.

A positive non-prime number is composite if it has prime factors. Then every positive number is uniquely prime, composite, or 1.

Theorem. The equation

$$
x^{2}=2 y^{2}
$$

has no non-zero solution.
Proof. Suppose $a^{2}=2 b^{2}$. Then $2 \mid a^{2}$, so $2 \mid a$, so $4 \mid a^{2}$, so $4 \mid 2 b^{2}$, so $2 \mid b^{2}$, so $2 \mid b$. But if a and b are not 0 , then we may assume they are co-prime (otherwise, replace them with a / d and b / d, where $d=\operatorname{gcd}(a, b))$. So a and b must be 0 .

One can find primes with the Sieve of Eratosthenes... Eratosthenes also measured the circumference of the earth, by measuring the shadows cast by posts a certain distance apart in Egypt. Measuring this distance must have needed teams of surveyors and a government to fund them. Columbus was not in a position to make the measurement again, so he had to rely on ancient measurements [8].

Theorem (Euclid, IX.20). If $n \in \mathbb{N}$, then there are more than n primes.
Proof. Suppose $p_{0}<\cdots<p_{n-1}$, all prime. Then $p_{0} \cdots p_{n-1}+1$ has a prime factor, distinct from the p_{k}.

An alternative argument by Filip Saidak (2005) is reported in the latest Matematik Dünyası: Define $a_{0}=2$ and $a_{n+1}=a_{n}\left(1+a_{n}\right)$. If $k<n$, then $a_{k} \mid a_{k+1}$, and $a_{k+1} \mid a_{k+2}$, and so on, up to $a_{n-1} \mid a_{n}$, so $a_{k} \mid a_{n}$. Similarly, since $1+a_{k} \mid a_{k+1}$, we have $1+a_{k} \mid a_{n}$. Therefore $\operatorname{gcd}\left(1+a_{k}, 1+a_{n}\right)=1$. Thus any two elements of the infinite set $\left\{1+a_{n}: n \in \mathbb{N}\right\}$ are co-prime.

$$
\text { * } \quad * \quad * \quad * \quad *
$$

I state some theorems, without giving proofs; some of them are recent and reflect ongoing research:

Theorem (Dirichlet). If $\operatorname{gcd}(a, b)=1$, and $b>0$, then $\{a+b n: n \in \mathbb{N}\}$ contains infinitely many primes.

That is, arithmetic progressions (with the obvious condition...) contain infinitely many primes.

The textbook [1] omits the following.
Theorem (Ben Green and Terence Tao [5], 2004). For every n, there are a and b such that each of the numbers $a, a+b, a+2 b, \ldots, a_{n} b$ is prime (and $b>0$).

That is, there are arbitrarily long arithmetic progressions of primes.
Is it possible that each of the numbers

$$
a, a+b, a+2 b, a+3 b, \ldots
$$

is prime? Yes, if $b=0$. What if $b>0$? Then No, since $a \mid a+a b$. But what if $a=1$? Then replace a with $a+b$.

Two primes p and q are twin if $|p-q|=2$. The list of all primes begins:

$$
2, \underbrace{3,5,7}, \underbrace{11,13}, \underbrace{17,19}, 23, \underbrace{29,31}, 37, \underbrace{41,43}, 47, \ldots
$$

and there are several twins. Are there infinitely many? People think so, but can't prove it. We do have:

Theorem (Goldston, Pintz, Yıldırım [4], 2005). For every positive real number ε, there are primes p and q such that $0<q-p<\varepsilon \cdot \ln p$.

$$
* \quad * \quad * \quad * \quad *
$$

I return to the irrationality of $\sqrt{2}$ (there is no non-zero solution to $x^{2}=2 y^{2}$). Geometrically, the claim is that the side and diagonal of a square are incommensurable: there is no line segment that evenly divides them. We can see this as follows [2, v. I, p. 19]:

Let $A B C D$ be a square. On the diagonal $B D$, mark $B E$ equal to $A B$. Let the perpendicular at E meet $A D$ at F. Draw $B F$. Then triangles $A B F$ and $E B F$ are congruent, so $E F=A F$. Also, $D E F$ is an isosceles right triangle, so $D E=E F$. Suppose d measures both $A B$ and $B D$. Then it measures $E D$ and $D F$, since

$$
\begin{aligned}
& E D=B D-A B, \\
& D F=A B-E D .
\end{aligned}
$$

Now do the same construction to $D E F$ in place of $D A B$. Since $2 E D<A B$, we eventually get segments that are shorter than d, but are measured by it, which is absurd. So such d cannot exist.

This argument can be made more algebraic. We have

$$
1=2-1=(\sqrt{2})^{2}-1^{2}=(\sqrt{2}+1)(\sqrt{2}-1)
$$

so

$$
\sqrt{2}+1=\frac{1}{\sqrt{2}-1}
$$

Then

$$
\begin{aligned}
\sqrt{2}+1 & =1 \cdot 2+(\sqrt{2}-1) \\
1 & =(\sqrt{2}-1) \cdot 2+(3-2 \sqrt{2}) \\
\sqrt{2}-1 & =\cdots
\end{aligned}
$$

That is, if we let $a_{0}=\sqrt{2}+1$ and $a_{1}=1$, then we can define

$$
a_{n}=a_{n+1} \cdot 2+a_{n+2} .
$$

So we have

$$
\begin{aligned}
& a_{0}=a_{1} \cdot 2+a_{2}, \\
& a_{1}=a_{2} \cdot 2+a_{3}, \\
& a_{2}=a_{3} \cdot 2+a_{4},
\end{aligned}
$$

and so on. Then

$$
\frac{a_{0}}{a_{1}}=2+\frac{a_{2}}{a_{1}}=2+\frac{1}{\frac{a_{1}}{a_{2}}}=2+\frac{1}{2+\frac{a_{3}}{a_{2}}}=2+\frac{1}{2+\frac{1}{\frac{a_{2}}{a_{3}}}}=2+\frac{1}{2+\frac{1}{2+\frac{a_{4}}{a_{3}}}}=\cdots
$$

which means

$$
\begin{equation*}
\sqrt{2}+1=2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{\ddots}}}}} \tag{*}
\end{equation*}
$$

5. October 4, 2007 (Thursday)

Last time we obtained $(*)$ by the Euclidean Algorithm.

Let d and s be the diagonal and side of a square. Then we have

$$
\frac{d+s}{s}=\frac{s}{d-s}
$$

since $d^{2}-s^{2}=s^{2}$. Applying the Algorithm, we have

$$
\begin{gathered}
d+s=s \cdot 2+d-s, \\
s=(d-s) \cdot 2+\cdots, \\
d-s=\cdots 2+\cdots,
\end{gathered}
$$

so that

$$
\frac{d+s}{s}=2+\frac{1}{2+\frac{1}{2+\frac{1}{\ddots}}}
$$

Compare with an ordinary application of the Algorithm. What is $\operatorname{gcd}(134,35)$? We have

$$
\begin{gathered}
134=35 \cdot 3+29, \\
35=29 \cdot 1+6, \\
29=6 \cdot 4+5, \\
6=5 \cdot 1+1, \\
5=1 \cdot 5 .
\end{gathered}
$$

Therefore $\operatorname{gcd}(134,35)=1$; but what is the significance of the numbers $3,1,4,1,5$? They appear in the continued fraction:

$$
\begin{aligned}
\frac{134}{35}=3+\frac{29}{35}=3+\frac{1}{\frac{35}{29}}=3+ & \frac{1}{1+\frac{6}{29}}=3+\frac{1}{1+\frac{1}{\frac{29}{6}}} \\
& =3+\frac{1}{1+\frac{1}{4+\frac{5}{6}}}=3+\frac{1}{1+\frac{1}{4+\frac{1}{6}}}=3+\frac{1}{1+\frac{1}{4+\frac{1}{5}}} \\
& * \quad * \quad * \quad *
\end{aligned}
$$

Let \mathbb{P} be the set of primes; an alternative proof of its infinity, using the full Fundamental Theorem of Arithmetic, is as follows. Consider the product

$$
\prod_{p \in \mathbb{P}} \frac{1}{1-\frac{1}{p}}
$$

If \mathbb{P} is finite, then so is this product. But what can we say about $\frac{1}{1-\frac{1}{p}}$? We have

$$
\frac{1}{1-\frac{1}{p}}=1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots=\sum_{k=0}^{\infty} \frac{1}{p^{k}} .
$$

Hence

$$
\prod_{p \in \mathbb{P}} \frac{1}{1-\frac{1}{p}}=\prod_{p \in \mathbb{P}}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots\right) .
$$

Alternatively, if $\mathbb{P}=\left\{p_{1}, p_{2}, \ldots\right\}$, then this product is

$$
\left(1+\frac{1}{p_{1}}+\frac{1}{p_{1}^{2}}+\cdots\right) \cdot\left(1+\frac{1}{p_{1}}+\frac{1}{p_{1}^{2}}+\cdots\right) \cdots
$$

which is the sum of terms

$$
\frac{1}{p_{0}{ }^{e(0)} p_{1}{ }^{e(1)} \cdots p_{n}^{e(n)}},
$$

where $e(i) \geqslant 0$. Rather, the product is the sum of terms

$$
\frac{1}{q_{0}^{f(0)} q_{1}^{f(1)} \cdots q_{m-1}{ }^{f(m-1)}},
$$

where q_{i} are prime and $f(i)>0$. But every positive integer is uniquely a product $q_{0}{ }^{f(0)} q_{1}{ }^{f(1)} \cdots q_{m-1}{ }^{f(m-1)}$, by the Fundamental Theorem. Therefore

$$
\prod_{p \in \mathbb{P}} \frac{1}{1-\frac{1}{p}}=\sum_{n=1}^{\infty} \frac{1}{n} .
$$

If \mathbb{P} is infinite, then we must talk about convergence; but if \mathbb{P} is finite, there is no problem. But the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges:

$$
1+\frac{1}{2}+\underbrace{\frac{1}{3}+\frac{1}{4}}_{\geqslant \frac{1}{2}}+\underbrace{\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}}_{\geqslant \frac{1}{2}}+\cdots
$$

Therefore \mathbb{P} must be infinite. Using similar ideas, one can show that $\sum_{p \in \mathbb{P}} \frac{1}{p}$ diverges.
Suppose $p \in \mathbb{P}$. If $p \mid a b$, but $p \nmid a$, then $p \mid b$.
If $p=a b$, but $p \nmid a$, then $p \mid b$, but also $b \mid p$, so $b= \pm p$, and then $a= \pm 1$.
Among the integers, what property do 1 and -1 have uniquely? They have multiplicative inverses:

$$
(-1) \cdot(-1)=1, \quad 1 \cdot 1=1
$$

but if $|n|>1$, then the equation $n x=1$ has no solution. In a word, ± 1 are units in \mathbb{Z}. Then an integer n is called irreducible if
(a) $n=a b \Rightarrow(a$ or b is a unit);
(b) n is not a unit.

Then the irreducibles of \mathbb{Z} are $\pm p$, where p is prime.
But irreducibility of primes is not enough to prove uniqueness of prime factorizations. If

$$
p_{1} \cdots p_{m}=q_{1} \cdots q_{n}
$$

where $p_{1} \leqslant \cdots p_{m}$ and $q_{1} \leqslant \cdots q_{m}$, how do we know $p_{1}=q_{1}$, \&c.? We need the stronger property that $p \mid a b \Rightarrow(p \mid a$ or $p \mid b)$.

Again, there is a situation where the stronger property fails for arbitrary irreducibles:

$$
(4+\sqrt{10})(4-\sqrt{10})=6=2 \cdot 3
$$

but $4 \pm \sqrt{10}, 2$, and 3 are irreducible in $\{x+y \sqrt{10}: x, y \in \mathbb{Z}\}$, which is denoted by $\mathbb{Z}[\sqrt{10}]$. Let $\sigma: \mathbb{Z}[\sqrt{10}] \rightarrow \mathbb{Z}[\sqrt{10}]$, where

$$
\sigma(a+b \sqrt{10})=a-b \sqrt{10}
$$

(Compare this with complex conjugation.) Now define $N(x)=x \cdot \sigma(x)$, so that

$$
N(a+b \sqrt{10})=a^{2}-10 b^{2}
$$

Then one can show $N(x y)=N(x) \cdot N(y)$. Also, $N(c)$ is always a square modulo 10 . We have

$$
\begin{aligned}
& 0^{2}=0 \\
& 1^{2}=1 \\
& 2^{2}=4 \\
& 3^{2}=9 \equiv-1 \quad(\bmod 10), \\
& 4^{2}=16 \equiv-4 \quad(\bmod 10), \\
& 5^{2}=25 \equiv 5 \quad(\bmod 10),
\end{aligned}
$$

so $N(c)$ is congruent to $0, \pm 1, \pm 4$ or 5 modulo 10 .

6. October 9, 2007 (Tuesday)

We have implicitly used that congruence respects arithmetic: If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then

$$
\begin{aligned}
a+c & \equiv b+d \quad(\bmod n) \\
a \cdot c & \equiv b \cdot d \quad(\bmod n) .
\end{aligned}
$$

Indeed, we assume $n \mid b-a$ and $n \mid d-c$, so $n \mid b-a+d-c$, that is,

$$
n \mid b+d-(a+c)
$$

which means $a+c \equiv b+d(n)$; likewise, $n \mid(b-a) c+(d-c) b$, that is, $n \mid b d-a c$, so $a c \equiv b d$ (n). In short, if set $\mathbb{Z} /(n)$ or \mathbb{Z}_{n} of congruence-classes modulo n is a commutative ring.

Hence we can solve $35^{14} \equiv x$ (43) as follows: First, $35 \equiv-8$ (43), so

$$
\begin{equation*}
35^{14} \equiv(-8)^{14} \equiv 8^{14} \tag{43}
\end{equation*}
$$

Also, $14=8+4+2=2^{3}+2^{2}+2^{1}$, so $8^{14}=8^{8} \cdot 8^{4} \cdot 8^{2}$; and

$$
\begin{gathered}
8^{2}=64 \equiv 21 \\
21^{2}=441 \equiv 11 \quad(43), \\
11^{2}=121 \equiv 35 \equiv-8 \quad(43),
\end{gathered}
$$

so that

$$
\begin{align*}
35^{14} & \equiv-8 \cdot 11 \cdot 21 \tag{43}\\
& \equiv-88 \cdot 21 \quad(43) \tag{43}\\
& \equiv-2 \cdot 21 \quad(43) \tag{43}\\
& \equiv-44 \equiv 1 \quad(43) \tag{43}
\end{align*}
$$

For another use of congruences, recall $\mathbb{Z}[\sqrt{10}]=\stackrel{*}{*}\{x+y \sqrt{10}: x, y \in \mathbb{Z}\}$, closed under addition and multiplication; and

$$
\begin{aligned}
\sigma: \mathbb{Z}[\sqrt{10}] & \longrightarrow \mathbb{Z}[\sqrt{10}] \\
x+y \sqrt{10} & \longmapsto x-y \sqrt{10},
\end{aligned}
$$

and

$$
\begin{aligned}
N: \mathbb{Z}[\sqrt{10}] & \longrightarrow \mathbb{Z}, \\
x & \longmapsto x \cdot \sigma(x) .
\end{aligned}
$$

Then $N(a b)=N(a) \cdot N(b)$. If a is a unit (that is, invertible) of $\mathbb{Z}[\sqrt{10}]$, then $a b=1$ for some b in $\mathbb{Z}[\sqrt{10}]$, so $N(a b)=N(1)$, that is, $N(a) \cdot N(b)=1$, so $N(a)= \pm 1$. Conversely, if $N(a)= \pm 1$, then $a \cdot(\pm \sigma(a))=1$, so a is a unit.

We observed

$$
(4+\sqrt{10})(4-\sqrt{10})=6=2 \cdot 3 .
$$

All of these factors are irreducible in $\mathbb{Z}[\sqrt{10}]$. For example, if $2=a b$, then $N(2)=N(a b)$, that is, $4=N(a) \cdot N(b)$, so $N(a) \in\{ \pm 1, \pm 2, \pm 4\}$. But $N(a)$ is a square modulo 10 , so $N(a) \equiv 0, \pm 1, \pm 4,5(10)$. Therefore one of $N(a)$ or $N(b)$ is ± 1, so it is a unit.

If $a \equiv b(n)$, then $a c \equiv b c(n)$. But do we have the converse? We do if c is invertible (is a unit) modulo n. In that case, $c d \equiv 1(n)$ for some d, and then

$$
\begin{aligned}
a c \equiv b c \quad(\bmod n) & \Longrightarrow a c d \equiv b c d \quad(\bmod n) \\
& \Longrightarrow a \equiv b \quad(\bmod n) .
\end{aligned}
$$

Invertibility of c modulo n is equivalent to solubility of $c x \equiv 1(n)$, or equivalently

$$
c x+n y=1
$$

Thus c is invertible modulo n if and only if c and n are co-prime.
Alternatively, if $a c \equiv b c(n)$, and c and n are co-prime, then we can argue by Euclid's Lemma that, since $n \mid b c-a c$, that is, $n \mid(b-a) c$, we have $n \mid b-a$, that is, $a \equiv b(n)$.

Suppose we simply have $\operatorname{gcd}(c, n)=d$. Then $\operatorname{gcd}(c, n / d)=1$. Hence

$$
\begin{aligned}
a c \equiv b c \bmod n & \Longrightarrow a c \equiv b c \bmod \frac{n}{d} \\
& \Longrightarrow a \equiv b \bmod \frac{n}{d}
\end{aligned}
$$

Conversely,

$$
\begin{aligned}
a \equiv b \bmod \frac{n}{d} & \left.\Longrightarrow \frac{n}{d} \right\rvert\, b-a \\
& \left.\Longrightarrow \frac{c n}{d} \right\rvert\, b c-a c \\
& \Longrightarrow n \mid b c-a c \\
& \Longrightarrow a c \equiv b c \bmod n .
\end{aligned}
$$

In short,

$$
a c \equiv b c \bmod n \Longleftrightarrow a \equiv b \bmod \frac{n}{\operatorname{gcd}(c, n)} .
$$

For example, $6 x \equiv 6(9) \Longleftrightarrow x \equiv 1$ (3).
A longer problem is to solve

$$
\begin{equation*}
70 x \equiv 18 \quad(134) \tag{*}
\end{equation*}
$$

This reduces to

$$
35 x \equiv 9 \quad(67)
$$

or $35 x+67 y=9$. So there is a solution if and only if $\operatorname{gcd}(35,67) \mid 9$. To find the solutions, we should solve $35 x+67 y=1$, which we can do with the Euclidean Algorithm:

$$
\begin{aligned}
67 & =35 \cdot 1+32 \\
35 & =32 \cdot 1+3 \\
32 & =3 \cdot 10+2 \\
3 & =2 \cdot 1+1
\end{aligned}
$$

so $\operatorname{gcd}(35,67)=1$. We now have

$$
\begin{aligned}
32 & =67-35 \\
3 & =35-32=35-(67-35)=35 \cdot 2-67 \\
2 & =32-3 \cdot 10=67-35-(35 \cdot 2-67) \cdot 10=67 \cdot 11-35 \cdot 21 \\
1 & =3-2=35 \cdot 2-67-67 \cdot 11+35 \cdot 21=35 \cdot 23-67 \cdot 12
\end{aligned}
$$

In particular, $35 \cdot 23 \equiv 1(67)$, so $(*)$ is equivalent to

$$
\begin{align*}
x & \equiv 23 \cdot 9 \tag{67}\\
& \equiv 207 \tag{67}\\
x & \equiv 6 \tag{67}\\
x & \equiv 6,737 \tag{134}
\end{align*}
$$

A puzzle from a recent newspaper [Guardian Weekly] is mathematically the same as one attributed [1, Prob. $4 \cdot 4^{8-9} 9$, p. 83] to Brahmagupta (7 th century C.E.): A man dreams he runs up a flight of stairs. If he takes the stairs $2,3,4,5$, or 6 at time, then one stair is left before the top. If he takes them 7 at a time, then he reaches the top exactly. How many stairs are there?

If x is that number, then

$$
\begin{aligned}
& x \equiv 1 \quad(\bmod 2,3,4,5,6), \\
& x \equiv 0 \quad(\bmod 7)
\end{aligned}
$$

But $\operatorname{lcm}(2,3,4,5,6)=60$, so $x=60 n+1$, where $7 \mid 60 n+1$. We have this when $n=5$, hence when $n=12,19, \ldots$

The general problem is to solve systems

$$
x \equiv a_{0} \bmod n_{0} \& x \equiv a_{1} \bmod n_{1} \& \cdots \& x \equiv a_{k} \bmod n_{k}
$$

Let's start with two congruences:

$$
x \equiv a \bmod n \& x \equiv b \bmod m
$$

A solution will take the form

$$
\begin{aligned}
x & =a+n u \\
& =m v+b .
\end{aligned}
$$

So we should like to make $a \equiv m v(n)$ and $n u \equiv b(m)$. We can do this if $\operatorname{gcd}(n, m)=1$. Then we have $n r \equiv 1(m)$ and $m s \equiv 1(n)$ for some r and s, so that a solution to (\ddagger) is

$$
x=a m s+b n r .
$$

This solution is unique modulo $\operatorname{lcm}(n, m)$, which is $n m$ since $\operatorname{gcd}(n, m)=1$.
We can solve (\dagger) similarly, under the assumption

$$
\operatorname{gcd}\left(n_{i}, n_{j}\right)=1
$$

whenever $i<j \leqslant k$. We have

$$
x=a_{0} m_{0} n_{1} \cdots n_{k}+a_{1} n_{0} m_{1} n_{2} \cdots n_{k}+\cdots+a_{k} n_{0} \cdots n_{k-1} m_{k}
$$

where the m_{i} are chosen so that

$$
m_{0} n_{1} \cdots n_{k} \equiv 1 \quad\left(n_{0}\right)
$$

and so forth; this is possible since

$$
\operatorname{gcd}\left(n_{0}, n_{1} \cdots n_{k}\right)=1
$$

The solution is unique modulo $n_{0} \cdots n_{k}$. This is the Chinese Remainder Theorem.

7. October 16, 2007 (Tuesday)

Of the 13 books of Euclid's Elements, VII, VIII and IX concern number-theory. The last proposition in these books is:

Theorem (Euclid, IX.36). If $1+2+4+\cdots+2^{n}$ is prime, then the product

$$
2^{n} \cdot\left(1+2+\cdots+2^{n}\right)
$$

is perfect.
A number is perfect if it is the sum of its positive proper divisors:

$$
\begin{aligned}
6 & =1+2+3 \\
28 & =1+2+4+7+14 .
\end{aligned}
$$

Proof of theorem. Let $M_{n+1}=1+2+4+\cdots+2^{n}=\sum_{k=0}^{n} 2^{k}=2^{n+1}-1$. If M_{n+1} is prime, then the positive divisors of $2^{n} \cdot M_{n+1}$ are the divisors of 2^{n}, perhaps multiplied by M_{n+1}. So they are

$$
1,2,4, \ldots, 2^{n}, M_{n+1}, 2 \cdot M_{n+1}, 4 \cdot M_{n+1}, \ldots, 2^{n} \cdot M_{n+1} .
$$

The sum of these is $\left(1+2+4+\cdots+2^{n}\right) \cdot\left(1+M_{n+1}\right)$, which is $M_{n+1} \cdot 2^{n+1}$. Subtracting $2^{n} \cdot M_{n+1}$ itself leaves the same.

The number $2^{n}-1$, denoted by M_{n}, is called a Mersenne number; if it is prime, it is a Mersenne prime. (Mersenne was a 17 th-century mathematician.) We do not know whether there are infinitely many Mersenne primes. However, if M_{n} is prime, then so is n, since $2^{a}-1 \mid 2^{a b}-1$, because of the identity

$$
x^{m}-y^{m}=(x-y) \cdot\left(x^{m-1}+x^{m-2} \cdot y+x^{m-3} \cdot y^{2}+\cdots+x \cdot y^{m-2}+y^{m-1}\right) .
$$

One method of factorizing n is to get a table of primes and test whether $p \mid n$ when $p \leqslant \sqrt{n}$.

Fermat's method is to solve

$$
x^{2}-y^{2}=n,
$$

since then $n=(x+y)(x-y)$. This method always works in principle, since

$$
a b=\left(\frac{a+b}{2}\right)^{2}-\left(\frac{a-b}{2}\right)^{2}
$$

We may assume n is odd, so if $n=a b$, then $a \pm b$ are even.
For example, the first square greater than 2279 is 2304 , or 48^{2}, and $2304-2279=$ $25=5^{2}$, so

$$
2279=(48+5)(48-5)=53 \cdot 43
$$

We can generalize the method by solving

$$
x^{2} \equiv y^{2} \quad(\bmod n)
$$

If $x^{2}-y^{2}=m n$, then find $\operatorname{gcd}(x+y, n)$ and $\operatorname{gcd}(x-y, n)$.
Suppose $p \nmid a$, that is, $\operatorname{gcd}(p, a)=1$. What is a^{p-1} modulo p ? Consider $a, 2 a, \ldots$, $(p-1) a$. These are all incongruent modulo p, since

$$
i a \equiv j a \quad(\bmod p) \Longrightarrow i \equiv j \quad(\bmod p)
$$

But $1,2, \ldots, p-1$ are also incongruent. There are only $p-1$ numbers incongruent with each other and 0 modulo p; so the numbers $a, 2 a, \ldots,(p-1) a$ are congruent respectively with $1,2, \ldots, p-1$ in some order. Now multiply:

$$
(p-1)!\cdot a^{p-1} \equiv(p-1)!\quad(\bmod p)
$$

Since $(p-1)$! and p are co-prime, we conclude:

$$
\operatorname{gcd}(a, p)=1 \Longrightarrow a^{p-1} \equiv 1 \quad(\bmod p)
$$

This is Fermat's Little Theorem. Equivalently,

$$
a^{p} \equiv a \quad(\bmod p)
$$

for all a.
Hence $m \equiv n(\bmod p-1) a^{m} \equiv a^{m}(\bmod p)$. For example,

$$
6^{58} \equiv 6^{48+10} \equiv\left(6^{16}\right)^{3} \cdot 6^{10} \equiv 6^{10} \quad(\bmod 17)
$$

Since $10=8+2$, we have $6^{10}=6^{8} \cdot 6^{2}$; but $6^{2} \equiv 36 \equiv 2(17)$, so $6^{8} \equiv 2^{4} \equiv 16 \equiv-1$ (17), and hence

$$
6^{58} \equiv-2 \quad(\bmod 17)
$$

If $a^{n} \not \equiv a(\bmod n)$, then n must not be prime. For example, what is 2^{133} modulo 133 ? We have $133=128+4+1=2^{7}+2^{2}+1$, so $2^{133}=2^{2^{7}} \cdot 2^{2^{2}} \cdot 2$. Also,

$$
\begin{aligned}
2^{2} & =4 \\
2^{2^{2}} & =4^{2}=16 \\
2^{2^{3}} & =16^{2}=256 \equiv 123 \equiv-10 \quad(\bmod 133) ; \\
2^{2^{4}} & \equiv(-10)^{2}=100 \equiv-33 \quad(\bmod 133) \\
2^{2^{5}} & \equiv(-33)^{2}=1089 \equiv 25 \quad(\bmod 133) \\
2^{2^{6}} & \equiv 25^{2}=625 \equiv-40 \quad(\bmod 133) \\
2^{2^{7}} & \equiv(-40)^{2}=1600 \equiv 4 \quad(\bmod 133)
\end{aligned}
$$

Therefore

$$
2^{133} \equiv 4 \cdot 16 \cdot 2 \equiv-5 \quad(\bmod 133)
$$

so 133 must not be prime. Indeed, $133=7 \cdot 19$.
The converse of the Fermat Theorem fails: It may be that $a^{n} \equiv a(\bmod n)$ for all a, although n is not prime. First, n is a pseudo-prime if n is not prime, but

$$
2^{n} \equiv 2 \quad(\bmod n)
$$

Then 341 is a pseudo-prime. Indeed, $341=11 \cdot 31$; but

$$
\begin{aligned}
2^{11} & =2048=31 \cdot 66+2 \equiv 2 \quad(\bmod 31) \\
2^{3} 1 & =\left(2^{10}\right)^{3} \cdot 2 \equiv 2 \quad(\bmod 11)
\end{aligned}
$$

Hence $2^{11 \cdot 31} \equiv 2(\bmod 11 \cdot 31)$ by the following.
Lemma. If $a^{p} \equiv a(q)$ and $a^{q} \equiv a(p)$, then $a^{p q} \equiv a(p q)$.

Proof. Under the hypothesis, we have

$$
\begin{aligned}
& a^{p q}=\left(a^{p}\right)^{q} \equiv a^{q} \equiv a \quad(\bmod q), \\
& a^{p q}=\left(a^{q}\right)^{p} \equiv a^{p} \equiv a \quad(\bmod p),
\end{aligned}
$$

and hence $a^{p q} \equiv a(\bmod \operatorname{lcm}(p, q)) ;$ but $\operatorname{lcm}(p, q)=p q$.
Again, we now have $2^{361} \equiv 2(\bmod 361)$, so 361 is pseudo-prime.
Theorem. If n is a pseudo-prime, then so is $2^{n}-1$.
Proof. Since n factors non-trivially as ab, but $2^{a}-1 \mid\left(2^{a}\right)^{b}-1$, we have that 2^{a} is a non-trivial factor of $2^{n}-1$. So $2^{n}-1$ is not prime. We assume also $2^{n} \equiv 2(\bmod n)$; say $2^{n}-2=k n$. Then

$$
2^{2^{n}-1}-2=2 \cdot\left(2^{2^{n}-2}-1\right)=2 \cdot\left(2^{k n}-1\right)
$$

which has the factor $2^{n}-1$; so $2^{2^{n}-1} \equiv 2\left(\bmod 2^{n}-1\right)$.
One can ask whether $3^{n} \equiv 3(\bmod n)$, for example. But a number n is called an absolute pseudo-prime or a Carmichael number if

$$
a^{n} \equiv a \quad(\bmod n)
$$

for all n. Then 561 is a Carmichael number. Indeed,

$$
561=3 \cdot 11 \cdot 17
$$

and

$$
\begin{aligned}
3-1 & =2 \mid 560=561-1 ; \\
11-1 & =10 \mid 560 \\
17-1 & =16 \mid 560
\end{aligned}
$$

Hence

$$
\begin{aligned}
3 \nmid a & \Longrightarrow a^{2} \equiv 1 \quad(\bmod 3) \Longrightarrow a^{560} \equiv 1 \quad(\bmod 3) ; \\
11 \nmid a & \Longrightarrow a^{10} \equiv 1 \quad(\bmod 11) \Longrightarrow a^{560} \equiv 1 \quad(\bmod 11) ; \\
17 \nmid a & \Longrightarrow a^{17} \equiv 1 \quad(\bmod 17) \Longrightarrow a^{560} \equiv 1 \quad(\bmod 17) .
\end{aligned}
$$

Hence $a^{561} \equiv a(\bmod 3,11,17)$ for all a, so

$$
a^{561} \equiv a \quad(\bmod 561)
$$

In general, if $n=p_{0} \cdot p_{1} \cdots p_{k}$, where $p_{0}<p_{1}<\cdots<p_{k}$, and $p_{i}-1 \mid n-1$ for each i, then the same argument shows that n is an absolute pseudo-prime.

It is necessary here that n have no square factor. Indeed, if $a^{n} \equiv a(\bmod n)$ for all a, but $m^{2} \mid n$, then $m^{n} \equiv m(\bmod n)$, so

$$
m^{n} \equiv m \quad\left(\bmod m^{2}\right) .
$$

But if $n>1$, then $m^{n} \equiv 0\left(\bmod m^{2}\right)$, so $m \equiv 0\left(\bmod m^{2}\right)$, which is absurd unless $m= \pm 1$.
8. October 18, 2007 (Thursday)

Can we solve $(p-1)!\equiv x(\bmod p)$? The answer is certainly not 0 .
Theorem. Suppose $n>1$. Then $(n-1)!\equiv-1(\bmod n)$ if and only if n is prime .
This is called 'Wilson's Theorem,' though Wilson did not prove it. It was supposedly [3] known to al-Haytham (964-1040). It gives a theoretical test for primality, though not a practical one.

Proof of theorem. One of the two directions should be easier; which one? Suppose n is not prime, so that $n=a b$, where $1<a<n$. Then $a \leqslant n-1$, so $a \mid(n-1)$!, so $a \nmid(n-1)!+1$, so $n \nmid(n-1)!+1$.

Now suppose n is a prime p. Each number on the list $1,2,3, \ldots, p-1$ has an inverse modulo p. Also, $x^{2} \equiv 1(\bmod p)$ has only the solutions ± 1, that is, 1 and $p-1$, since it requires $p \mid x \pm 1$. So the numbers on the list $2,3, \ldots, p-2$ have inverses different from themselves. Hence we can partition these numbers into pairs $\{a, b\}$, where $a b \equiv 1$ $(\bmod p)$. Therefore $(p-1)!\equiv p-1 \equiv-1(\bmod p)$.

For example,

$$
\begin{aligned}
& 2 \cdot 4 \equiv 1 \\
& 3 \cdot 5 \equiv 1(\bmod 7) \\
& 4 \cdot 2(\bmod 7) \\
& 5 \cdot 3 \equiv 1 \quad(\bmod 7), \\
& 6 \cdot 6 \equiv 1(\bmod 7), \\
&\bmod 7)
\end{aligned}
$$

so $6!=(2 \cdot 4) \cdot(3 \cdot 5) \cdot 6 \equiv 6 \equiv-1(\bmod 7)$. How can one find the inverses, other than by trial? Take successive powers:

$$
\begin{array}{ll}
& 3^{2}=9 \equiv 2 \quad(\bmod 7), \\
2^{3}=4, & 3^{3} \equiv 2 \cdot 3 \equiv 6 \quad(\bmod 7), \\
2^{3}=8 \equiv 1 \quad(\bmod 7) ; & 3^{4} \equiv 6 \cdot 3 \equiv 4 \quad(\bmod 7), \\
3^{5} \equiv 4 \cdot 3 \equiv 5 \quad(\bmod 7), \\
3^{6} \equiv 5 \cdot 3 \equiv 1 \quad(\bmod 7) .
\end{array}
$$

So the invertible numbers modulo 7 compose a multiplicative group generated by 3 , and we have

$$
3 \cdot 3^{5} \equiv 3^{2} \cdot 3^{4} \equiv 1 \quad(\bmod 7)
$$

An application of Wilson's Theorem is the following.
Theorem. Let p be an odd prime. Then the congruence $x^{2} \equiv-1(\bmod p)$ has a solution if and only if $p \equiv 1(\bmod 4)$.

Proof. Suppose $a^{2} \equiv-1(\bmod p)$. By the Fermat Theorem,

$$
1 \equiv a^{p-1} \equiv\left(a^{2}\right)^{(p-1) / 2} \equiv(-1)^{(p-1) / 2} \quad(\bmod p)
$$

so $(p-1) / 2$ must be even: $4 \mid p-1$, so $p \equiv 1(\bmod 4)$.

Conversely, by Wilson's Theorem, we have

$$
\begin{aligned}
-1 \equiv(p-1)! & \equiv 1 \cdot 2 \cdots \frac{p-1}{2} \cdot \frac{p+1}{2} \cdots(p-1) \\
& \equiv 1 \cdot(p-1) \cdot 2 \cdot(p-2) \cdots \frac{p-1}{2} \cdot \frac{p+1}{2} \\
& \equiv 1 \cdot(-1) \cdot 2 \cdot(-2) \cdots \frac{p-1}{2} \cdot \frac{1-p}{2} \\
& \equiv(-1)^{(p-1) / 2}\left(\left(\frac{p-1}{2}\right)!\right)^{2}
\end{aligned}
$$

So if $p \equiv 1(\bmod 4)$, then $x^{2} \equiv-1(\bmod p)$ is solved by $((p-1) / 2)$!.
For example,

$$
-1 \equiv 4!\equiv 1 \cdot(-1) \cdot 2 \cdot(-2) \equiv 2^{2} \quad(\bmod 5)
$$

while, modulo 13, we have

$$
\begin{gather*}
-1 \equiv 12!\equiv 1 \cdot(-1) \cdot 2 \cdot(-2) \cdot 3 \cdot(-3) \cdot 4 \cdot(-4) \cdot 5 \cdot(-5) \cdot 6 \cdot(-6) \equiv(6!)^{2} \tag{13}\\
9 \cdot \text { OCTOBER } 25,2007 \text { (THURSDAY) }
\end{gather*}
$$

We work now with positive integers only. If n is one of them, we define

$$
\sigma(n)
$$

as the sum of the (positive) divisors of n. Hence n is perfect if and only if $\sigma(n)=2 n$. For the number of positive divisors of n, we write

$$
\tau(n)
$$

For example,

$$
\begin{aligned}
& \tau(12)=1+2+3+4+6+12=28 \\
& \sigma(12)=1+1+1+1+1+1=6
\end{aligned}
$$

Indeed, $12=2^{2} \cdot 3$, so the divisors of 12 are

$$
\begin{aligned}
& 2^{0} \cdot 3^{0} \\
& 2^{1} \cdot 3^{0} \\
& 2^{2} \cdot 3^{0} \\
& 2^{0} \cdot 3^{1} \\
& 2^{1} \cdot 3^{1} \\
& 2^{2} \cdot 3^{1}
\end{aligned}
$$

So the factors of 12 are determined by a choice from $\{0,1,2\}$ for the exponent of 2 , and from $\{0,1\}$ for the exponent of 3 . Hence

$$
\tau(12)=(2+1) \cdot(1+1)
$$

Similarly, each factor of 12 itself has two factors: one from $\{1,2,4\}$, and the other from $\{1,3\}$; so

$$
\begin{aligned}
\sigma(12) & =(1+2+4) \cdot(1+3) \\
& =\left(1+2+2^{2}\right) \cdot(1+3) \\
& =\frac{2^{3}-1}{2-1} \cdot \frac{3^{2}-1}{3-1} .
\end{aligned}
$$

These ideas work in general:
Theorem. If $n=p_{1}{ }^{k(1)} \cdot p_{2}{ }^{k(2)} \cdots p_{n}{ }^{k(n)}$, where $p_{1}<p_{2}<\ldots p_{n}$, then

$$
\begin{aligned}
\tau(n) & =(k(1)+1) \cdot(k(2)+1) \cdots(k(n)+1), \\
\sigma(n) & =\left(1+p_{1}+p_{1}{ }^{2}+\cdots+p_{1}^{k(1)}\right) \cdot\left(1+p_{2}+{p_{2}}^{2}+\cdots+p_{2}^{k(2)}\right) \cdots \\
& =\frac{p_{1}^{k(1)+1}-1}{p_{1}-1} \cdot \frac{p_{2}^{k(2)+1}-1}{p_{2}-1} \cdots \frac{p_{n}^{k(n)+1}-1}{p_{n}-1}
\end{aligned}
$$

We can abbreviate the definitions of σ and τ as follows:

$$
\begin{aligned}
\sigma(n) & =\sum_{d \mid n} d, \\
\tau(n) & =\sum_{d \mid n} 1 .
\end{aligned}
$$

Implicitly here, d ranges over the positive divisors of n.
Is there a relation between $\sigma(n)$ and $\tau(n)$? We have

n	$\tau(n)$	$\sigma(n)$	$\prod_{d \mid n} d$
1	1	1	1
2	2	3	2
3	2	4	3
4	3	7	$8=2^{3}=4^{3 / 2}$
5	2	6	5
6	4	12	$36=6^{2}$
7	2	8	7
8	4	15	$64=8^{2}$
9	3	13	$27=3^{3}=9^{3 / 2}$
10	4	18	$100=10^{2}$

It appears that

$$
\prod_{d \mid n} d=n^{\tau(n) / 2}
$$

We can prove it thus:

$$
\left(\prod_{d \mid n} d\right)^{2}=\left(\prod_{d \mid n} d\right) \cdot\left(\prod_{d \mid n} d\right)=\left(\prod_{d \mid n} d\right) \cdot\left(\prod_{d \mid n} \frac{n}{d}\right)=\prod_{d \mid n} n=n^{\tau(n)}
$$

Suppose $\operatorname{gcd}(n, m)=1$. Then $n=p_{1}{ }^{k(1)} \cdots p_{r}{ }^{k(r)}$, and $m=q_{1}{ }^{\ell(1)} \cdots q_{s}^{\ell(s)}$, where the p_{i} and q_{j} are all distinct primes. Hence the prime factorization of $n m$ is

$$
p_{1}{ }^{k(1)} \cdots p_{r}{ }^{k(r)} \cdot q_{1}{ }^{\ell(1)} \cdots q_{s}{ }^{\ell(s)},
$$

so we have

$$
\begin{aligned}
\sigma(n m) & =\frac{p_{1}^{k(1)+1}-1}{p_{1}-1} \cdots \frac{p_{r}{ }^{k(r)+1}-1}{p_{r}-1} \cdot \frac{q_{1}^{\ell(1)+1}-1}{q_{1}-1} \cdots \frac{q_{s}^{k(s)+1}-1}{q_{s}-1} \\
& =\sigma(n) \cdot \sigma(m) .
\end{aligned}
$$

Similarly, $\tau(n m)=\tau(n) \cdot \tau(m)$. We say then that σ and τ are multiplicative; in general, a function f on the positive integers is multiplicative if

$$
f(n m)=f(n) \cdot f(m)
$$

whenever n and m are co-prime. We do not require the identity to hold in general. For example,

$$
\sigma(2 \cdot 2)=\sigma(4)=1+2+4=7 \neq 9=(1+2) \cdot(1+2)=\sigma(2) \cdot \sigma(2)
$$

The identify function $n \mapsto n$ and the constant function $n \mapsto 1$ are multiplicative. Since $\sigma(n)=\sum_{d \mid n} d$ and $\tau(n)=\sum_{d \mid n} 1$, the multiplicativity of σ and τ is a consequence of the following.

Theorem. If f is multiplicative, and F is given by

$$
\begin{equation*}
F(n)=\sum_{d \mid n} f(d) \tag{*}
\end{equation*}
$$

then F is multiplicative.
Before working out a formal proof, we can see why the theorem ought to be true from an example. Note first that, if f is multiplicative and non-trivial, so that $f(n) \neq 0$ for some n, then

$$
0 \neq f(n)=f(n \cdot 1)=f(n) \cdot f(1)
$$

so $f(1)=1$. If also f and F are related by $(*)$, then

$$
\begin{aligned}
F(36)= & F\left(2^{2} \cdot 3^{2}\right) \\
= & f(1)+f(2)+f(4)+f(3)+f(6)+f(12)+f(9)+f(18)+f(36) \\
= & \quad f(1) \cdot f(1)+f(2) \cdot f(1)+f(4) \cdot f(1)+ \\
& +f(1) \cdot f(3)+f(2) \cdot f(3)+f(4) \cdot f(3)+ \\
& +f(1) \cdot f(9)+f(2) \cdot f(9)+f(4) \cdot f(9) \\
= & (f(1)+f(2)+f(4)) \cdot(f(1)+f(3)+f(9)) \\
= & F(4) \cdot F(9) .
\end{aligned}
$$

Proof of theorem. If $\operatorname{gcd}(m, n)=1$, then every divisor of $m n$ is uniquely of the form $d e$, where $d \mid m$ and $e \mid n$. This is because every prime divisor of $m n$ is uniquely a divisor of
m or n. Hence

$$
\begin{aligned}
F(m n) & =\sum_{d \mid m n} f(d) \\
& =\sum_{d \mid m} \sum_{e \mid n} f(d e) \\
& =\sum_{d \mid m} \sum_{e \mid n} f(d) \cdot f(e) \\
& =\sum_{d \mid m} f(d) \cdot \sum_{e \mid n} f(e) \\
& =\left(\sum_{d \mid m} f(d)\right) \cdot \sum_{e \mid n} f(e),
\end{aligned}
$$

which is $F(m) \cdot F(n)$ by $(*)$.
If F is defined from f as in $(*)$, can we recover f from F ? For example, when f is $n \mapsto n$, so that F is σ, then

$$
\begin{aligned}
\sigma(12) & =1+2+3+4+6+12 \\
\sigma(6) & =1+2+3+6 \\
\sigma(4) & =1+2+\quad+\quad 4 \\
\sigma(3) & =1+3 \\
\sigma(2) & =1+2 \\
\sigma(1) & =1
\end{aligned}
$$

so that

$$
12=\sigma(12)-\sigma(6)-\sigma(4)+\sigma(2) .
$$

Why are some terms added, others subtracted? Why didn't we need $\sigma(3)$ or $\sigma(1)$? Note that $12 / 3=4=2^{2}$, a square.

We have also

$$
\begin{aligned}
\sigma(30) & =1+2+3+5+6+10+15+30 \\
\sigma(15) & =1+3+5 \quad+\quad 15 \\
\sigma(10) & =1+2+5 \quad+\quad 10 \\
\sigma(6) & =1+2+3+\quad+6 \\
\sigma(5) & =1+3 \\
\sigma(3) & =1+3 \\
\sigma(2) & =1+2 \\
\sigma(1) & =1
\end{aligned}
$$

so that

$$
30=\sigma(30)-\sigma(15)-\sigma(10)-\sigma(6)+\sigma(5)+\sigma(3)+\sigma(2)-\sigma(1)
$$

Here we have $30 / 15=2,30 / 10=3$, and $30 / 6=5$: each of these numbers has one prime factor. But $30 / 5=2 \cdot 3,30 / 3=2 \cdot 5$, and $30 / 2=3 \cdot 5$; each number here has two prime factors.

The Möbius function, μ, is given by

$$
\mu(n)= \begin{cases}0, & \text { if } p^{2} \mid n \text { for some prime } p \\ (-1)^{r}, & \text { if } n=p_{1} \cdots p_{r}, \text { where } p_{1}<\cdots<p_{r}\end{cases}
$$

In particular, $\mu(1)=1$.

Theorem (Möbius Inversion Formula). If f determines F by the rule ($*$), then F determines f by the rule

$$
f(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \cdot F(d)
$$

Proof. We just start calculating:

$$
\begin{aligned}
\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \cdot F(d) & =\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \cdot \sum_{e \mid d} f(e) \\
& =\sum_{d \mid n} \sum_{e \mid d} \mu\left(\frac{n}{d}\right) \cdot f(e) .
\end{aligned}
$$

For all factors d and e of n, we have

$$
e\left|d \Longleftrightarrow \frac{n}{d}\right| \frac{n}{e}
$$

Therefore

$$
\begin{aligned}
\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \cdot F(d) & =\sum_{e \mid n} \sum_{c \mid(n / e)} \mu(c) \cdot f(e) \\
& =\sum_{e \mid n} f(e) \cdot \sum_{c \mid(n / e)} \mu(c)
\end{aligned}
$$

We want to obtain $f(n)$ from this. It will be enough if we can show that $\sum_{c \mid(n / e)} \mu(c)$ is 0 unless $e=n$, in which case the sum is 1 . So it is enough to show

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1, & \text { if } n=1 \\ 0, & \text { otherwise }\end{cases}
$$

This is easy when $n=p^{r}$. Indeed, we have

$$
\begin{aligned}
\sum_{d \mid p^{r}} \mu(d) & =\mu(1)+\mu(p)+\mu\left(p^{2}\right)+\cdots+\mu\left(p^{r}\right) \\
& = \begin{cases}1, & \text { if } r=0 \\
1-1, & \text { if } r \geqslant 1\end{cases}
\end{aligned}
$$

But also, μ is multiplicative. Indeed, suppose $\operatorname{gcd}(m, n)=1$. If $p^{2} \mid m n$, then we may assume $p^{2} \mid m$, so $\mu(m n)=0=\mu(m)=\mu(m) \cdot \mu(n)$. But if $m=p_{1} \cdots p_{r}$, and $n=q_{1} \cdots q_{s}$, where all factors are distinct primes, then $\mu(m n)=(-1)^{r+s}=(-1)^{\cdot}(-1)^{2}=\mu(m) \cdot \mu(n)$. So μ is multiplicative. But then we have (\ddagger). For, if $n \neq 1$, then n has a prime factor p, and $n=p^{r} \cdot a$ for some positive r, where $\operatorname{gcd}(a, p)=1$. Then $\mu(n)=\mu\left(p^{r}\right) \cdot \mu(a)=0$. So (\ddagger) holds. This completes the proof of the theorem.

The Chinese Remainder Theorem can be understood with a picture. Since $\operatorname{gcd}(5,6)=1$ for example, the Theorem gives us a solution to

$$
\left\{\begin{array}{l}
x \equiv a_{1} \quad(\bmod 5) \\
x \equiv a_{2} \quad(\bmod 6)
\end{array}\right.
$$

-a solution that is unique modulo 30. In theory, we can find this solution by filling out a table diagonally as follows:

	0	1	2	3	4	5
0	0					
1		1				
2			2			
3				3		
4					4	

then \quad| | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | | | | | 5 |
| 1 | | 1 | | | | |
| 2 | | | 2 | | | |
| 3 | | | | 3 | | |
| 4 | | | | | 4 | |

then

	0	1	2	3	4	5
0	0					5
1	6	1				
2		7	2			
3			8	3		
4				9	4	

then | | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| 0 | 0 | | | | 10 | 5 |
| 1 | 6 | 1 | | | | 11 |
| 2 | | 7 | 2 | | | |
| 3 | | | 8 | 3 | | |
| 4 | | | | 9 | 4 | |

and ultimately

	0	1	2	3	4	5
0	0	25	20	15	10	5
1	6	1	26	21	16	11
2	12	7	2	27	22	17
3	18	13	8	3	28	23
4	24	19	14	9	4	29

Hence, for example, a solution to $x \equiv 2(\bmod 5) \& x \equiv 3(\bmod 6)$ is $27($ in row 2 , column 3).

Making such a table is not always practical. But the possibility of making such a table will enable us to establish a generalization of Fermat's Theorem. Fermat tells that, if $\operatorname{gcd}(a, p)=1$, then

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

Euler's Theorem will give us a certain function ϕ such that, if $\operatorname{gcd}(a, n)=1$, then

$$
a^{\phi(n)} \equiv 1 \quad(\bmod n) .
$$

11. NoVEmber 1, 2007 (ThURSDAY)

We have defined

$$
\mu(n)=(-1)^{r},
$$

if n is the product of r distinct primes; otherwise, $\mu(n)=0$. In particular, $\mu(1)=$ $(-1)^{0}=1$. We have shown that μ is multiplicative, that is,

$$
\mu(m n)=\mu(m) \cdot \mu(n),
$$

provided $\operatorname{gcd}(m, n)=1$. We have shown (\ddagger). From, this, we have established the Möbius Inversion Formula: if $(*)$, then (\dagger).

Now we define a new multiplicative function, the Euler phi-function: $\phi(n)$ is the number of x such that $0 \leqslant x<n$ and x is prime to n. Then
(a) $\phi(1)=1$;
(b) $\phi(p)=p-1$;
(c) $\phi\left(p^{r}\right)=p^{r}-p^{r-1}$ when $r>0$.

Indeed, suppose $\operatorname{gcd}\left(a, p^{r}\right) \neq 1$. Then $\operatorname{gcd}\left(a, p^{r}\right)=p^{k}$ for some positive k. In particular, $p \mid a$. Conversely, if $p \mid a$, then $p \mid \operatorname{gcd}\left(a, p^{r}\right)$, so $\operatorname{gcd}\left(a, p^{r}\right) \neq 1$. Therefore $\phi\left(p^{r}\right)$ is the number of integers x such that $0 \leqslant x<p^{r}$ and $p \nmid x$; so

$$
\phi\left(p^{r}\right)=p^{r}-\frac{p^{r}}{p}=p^{r} \cdot\left(1-\frac{1}{p}\right)
$$

If we can show ϕ is multiplicative, and $n=p_{1}{ }^{k(1)} \cdots p_{r}{ }^{k(r)}$, then

$$
\begin{aligned}
\phi(n) & =\phi\left(p_{1}^{k(1)}\right) \cdots \phi\left(p_{r}^{k(r)}\right) \\
& =p_{1}^{k(1)} \cdot\left(1-\frac{1}{p_{1}}\right) \cdots p_{r}^{k(r)} \cdot\left(1-\frac{1}{p_{r}}\right) \\
& =p_{1}^{k(1)} \cdots p_{r}^{k(r)} \cdot\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{r}}\right) \\
& =n \cdot\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{r}}\right) .
\end{aligned}
$$

But again, we must show ϕ is multiplicative. We do this with the Chinese Remainder Theorem.

Let us denote the set $\{x \in \mathbb{Z}: 0 \leqslant x<n\}$ by $[0, n)$. Assume $\operatorname{gcd}(m, n)=1$. If $x \in[0, m n)$, then there is a unique a in $[0, m)$ such that $x \equiv a(\bmod m)$; likewise, there is a unique b in $[0, n)$ such that $x \equiv b(\bmod n)$. Thus we have a function $x \mapsto(a, b)$ from $[0, m n)$ into $[0, m) \times[0, n)$. Moreover, if x is prime to $m n$, then it is prime to m and to n, so a is prime to m, and b is prime to n.

Convsersely, by the Chinese Remainder Theorem, for every a in $[0, m)$ and b in $[0, n)$, there is a unique x in $[0, m n)$ such that

$$
\left\{\begin{array}{l}
x \equiv a \quad(\bmod m) \\
x \equiv b \quad(\bmod n)
\end{array}\right.
$$

Moreover, if a is prime to m, and b is prime to n, then x is prime to m and to n, hence to $m n$ (that is, $\operatorname{lcm}(m, n)$). Therefore we have a bijection between the sets

$$
\{x \in[0, m n): \operatorname{gcd}(x, m n)=1\}
$$

and

$$
\{x \in[0, m): \operatorname{gcd}(x, m)=1\} \times\{x \in[0, n): \operatorname{gcd}(x, n)=1\} .
$$

Therefore the sizes of these sets are equal; but by definition of ϕ, these sizes are $\phi(m n)$ and $\phi(m) \cdot \phi(n)$.

The idea can be seen in a table, as

	0	1	2	3	4	5	6
0	0	8	16	24	4	12	20
1	21	1	9	17	25	5	13
2	14	22	2	10	18	26	6
3	7	15	23	3	11	19	27

This gives the function $x \mapsto(a, b)$ from $[0,28)$ to $[0,4) \times[0,7)$. For example, 18 is in row 2 and column 4 , so the function takes 18 to $(2,4)$. As 0 and 2 are not prime to 4 , we delete rows 0 and 2; as 0 is not prime to 7 , we delete column 0 . The numbers remaining
are prime to 28 ; and the number of these numbers-by definition, $\phi(28)$-is $2 \cdot 6$, which is $\phi(4) \cdot \phi(7)$.

	0	1	2	3	4	5	6
0							
1		1	9	17	25	5	13
2							
3		15	23	3	11	19	27

Burton [1] also uses a table of numbers, but written in the usual order:

0	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27

The numbers prime to 7 are all in the first column, so delete it:

1	2	3	4	5	6
8	9	10	11	12	13
15	16	17	18	19	20
22	23	24	25	26	27

Then the number of remaining columns is $\phi(7)$. In each of these columns, just two numbers are prime to 4 (since each column contains a complete set of residues modulo 4). If we delete the numbers not prime to 4 , what remains is the following:

1		3		5	
	9		11		13
15		17		19	
	23		25		27

Again, there are $\phi(4) \cdot \phi(7)$ numbers left, or $\phi(28)$.

$$
\text { 12. November 6, } 2007 \text { (TUESDAY) }
$$

We have defined

$$
\phi(n)=|\{x \in \mathbb{Z}: 0 \leqslant x<n \& \operatorname{gcd}(x, n)=1\}| .
$$

To find a particular value, we can use a variant of the Sieve of Eratosthenes. For example, say we want $\phi(30)$. As $30=2 \cdot 3 \cdot 5$, we write down the numbers from 0 to 29 (or 1 to 30) and eliminate the multiples of 2,3 , or 5 :

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
1		3	5		7		9		
	11		13		15		17	19	
21	23	25	27	29					
1		5	7						
11	13		17	19					
	23	25		29					
1				7					
11	13		17	19					
	23			29					

As 8 numbers remain, we have $\phi(30)=8$.
Our list of numbers had 10 columns and 3 rows. When we eliminated multiples of 2 and 5 , we eliminated the columns headed by $0,2,4,5,6$, and 8 . The remaining columns were headed by $1,3,7$, and 9 : four numbers. Therefore $\phi(10)=4$. In each of the remaining columns, the entries are incongruent modulo 3 . Indeed, the numbers differ by 10 or 20 , and these are not divisible by 3 . So, in each column, exactly one entry is a multiple of 3 . When it is eliminated, there are $4 \cdot 2$ entries remaining: this is $\phi(10) \cdot \phi(3)$. Thus, multiplicativity of ϕ is established. Alternatively, as last time, we can tabulate the numbers from 0 to 29 thus:

	0	1	2	3	4	5	6	7	8	9
0	0	21	12	3	24	15	6	27	18	9
1	10	1	22	13	4	25	16	7	28	19
2	20	11	2	23	14	5	26	17	8	29

Eliminating multiples of 2,3 , and 5 means eliminating certain columns and rows:

	0	1	2	3	4	5	6	7	8	9
0										
1		1		13				7		19
2		11		23				17		29

In general, we have

$$
\begin{aligned}
\phi(p) & =p-1 ; & & \\
\phi\left(p^{s}\right) & =p^{s}-p^{s-1}=p \cdot\left(1-\frac{1}{p}\right), & & \text { if } s>0 ; \\
\phi(m n) & =\phi(m) \cdot \phi(n), & & \text { if } \operatorname{gcd}(m, n)=1
\end{aligned}
$$

Hence, if n has the distinct prime divisors p_{1}, \ldots, p_{s}, then

$$
\phi(n)=n \cdot \prod_{k=1}^{s}\left(1-\frac{1}{p_{i}}\right) .
$$

We can write this more neatly as

$$
\phi(n)=n \cdot \prod_{p \mid n}\left(1-\frac{1}{p}\right) .
$$

For example,

$$
\phi(30)=30 \cdot\left(1-\frac{1}{2}\right) \cdot\left(1-\frac{1}{3}\right) \cdot\left(1-\frac{1}{5}\right)=30 \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{4}{5}=8 .
$$

Since 180 has the same prime divisors as 30 , we have

$$
\frac{\phi(180)}{\phi(30)}=\frac{180}{30}=6
$$

so $\phi(180)=6 \phi(30)=48$. But 15 and 30 do not have the same prime divisors, and we cannot expect $\phi(15) / \phi(30)$ to be $15 / 30$, or $1 / 2$; indeed, $\phi(15)=\phi(3) \cdot \phi(5)=2 \cdot 4=8=$ $\phi(30)$.

Theorem (Euler). If $\operatorname{gcd}(a, n)=1$, then

$$
a^{\phi(n)} \equiv 1 \quad(\bmod n) .
$$

Fermat's Theorem is the special case when $n=p$. But we do not generally have $a^{\phi(n)+1} \equiv a(\bmod n)$ for arbitrary a. For example, $\phi(12)=4$, but $2^{5}=32 \equiv 8(\bmod 12) ;$ so

$$
2^{\phi(12)+1} \not \equiv 2 \quad(\bmod 12) .
$$

Proof of Euler's Theorem. Assume $\operatorname{gcd}(a, n)=1$. We can write $\{x \in \mathbb{Z}: 0 \leqslant x<n \&$ $\operatorname{gcd}(x, n)=1\}$ as

$$
\left\{b_{1}, b_{2}, \ldots, b_{\phi(n)}\right\}
$$

Then we can obtain $a^{\phi(n)}$ from

$$
\prod_{k=1}^{\phi(n)}\left(a b_{k}\right)=a^{\phi(n)} \cdot \prod_{k=1}^{\phi(n)} b_{k}
$$

As the two products are invertible modulo n, it is enough now to show that the two products are congruent modulo n. As a is invertible modulo n, there is a function f from $\{0,1, \ldots, \phi(n)\}$ to itself such that

$$
a b_{i} \equiv b_{f(i)} \quad(\bmod n)
$$

for each i. Moreover, if $f(i)=f(j)$, then

$$
a b_{i} \equiv b_{f(i)} \equiv b_{f(j)} \equiv a b_{j} \quad(\bmod n)
$$

so $b_{i} \equiv b_{j}(\bmod n)$, hence $i=j$. So f is a permutation. Therefore

$$
\prod_{k=1}^{\phi(n)} b_{k} \equiv \prod_{k=1}^{\phi(n)} b_{f(k)} \equiv \prod_{k=1}^{\phi(n)}\left(a b_{k}\right) \quad(\bmod n)
$$

As noted, the claim now follows.
For example, to solve

$$
369^{19587} x \equiv 1 \quad(\bmod 1000)
$$

we compute

$$
\phi(1000)=\phi\left(10^{3}\right)=\phi\left(2^{3} \cdot 5^{3}\right)=\phi\left(2^{3}\right) \cdot \phi\left(5^{3}\right)=4 \cdot 100=400
$$

Now reduce the exponent:

$$
\frac{19587}{400}=48+\frac{387}{400}
$$

So we want to solve

$$
\begin{aligned}
369^{387} x & \equiv 1 \quad(\bmod 1000) \\
x & \equiv 369^{13} \quad(\bmod 1000)
\end{aligned}
$$

Now proceed, using that $13=8+4+1=2^{3}+2^{2}+1$. Multiplication modulo 1000 requires only three columns:

$$
\begin{aligned}
& 369 \text { so } 369^{2} \equiv 161 \quad(1000) ; \quad 161 \quad \text { so } 369^{4} \equiv 161^{2} \equiv 921 \quad(1000) ; \\
& \frac{369}{321} \quad \frac{161}{161} \\
& 14 \quad 66 \\
& \frac{7}{161} \quad \frac{1}{921} \\
& 921 \text { so } 369^{8} \equiv 921^{2} \equiv 241 \quad \text { (1000); } \\
& \frac{921}{921} \\
& 42 \\
& \frac{9}{241} \\
& 369^{13} \equiv 369^{8} \cdot 369^{4} \cdot 369 \equiv 241 \cdot 921 \cdot 369 \quad(1000) ; \\
& 241961 \\
& \frac{921}{241} \quad \frac{369}{649} \\
& 8266 \\
& \frac{9}{961} \quad \frac{3}{609}
\end{aligned}
$$

So the solution is $x \equiv 609(\bmod 1000)$.

Euler's Theorem gives a neat theoretical solution to Chinese-Remainder-Theorem problems: Suppose the integers n_{1}, \ldots, n_{s} are pairwise co-prime. Say we want to solve the system

$$
\left\{\begin{array}{l}
x \equiv a_{1} \quad\left(\bmod n_{1}\right) \\
\cdots \\
x \equiv a_{s} \quad\left(\bmod n_{s}\right)
\end{array}\right.
$$

Define

$$
\begin{gathered}
n=n_{1} \cdots n_{s} \\
N_{i}=\frac{n}{n_{i}} .
\end{gathered}
$$

Then the system is solved by

$$
x \equiv a_{1} \cdot N_{1}{ }^{\phi\left(n_{1}\right)}+\cdots+a_{s} \cdot N_{s}{ }^{\phi\left(n_{s}\right)}
$$

Indeed, we have

$$
N_{i}^{\phi\left(n_{i}\right)} \equiv \begin{cases}1 & \left(\bmod n_{i}\right) ; \\ 0 & \left(\bmod n_{j}\right), \quad \text { if } j \neq i\end{cases}
$$

As ϕ is multiplicative, so is

$$
n \mapsto \sum_{d \mid n} \phi(d) .
$$

What is this function? The function is determined by its values at prime powers; so look at these. We have

$$
\begin{aligned}
\sum_{d \mid p^{s}} \phi(d)=\sum_{k=0}^{s} \phi\left(p^{k}\right)=1+\sum_{k=1}^{s}\left(p^{k}-\right. & \left.p^{k-1}\right)= \\
& =1+(p-1)+\left(p^{2}-p\right)+\cdots+\left(p^{s}-p^{s-1}\right)=p^{s}
\end{aligned}
$$

Thus, the equation

$$
\sum_{d \mid n} \phi(d)=n
$$

holds when n is prime power. As both sides are multiplicative functions of n, the equation holds for all n. Thus we have

Theorem (Gauss). $\sum_{d \mid n} \phi(d)=n$ for all positive integers n.
For an alternative proof, partition the set $\{0,1, \ldots, n-1\}$ according to greatest common divisor with n. For example, suppose $n=12$. We can construct a table as follows, where the rows are labelled with the divisors of 12 . Each number x from 0 to 11 inclusive is assigned to row d, if $\operatorname{gcd}(x, 12)=d$.

	0	1	2	3	4	5	6	7	8	9	10	11
12	0											
6							6					
4					4				8			
3				3					9			
2			2								10	
1		1				5		7				11

But we have

$$
0 \leqslant x<12 \& \operatorname{gcd}(x, 12)=d \Longleftrightarrow \operatorname{gcd}\left(\frac{x}{d}, \frac{12}{d}\right)=1 \& 0 \leqslant \frac{x}{d}<\frac{12}{d}
$$

So the number of entries in row d is just $\phi(12 / d)$. There are 12 entries in some row, so $12=\sum_{d \mid 12} \phi(d)$.

Is there anything noticeable about the table? Try $n=20$:

20	0																	
10												0						
5						5												
4					4				8				12					
2			2				6								14		18	
1		1		3				7		9		11	1	13		17		19

The entries are symmetric about a vertical axis, except for 0 . Is there a theorem here? Define

$$
S_{n}=\{x \in \mathbb{Z}: 0 \leqslant x<n \& \operatorname{gcd}(x, n)=1\}
$$

so $\left|S_{n}\right|=\phi(n)$. It appears that, when $n>1$, then the average member of S_{n} is $n / 2$:

$$
\frac{\sum_{x \in S_{n}} x}{\phi(n)}=\frac{n}{2}
$$

Indeed, when $n>1$, then S_{n} has the permutation $x \mapsto n-x$, so

$$
2 \cdot \sum_{x \in S_{n}} x=\sum_{x \in S_{n}} x+\sum_{x \in S_{n}}(n-x)=\sum_{x \in S_{n}}(x+(n-x))=\sum_{x \in S_{n}} x=n \cdot \phi(n) .
$$

Therefore

$$
n>1 \Longrightarrow \sum_{x \in S_{n}}=\frac{n \cdot \phi(n)}{2}
$$

13. November 8, 2007 (Thursday)

Recall Gauss's Theorem:

$$
\begin{equation*}
\sum_{d \mid n} \phi(d)=n . \tag{*}
\end{equation*}
$$

We gave two proofs; each one exhibits some useful techniques.
Let us make the tabular proof more precise. If $d \mid n$, let

$$
S_{d}^{n}=\{x: 0 \leqslant x<n \& \operatorname{gcd}(x, n)=d\} .
$$

Then $[0, n)=\bigcup_{d \mid n} S_{d}^{n}$, and the sets S_{d}^{n} are disjoint as d varies over the divisors of n. Therefore

$$
n=|[0, n)|=\sum_{d \mid n}\left|S_{d}^{n}\right| .
$$

But we also have

$$
\begin{aligned}
x \in S_{d}^{n} & \Longleftrightarrow 0 \leqslant x<n \& \operatorname{gcd}(x, n)=d \\
& \Longleftrightarrow 0 \leqslant \frac{x}{d}<\frac{n}{d} \& \operatorname{gcd}\left(\frac{x}{d}, \frac{n}{d}\right)=1 \\
& \Longleftrightarrow \frac{x}{d} \in S_{1}^{n / d} .
\end{aligned}
$$

So we have a bijection $x \mapsto x / d$ from S_{d}^{n} to $S_{1}^{n / d}$, which means

$$
\left|S_{d}^{n}\right|=\left|S_{1}^{n / d}\right| .
$$

Also,

$$
\left|S_{1}^{n / d}\right|=\phi\left(\frac{n}{d}\right)
$$

So (\dagger) now becomes

$$
n=\sum_{d \mid n} \phi\left(\frac{n}{d}\right)=\sum_{d \mid n} \phi(d)
$$

The idea behind the last equation is frequently useful. For any function f (on the positive integers), we have

$$
\sum_{d \mid n} f\left(\frac{n}{d}\right)=\sum_{d \mid n} f(d)
$$

This is because the function $x \mapsto n / x$ is a permutation of the set of divisors of n.
Our other proof of Gauss's Theorem used the multiplicativeness of $(*)$. It was enough to show that these are equal when n was a prime power. This technique is frequently useful.

To $(*)$ we can apply the Möbius Inversion Formula to get

$$
\phi(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \cdot d=\sum_{d \mid n} \mu(d) \cdot \frac{n}{d}=n \cdot \sum_{d \mid n} \frac{\mu(d)}{d}
$$

and therefore

$$
\frac{\phi(n)}{n}=\sum_{d \mid n} \frac{\mu(d)}{d}
$$

But we also have $\phi(n)=n \cdot \prod_{p \mid n}(1-1 / p)$, so $\phi(n) / n=\prod_{p \mid n}(1-1 / p)$. Therefore

$$
\prod_{p \mid n}\left(1-\frac{1}{p}\right)=\sum_{d \mid n} \frac{\mu(d)}{d} .
$$

For example,

$$
\begin{aligned}
\sum_{d \mid 12} \frac{\mu(d)}{d}=\frac{\mu(1)}{1}+\frac{\mu(2)}{2}+\frac{\mu(3)}{3} & +\frac{\mu(4)}{4}+\frac{\mu(6)}{6}+\frac{\mu(12)}{12}= \\
& =1-\frac{1}{2}-\frac{1}{3}+\frac{1}{6}=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=\prod_{p \mid 12}\left(1-\frac{1}{p}\right) .
\end{aligned}
$$

Recall Euler's Theorem:

$$
\operatorname{gcd}(a, n)=1 \Longrightarrow a^{\phi(n)} \equiv 1 \quad(\bmod n)
$$

This can be improved in some cases. For example, $255=3 \cdot 5 \cdot 17$, so $\phi(255)=\phi(3)$. $\phi(5) \cdot \phi(17)=2 \cdot 4 \cdot 16=128$, and hence

$$
\operatorname{gcd}(a, 255)=1 \Longrightarrow a^{128} \equiv 1 \quad(\bmod 255)
$$

But by Fermat's Theorem,

$$
\begin{aligned}
3 \nmid a & \Longrightarrow a^{2} \equiv 1 \quad(\bmod 3) \Longrightarrow a^{16} \equiv 1 \quad(\bmod 3) ; \\
5 \nmid a & \Longrightarrow a^{4} \equiv 1 \quad(\bmod 5) \Longrightarrow a^{16} \equiv 1 \quad(\bmod 5) ; \\
17 \nmid a & \Longrightarrow a^{16} \equiv 1 \quad(\bmod 17) .
\end{aligned}
$$

Therefore $\operatorname{gcd}(a, 255)=1 \Longrightarrow a^{16} \equiv 1(\bmod 3,5,17)$, that is,

$$
\operatorname{gcd}(a, 255)=1 \Longrightarrow a^{16} \equiv 1 \quad(\bmod 255)
$$

In general, the order of a modulo n is the least positive k such that

$$
a^{k} \equiv 1 \quad(\bmod n)
$$

If such k does exist, then $a^{k}-1=n \cdot \ell$ for some ℓ, so

$$
a \cdot a^{k-1}-n \cdot \ell=1
$$

and therefore $\operatorname{gcd}(a, n)=1$. Conversely, if $\operatorname{gcd}(a, n)=1$, then $a^{\phi(n)} \equiv 1(\bmod n)$, so a has an order modulo n.

Assuming $\operatorname{gcd}(a, n)=1$, let us denote the order of a modulo n by

$$
\operatorname{ord}_{n}(a) .
$$

For example, what is $\operatorname{ord}_{17}(2)$? Just compute powers of 2 modulo 17:

$$
2,4,8,16 \equiv-1,-2,-4,-8,-16 \equiv 1
$$

Then $\operatorname{ord}_{17}(2)=8$. We also have

$$
\begin{aligned}
3,9 \equiv-8,-24 \equiv-7,-21 \equiv-4,-12 \equiv 5,15 \equiv-2, & -6,-18 \equiv-1 \\
& -3,8,7,4,-5,2,6,1
\end{aligned}
$$

Note how, halfway through, we just change signs. So $\operatorname{ord}_{17}(3)=16$.

$$
\text { 14. November 20, } 2007 \text { (TuESDAY) }
$$

We have computed

k	1	2	3	4	5	6	7	8	
$3^{k}(\bmod 17)$	3	-8	-7	-4	5	-2	-6	-1	
k	9	10	11	12	13	14	15	16	
3^{k}	$(\bmod 17)$	-3	8	7	4	-5	2	6	1

Hence 16 is the least positive k such that $3^{k} \equiv 1(\bmod 17)$, so $\operatorname{ord}_{17}(3)=16$. From the table we extract

k	1	2	3	4	5	6	7	8
$(-8)^{k}$	$(\bmod 17)$	-8	-4	-2	-1	8	4	2

which means $\operatorname{ord}_{17}(-8)=8$. Likewise, $\operatorname{ord}_{17}(-4)=4$, and $\operatorname{ord}_{17}(-1)=2$. So we have

a	1	2	3	4	5	6	7	8
$\operatorname{ord}_{17}(a)$	1		16					
$\operatorname{ord}_{17}(-a)$	2			4				8

How can we complete the table? For example, what is $\operatorname{ord}_{17}(-7)$? Since $-7 \equiv 3^{3}$ $(\bmod 17)$, and $\operatorname{gcd}(3,16)=1$, we have $\operatorname{ord}_{17}(-7)=16$. Likewise, $\operatorname{ord}_{17}(5)=16$. But $\operatorname{ord}_{17}(-2)=16 / \operatorname{gcd}(6,16)=8$, since $-2 \equiv 3^{6}(\bmod 17)$. This is by a general theorem to be proved presently. We complete the table thus:

a	1	2	3	4	5	6	7	8
$\operatorname{ord}_{17}(a)$	1	8	16	4	16	16	16	8
$\operatorname{ord}_{17}(-a)$	2	8	16	4	16	16	16	8

Theorem. Suppose $\operatorname{gcd}(a, n)=1$. Then
(a) $a^{k} \equiv 1(\bmod n)$ if and only if $\operatorname{ord}_{n}(a) \mid k$.
(b) $\operatorname{ord}_{n}\left(a^{s}\right)=\operatorname{ord}_{n}(a) / \operatorname{gcd}\left(s, \operatorname{ord}_{n}(a)\right)$.
(c) $a^{k} \equiv a^{\ell}$ if and only if $k \equiv \ell\left(\bmod \operatorname{ord}_{n}(a)\right)$.

Proof. For (a), the reverse direction is easy. For the forward direction, suppose $a^{k} \equiv 1$ $(\bmod n)$. Now use division:

$$
k=\operatorname{ord}_{n}(a) \cdot s+r
$$

for some s and r, where $0 \leqslant r<\operatorname{ord}_{n}(a)$. Then

$$
1 \equiv a^{k} \equiv a^{\operatorname{ord}_{n}(a) \cdot s+r} \equiv\left(a^{\operatorname{ord}_{n}(a)}\right)^{s} \cdot a^{r} \equiv a^{r} \quad(\bmod n)
$$

By minimality of $\operatorname{ord}_{n}(a)$ as an integer k such that $a^{k} \equiv 1(\bmod n)$, we conclude $r=0$. This means $\operatorname{ord}_{n}(a) \mid k$.

To prove (b), by (a) we have, modulo n,

$$
\left(a^{s}\right)^{k} \equiv 1 \Longleftrightarrow a^{s k} \equiv 1 \Longleftrightarrow \operatorname{ord}_{n}(a)\left|s k \Longleftrightarrow \frac{\operatorname{ord}_{n}(a)}{\operatorname{gcd}\left(s, \operatorname{ord}_{n}(a)\right)}\right| k,
$$

but also

$$
\left(a^{s}\right)^{k} \equiv 1 \Longleftrightarrow \operatorname{ord}_{n}\left(a^{s}\right) \mid k
$$

Hence

$$
\frac{\operatorname{ord}_{n}(a)}{\operatorname{gcd}\left(s, \operatorname{ord}_{n}(a)\right)}\left|k \Longleftrightarrow \operatorname{ord}_{n}\left(a^{s}\right)\right| k
$$

This is true for all k. Since orders are positive, we conclude

$$
\frac{\operatorname{ord}_{n}(a)}{\operatorname{gcd}\left(s, \operatorname{ord}_{n}(a)\right)}=\operatorname{ord}_{n}\left(a^{s}\right)
$$

Finally, (c) follows from (a), since

$$
\begin{aligned}
a^{k} \equiv a^{\ell} \quad(\bmod n) & \Longleftrightarrow a^{k-\ell} \equiv 1 \quad(\bmod n) \\
& \Longleftrightarrow \operatorname{ord}_{n}(a) \mid k-\ell \\
& \Longleftrightarrow k \equiv \ell \quad\left(\bmod \operatorname{ord}_{n}(a)\right)
\end{aligned}
$$

(We have used that $\operatorname{gcd}(a, n)=1$, so that $a^{-\ell}$ exists.)
Hence, from

k	1	2	3	4	5	6	7	8	9
$2^{k}(\bmod 19)$	2	4	8	-3	-6	7	-5	9	-1
$2^{k+9}(\bmod 19)$	-2	-4	-8	3	6	-7	5	-9	1

we obtain

a	1	2	3	4	5	6	7	8	9
$\operatorname{ord}_{19}(a)$	1	18	18	9	9	9	3	6	9
$\operatorname{ord}_{19}(-a)$	2	9	9	18	18	18	6	3	18

since

$$
\begin{aligned}
\operatorname{ord}_{19}\left(2^{k}\right)=18 & \Longleftrightarrow \operatorname{gcd}(k, 18)=1 \\
& \Longleftrightarrow k \equiv 1,5,7,11,13,17 \quad(\bmod 18) \\
& \Longleftrightarrow 2^{k} \equiv 2,-6,-5,-4,3,-9 \quad(\bmod 19) \\
\operatorname{ord}_{19}\left(2^{k}\right)=9 & \Longleftrightarrow \operatorname{gcd}(k, 18)=2 \\
& \Longleftrightarrow k \equiv 2,4,8,10,14,16 \quad(\bmod 18) \\
& \Longleftrightarrow 2^{k} \equiv 4,-3,9,-2,6,5 \quad(\bmod 19)
\end{aligned}
$$

$\operatorname{ord}_{19}\left(2^{k}\right)=6 \Longleftrightarrow \operatorname{gcd}(k, 18)=3$
$\Longleftrightarrow k \equiv 3,15 \quad(\bmod 18)$
$\Longleftrightarrow 2^{k} \equiv 8,-7 \quad(\bmod 19)$,
$\operatorname{ord}_{19}\left(2^{k}\right)=3 \Longleftrightarrow \operatorname{gcd}(k, 18)=6$
$\Longleftrightarrow k \equiv 6,12 \quad(\bmod 18)$
$\Longleftrightarrow 2^{k} \equiv 7,-8 \quad(\bmod 19)$,
$\operatorname{ord}_{19}\left(2^{k}\right)=2 \Longleftrightarrow \operatorname{gcd}(k, 18)=9$
$\Longleftrightarrow k \equiv 9 \quad(\bmod 18)$
$\Longleftrightarrow 2^{k} \equiv-1 \quad(\bmod 19)$.

If $d \mid 19$, let $\psi(d)$ be the number of incongruent residues modulo 19 that have order d. Then we have

d	$\psi(d)$
18	6
9	6
6	2
3	2
2	1
1	1

Note that $\psi(d)=\phi(d)$ here.
We can understand what we are doing algebraically as follows. The set of congruenceclasses modulo n is denoted by

$$
\mathbb{Z} /(n)
$$

or $\mathbb{Z} / n \mathbb{Z}$. On this set, addition and multiplication are well-defined: the set is a ring. The set of multiplicatively invertible elements of the ring is denoted by

$$
(\mathbb{Z} /(n))^{\times} .
$$

This set is closed under multiplication and inversion: it is a (multiplicative) group. Suppose $k \in(\mathbb{Z} /(n))^{\times}$. (More precisely one might write the element as $k+(n)$ or \bar{k}.) Then we have the function

$$
x \mapsto k^{x}
$$

from \mathbb{Z} to $(\mathbb{Z} /(n))^{\times}$. Since $k^{x+y}=k^{x} \cdot k^{y}$, this function is a homomorphism from the additive group \mathbb{Z} to the multiplicative group $(\mathbb{Z} /(n))^{\times}$.

We have shown that the function $x \mapsto 2^{x}$ is surjective onto $(\mathbb{Z} /(19))^{\times}$, and its kernel is (18). Hence (by the First Isomorphism Theorem for Groups), this function is an isomorphism from $\mathbb{Z} /(18)$ onto $(\mathbb{Z} /(19))^{\times}$:

$$
\begin{aligned}
\mathbb{Z} /(18) & \cong(\mathbb{Z} /(19))^{\times} \\
(\{0,1,2, \ldots, 17\},+) & \cong(\{1,2,3, \ldots, 18\}, \cdot)
\end{aligned}
$$

If $\operatorname{gcd}(a, n)=1$, and $\operatorname{ord}_{n}(a)=\phi(n)$, then a is called a primitive root of n. So we have shown that 3 , but not 2 , is a primitive root of 17 , and 2 is a primitive root of 19 . There is no formula for determining primitive roots: we just have to look for them. But once we know that 2 is a primitive root of 19 , then we know that $2^{5}, 2^{7}, 2^{11}, 2^{13}$, and 2^{17} are primitive roots - or rather, $-6,-5,-4,3$, and -9 are primitive roots.

Theorem. Every prime number has a primitive root.
Proof. If $d \mid p-1$, let $\psi(d)$ be the number of incongruent residues modulo p that have order d. We shall show $\psi(p-1) \neq 0$. In fact, we shall show $\psi(d)=\phi(d)$.

Every number prime to p has an order modulo p, and this order divides $\phi(p)$, which is $p-1$; so

$$
\sum_{d \mid p-1} \psi(d)=p-1
$$

By Gauss's Theorem we have $\sum_{d \mid p-1} \phi(d)=p-1$; therefore

$$
\begin{equation*}
\sum_{d \mid p-1} \psi(d)=\sum_{d \mid p-1} \phi(d) \tag{*}
\end{equation*}
$$

Hence, to establish $\psi(d)=\phi(d)$, it is enough to show that $\psi(d) \leqslant \phi(d)$ whenever $d \mid p-1$. Indeed, if we show this, but $\psi(e)<\phi(e)$ for some divisor e of $p-1$, then

$$
\sum_{d \mid p-1} \psi(d)=\sum_{\substack{d \mid p-1 \\ d \neq e}} \psi(d)+\psi(e)<\sum_{\substack{d \mid p-1 \\ d \neq e}} \phi(d)+\phi(e)=\sum_{d \mid p-1} \phi(d)
$$

contradicting $(*)$.
If $\psi(d)=0$, then certainly $\psi(d) \leqslant \phi(d)$. So suppose $\psi(d) \neq 0$. Then $\operatorname{ord}_{p}(a)=d$ for some a. In particular, a is a solution of the congruence

$$
x^{n}-1 \equiv 0 \quad(\bmod p)
$$

But then every power of a is a solution, since $\left(a^{k}\right)^{n}=\left(a^{n}\right)^{k}$. Moreover, if $0<k<\ell \leqslant n$, then

$$
a^{k} \not \equiv a^{\ell} \quad(\bmod p)
$$

by the earlier theorem. Hence the numbers a, a^{2}, \ldots, a^{n} are incongruent solutions to the congruence (\dagger). Among these solutions, those that have order n modulo p are just those powers a^{k} such that $\operatorname{gcd}(k, n)=1$. The number of such powers is just $\phi(n)$.

Every number that has order n modulo p is a solution to (\dagger). So we have that $\psi(d)=$ $\phi(d)$ (under the assumption $\psi(d)>0$), provided we can show that every solution to (\dagger) is on the list a, a^{2}, \ldots, a^{n}. But this is a consequence of the following theorem.

$$
\text { 15. November 22, } 2007 \text { (ThursDAY) }
$$

Theorem (Lagrange). Every congruence of the form

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n} \equiv 0 \quad(\bmod p)
$$

has n solutions or fewer (modulo p).
Proof. Use induction. The claim is trivially true when $n=0$. Suppose it is true when $n=k$. Say the congruence

$$
\begin{equation*}
x^{k+1}+a_{1} x^{k}+\cdots+a_{k} x+a_{k+1} \equiv 0 \quad(\bmod p) \tag{*}
\end{equation*}
$$

has a solution b. Then we can factorize the left member, and rewrite the congruence as

$$
(x-a) \cdot\left(x^{k}+c_{1} x^{k-1}+\cdots+c_{k-1} x+c_{k}\right) \equiv 0 \quad(\bmod p) .
$$

Any solution to this that is different from a is a solution of

$$
x^{k}+c_{1} x^{k-1}+\cdots+c_{k-1} x+c_{k} \equiv 0 \quad(\bmod p)
$$

But by inductive hypothesis, there are at most k such solutions. Therefore (*) has at most $k+1$ solutions. This completes the induction and the proof.

How did we use that p is prime? We needed to know that, if $f(x)$ and $g(x)$ are polynomials, and $f(a) \cdot g(a) \equiv 0(\bmod p)$, then either $f(a) \equiv 0(\bmod p)$, or else $g(a) \equiv 0$ $(\bmod p)$. That is, if $m n \equiv 0(\bmod p)$, then either $m \equiv 0(\bmod p)$ or $n \equiv 0(\bmod p)$. That is, if $p \mid m n$, then $p \mid m$ or $p \mid n$. This fails if p is replaced by a composite number.

From analysis, we have

$$
\exp : \mathbb{R} \rightarrow \mathbb{R}^{\times}
$$

Here, $\mathbb{R}^{\times}=\mathbb{R} \backslash\{0\}$ (the multiplicatively invertible real numbers), and $\exp (x+y)=$ $\exp (x) \cdot \exp (y)$. The range of \exp is $(0, \infty)$, which is closed under multiplication and inversion. So exp is an isomorphism from $(\mathbb{R},+)$ onto $((0, \infty), \cdot)$. We have been looking at a similar isomorphism in discrete mathematics.

We have $\left|(\mathbb{Z} /(n))^{\times}\right|=\phi(n)$. A primitive root of n, if it exists, is a generator of the multiplicative group $(\mathbb{Z} /(n))^{\times}$. In particular:
(a) $(\mathbb{Z} /(2))^{\times}=\{1\}$, so 1 is a primitive root of 2 .
(b) $(\mathbb{Z} /(3))^{\times}=\{1,2\}$, and $2^{2} \equiv 1(\bmod 3)$, so 2 is a primitive root of 3 .
(c) $(\mathbb{Z} /(4))^{\times}=\{1,3\}$, and $3^{2} \equiv 1(\bmod 4)$, so 3 is a primitive root of 4 .
(d) $(\mathbb{Z} /(5))^{\times}=\{1,2,3,4\}$, and $2^{2} \equiv 4,2^{3} \equiv 3$, and $2^{4} \equiv 1(\bmod 5)$, so 2 is a primitive root of 5 .
(e) $(\mathbb{Z} /(6))^{\times}=\{1,5\}$, and $5^{2} \equiv 1(\bmod 6)$, so 5 is a primitive root of 6 .
(f) $(\mathbb{Z} /(7))^{\times}=\{1,2,3,4,5,6\}$, and we have

k	1	2	3	4	5	6
2^{k}	2	4	1			
3^{k}	3	2	6	4	5	1

so 3 (but not 2) is a primitive root of 7 .
(g) $(\mathbb{Z} /(8))^{\times}=\{1,3,5,7\}$, but $3^{2} \equiv 1,5^{2} \equiv 1$, and $7^{2} \equiv 1(\bmod 8)$, so 8 has no primitive root.
We have shown that primes have primitive roots, but the converse fails: not every number with a primitive root is prime. In fact, the following numbers have primitive roots:
(a) powers of odd primes;
(b) 2 and 4;
(c) doubles of powers of odd primes.

16. November 29, 2007 (Thursday)

Modulo 17, we have

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3^{k}	1	3	9	10	13	5	15	11	16	14	8	7	4	12	2	6

Reordering, we have

3^{k}	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
k	0	14	1	12	5	15	11	10	2	3	7	13	4	9	6	8

If $3^{k}=\ell$, then we can denote k by $\log _{3} \ell$. But we can think of these numbers as congruence-classes:

$$
3^{k} \equiv \ell \quad(\bmod 17) \Longleftrightarrow k \equiv \log _{3} \ell \quad(\bmod 16)
$$

The usual properties hold:

$$
\log _{3}(x y) \equiv \log _{3} x+\log _{3} y \quad(\bmod 16) ; \quad \log _{3} x^{n} \equiv n \log _{3} x \quad(\bmod 16) .
$$

For example,

$$
\log _{3}(11 \cdot 14) \equiv \log _{3} 11+\log _{3} 14 \equiv 7+9 \equiv 16 \equiv 0 \quad(\bmod 16),
$$

and therefore $11 \cdot 17 \equiv 3^{0} \equiv 1(\bmod 17)$.

In general, the base of logarithms will be a primitive root. If b is a primitive root of n, and $\operatorname{gcd}(a, n)=1$, then there is some s such that

$$
b^{s} \equiv a \quad(\bmod n)
$$

Then s is unique modulo $\phi(n)$. Indeed, recall that

$$
b^{x} \equiv b^{y} \quad(\bmod n) \Longleftrightarrow x \equiv y \quad(\bmod \phi(n))
$$

The least non-negative such s is defined to be $\log _{b} a$, modulo n.
Another application of logarithms, besides multiplication problems, is congruences of the form

$$
x^{d} \equiv a \quad(\bmod n)
$$

This is equivalent to

$$
\begin{aligned}
\log _{b} x^{d} & \equiv \log _{b} a \quad(\bmod \phi(n)) \\
d \log _{b} x & \equiv \log _{b} a \quad(\bmod \phi(n))
\end{aligned}
$$

If this is to have a solution, then we must have

$$
\operatorname{gcd}(d, \phi(n)) \mid \log _{b} a .
$$

For example, let's work modulo 7:

k	0	1	2	3	4	5								
3^{k}	1	3	2	6	4	5								
ℓ							\quad	ℓ	1	2	3	4	5	6
---:	---:	---:	---:	---:	---:	---:								
$\log _{3} \ell$	0	2	1	4	5	3								

Then we have, for example,

$$
x^{3} \equiv 2 \quad(\bmod 7) \Longleftrightarrow 3 \log _{3} x \equiv 2 \quad(\bmod 6)
$$

so there is no solution, since $\operatorname{gcd}(3,6)=3$, and $3 \nmid 2$. But we also have

$$
\begin{aligned}
x^{3} \equiv 6 \quad(\bmod 7) & \Longleftrightarrow 3 \log _{3} x \equiv 3 \quad(\bmod 6) \\
& \Longleftrightarrow \log _{3} x \equiv 1 \quad(\bmod 2) \\
& \Longleftrightarrow \log _{3} x \equiv 1,3,5 \quad(\bmod 6) \\
& \Longleftrightarrow x \equiv 3^{1}, 3^{3}, 3^{5} \quad(\bmod 7) \\
& \Longleftrightarrow x \equiv 3,6,5 \quad(\bmod 7)
\end{aligned}
$$

We expect no more than 3 solutions, by the Lagrange's Theorem. Is there an alternative to using logarithms? As $6 \equiv 3^{3}(\bmod 7)$, we have

$$
x^{3} \equiv 6 \quad(\bmod 7) \Longleftrightarrow x^{3} \equiv 3^{3} \quad(\bmod 7) ;
$$

but we cannot conclude from this $x \equiv 3(\bmod 7)$.

17. DECEMBER 4, 2007 (TUESDAY)

For congruences modulo 11, we can use the following table:

	k	1	2	3	4	5	6	7	8	9	10	$\log _{2} \ell$	$(\bmod 10)$
2^{k}	$(\bmod 11)$	2	4	-3	5	-1	-2	-4	3	-5	1	ℓ	

We have then

$$
\begin{aligned}
4 x^{15} \equiv 7 \quad(\bmod 11) & \Longleftrightarrow 4 x^{5} \equiv 7 \quad(\bmod 11) \\
& \Longleftrightarrow \log _{2}\left(4 x^{5}\right) \equiv \log _{2} 7 \quad(\bmod 10) \\
& \Longleftrightarrow \log _{2} 4+5 \log _{2} x \equiv \log _{2} 7 \quad(\bmod 10) \\
& \Longleftrightarrow 2+5 \log _{2} x \equiv 7 \quad(\bmod 10) \\
& \Longleftrightarrow 5 \log _{2} x \equiv 5 \quad(\bmod 10) \\
& \Longleftrightarrow \log _{2} x \equiv 1 \quad(\bmod 2) \\
& \Longleftrightarrow \log _{2} x \equiv 1,3,5,7,9(\bmod 10) \\
& \Longleftrightarrow x \equiv 2^{1}, 2^{3}, 2^{5}, 2^{7}, 2^{9}(\bmod 11) \\
& \Longleftrightarrow x \equiv 2,8,10,7,6 \quad(\bmod 11) .
\end{aligned}
$$

Why are there five solutions?
Theorem. Suppose n has a primitive root r, so that logarithms with base r are defined. (So $a \equiv r^{b}(\bmod n)$ if and only if $\log _{r} a \equiv b(\bmod \phi(n))$, when $\operatorname{gcd}(a, n)=1$.) Assume $\operatorname{gcd}(a, n)=1$. Let $d=\operatorname{gcd}(k, \phi(n))$. Then the following are equivalent:
(a) The congruence $x^{k} \equiv a(\bmod n)$ is soluble.
(b) The congruence has d solutions.
(c) $a^{\phi(n) / d} \equiv 1(\bmod n)$.

Proof. The following are equivalent:

$$
\begin{aligned}
& x^{k} \equiv a(\bmod n) \text { is soluble; } \\
& k \log x \equiv a \quad(\bmod \phi(n)) \text { if soluble; } \\
& d \mid \log a ; \\
& \phi(n) \left\lvert\, \frac{\phi(n)}{d} \cdot \log a\right. ; \\
& \frac{\phi(n)}{d} \cdot \log a \equiv 0 \quad(\bmod \phi(n)) ; \\
& \log a^{\phi(n) / d} \equiv 0 \quad(\bmod \phi(n)) ; \\
& a^{\phi(n) / d} \equiv 1 \quad(\bmod n) .
\end{aligned}
$$

Thus $(\mathrm{a}) \Longleftrightarrow(\mathrm{c})$. Trivially, $(\mathrm{b}) \Longrightarrow(\mathrm{a})$. Finally, assume (a), so that $d \mid \log a$, as above. Then

$$
\begin{aligned}
& x^{k} \equiv a \quad(\bmod n) \Longleftrightarrow k \log x \equiv \log a(\bmod \phi(n)) \\
& \Longleftrightarrow \frac{k}{d} \cdot \log x \equiv \frac{\log a}{d}\left(\bmod \frac{\phi(n)}{d}\right) \\
& \Longleftrightarrow \log x \equiv \frac{\log a}{k}\left(\bmod \frac{\phi(n)}{d}\right) \\
& \Longleftrightarrow \log x \equiv \frac{\log a}{k}+\frac{\phi(n)}{d} \cdot j(\bmod \phi(n)), \\
& \text { where } j \in\{0,1, \ldots, d-1\} \\
& \Longleftrightarrow x \equiv r^{(\log a) / k} \cdot\left(r^{\phi(n) / d}\right)^{j}(\bmod n), \\
& \text { where } j \in\{0,1, \ldots, d-1\} .
\end{aligned}
$$

These d solutions are incongruent, as $\operatorname{ord}_{n}(r)=\phi(n)$.

We know that all primes have primitive roots. Now we show that the numbers with primitive roots are precisely:

$$
2,4, p^{s}, 2 \cdot p^{s}
$$

where p is an odd prime, and $s \geqslant 1$. We shall first show that the numbers not on this list do not have primitive roots:

Lemma. If $k>2$, then $2 \mid \phi(k)$.
Proof. Suppose $k>2$. Then either $k=2^{s}$, where $s>1$, or else $k=p^{s} \cdot m$ for some odd prime p, where $s>0$ and $\operatorname{gcd}(p, m)=1$. In the first case, $\phi(k)=2^{s}-2^{s-1}=2^{s-1}$, which is even. In the second case, $\phi(k)=\phi\left(p^{s}\right) \cdot \phi(m)$, which is even, since $\phi\left(p^{s}\right)=p^{s}-p^{s-1}$, the difference of two odd numbers.

Theorem. If m and n are co-prime, both greater than 2 , then $m n$ has no primitive root.
Proof. Suppose $\operatorname{gcd}(a, m n)=1$. (This is the only possibility for a primitive root.) Then a is prime to m and n, so

$$
\begin{gathered}
a^{\phi(m)} \equiv 1 \quad(\bmod m) ; \quad a^{\phi(n)} \equiv 1 \quad(\bmod n) \\
a^{\operatorname{lcm}(\phi(m), \phi(n))} \equiv 1 \quad(\bmod m, n) \\
a^{\operatorname{lcm}(\phi(m), \phi(n))} \equiv 1 \quad(\bmod \operatorname{lcm}(m, n)) \\
a^{\operatorname{lcm}(\phi(m), \phi(n))} \equiv 1 \quad(\bmod m n)
\end{gathered}
$$

By the lemma, 2 divides both $\phi(m)$ and $\phi(n)$, so

$$
\operatorname{lcm}(\phi(m), \phi(n)) \left\lvert\, \frac{\phi(m) \phi(n)}{2}\right.
$$

that is, $\operatorname{lcm}(\phi(m), \phi(n)) \mid \phi(m n) / 2$. Therefore

$$
\operatorname{ord}_{m n}(a) \leqslant \frac{\phi(m n)}{2}
$$

so a is not a primitive root of $m n$.
Theorem. If $k \geqslant 0$, then 2^{3+k} has no primitive root.
Proof. Any primitive root of 2^{3+k} must be odd. Let a be odd. We shall show by induction that

$$
a^{\phi\left(2^{3+k}\right) / 2} \equiv 1 \quad\left(\bmod 2^{3+k}\right)
$$

This means, since $\phi\left(2^{3+k}\right)=2^{3+k}-2^{2+k}=2^{2+k}$, that we shall show

$$
a^{2^{1+k}} \equiv 1 \quad\left(\bmod 2^{3+k}\right)
$$

The claim is true when $k=0$, since $a^{2} \equiv 1(\bmod 8)$ for all odd numbers a. Suppose the claim is true when $k=\ell$: that is,

$$
a^{2^{2+\ell}} \equiv 1 \quad\left(\bmod 2^{3+\ell}\right)
$$

This means

$$
a^{2^{1+\ell}}=1+2^{3+\ell} \cdot m
$$

for some m. Now square:

$$
a^{2^{2+\ell}}=\left(a^{2^{1+\ell}}\right)^{2}=\left(1+2^{3+\ell} \cdot m\right)^{2}=1+2^{4+\ell} \cdot m+2^{6+2 \ell} \cdot m^{2}
$$

Hence $a^{2^{2+\ell}} \equiv 1\left(\bmod 2^{4+\ell}\right)$, that is,

$$
a^{2^{1+(\ell+1)}} \equiv 1 \quad\left(\bmod 2^{3+(\ell+1)}\right) ;
$$

so our claim is true when $k=\ell+1$. This completes the induction and the proof.
Now for the positive results. These will use the following.
Lemma. Let r be a primitive root of p, and $k>0$. Then

$$
\operatorname{ord}_{p^{k}}(r)=(p-1) p^{\ell}
$$

for some ℓ, where $0 \leqslant \ell<k$.
Proof. Let $\operatorname{ord}_{p^{k}}(r)=n$. Then $n \mid \phi\left(p^{k}\right)$. But $\phi\left(p^{k}\right)=p^{k}-p^{k-1}=(p-1) \cdot p^{k-1}$. Thus,

$$
n \mid(p-1) \cdot p^{k-1}
$$

Also, $r^{n} \equiv 1\left(\bmod p^{k}\right)$, so $r^{n} \equiv 1(\bmod p)$, which means $\operatorname{ord}_{p}(r) \mid n$. But r is a primitive root of p, so $\operatorname{ord}_{p}(r)=\phi(p)=p-1$. Therefore

$$
p-1 \mid n
$$

The claim now follows.
Lemma. p^{2} has a primitive root. In fact, if r is a primitive root of p, then either r or $r+p$ is a primitive root of p^{2}.

Proof. Let r be a primitive root of p. If r is a primitive root of p^{2}, then we are done. Suppose r is not a primitive root of p^{2}. Then $\operatorname{ord}_{p^{2}}(r)=p-1$, by the last lemma. Hence, modulo p^{2}, we have

$$
\begin{aligned}
(r+p)^{p-1} & \equiv r^{p-1}+(p-1) \cdot r^{p-2} \cdot p+\binom{p-1}{2} \cdot r^{p-3} \cdot p^{2}+\cdots \\
& \equiv r^{p-1}+(p-1) \cdot r^{p-2} \cdot p \\
& \equiv 1+(p-1) \cdot r^{p-2} \cdot p \\
& \equiv 1-r^{p-2} \cdot p \\
& \not \equiv 1
\end{aligned}
$$

since $p \nmid r$. (Note that this argument holds even if $p=2$.) Hence $\operatorname{ord}_{p^{2}}(r+p) \neq p-1$, so by the lemma, the order must be $(p-1) \cdot p$, that is, $\phi\left(p^{2}\right)$. This means r is a primitive root of p^{2}.
Theorem. All odd prime powers (that is, all powers of odd primes) have primitive roots. In fact, a primitive root of p^{2} is a primitive root of every power p^{2+k}.
Proof. Assume p is an odd prime. We know p and p^{2} have primitive roots. Let r be a primitive root of p^{2}. We prove by induction that r is a primitive root of p^{2+k}. The claim is trivially true when $k=0$. Suppose it is true when $k=\ell$. This means

$$
\operatorname{ord}_{p^{2+\ell}}(r)=(p-1) \cdot p^{1+\ell}
$$

In particular,

$$
r^{(p-1) \cdot p^{\ell}} \not \equiv 1 \quad\left(\bmod p^{2+\ell}\right)
$$

However, since $\phi\left(p^{1+\ell}\right)=(p-1) \cdot p^{\ell}$, we have

$$
r^{(p-1) \cdot p^{\ell}} \equiv 1 \quad\left(\bmod p^{1+\ell}\right)
$$

These two congruences imply that

$$
r^{(p-1) \cdot p^{\ell}}=1+p^{1+\ell} \cdot m
$$

for some m that is indivisible by p. Now raise both sides of this equation to the power p :

$$
\begin{aligned}
r^{(p-1) \cdot p^{\ell+1}} & =\left(r^{(p-1) \cdot p^{\ell}}\right)^{p} \\
& =\left(1+p^{1+\ell} \cdot m\right)^{p} \\
& =1+p \cdot p^{1+\ell} \cdot m+\binom{p}{2} \cdot\left(p^{1+\ell} \cdot m\right)^{2}+\binom{p}{3} \cdot\left(p^{1+\ell} \cdot m\right)^{3}+\cdots \\
& =1+p^{1+(\ell+1)} \cdot m+\binom{p}{2} \cdot p^{2+2 \ell} \cdot m^{2}+\binom{p}{3} \cdot p^{3+3 \ell} \cdot m^{3}+\cdots .
\end{aligned}
$$

Since $p>2$, so that $\left.p \left\lvert\, \begin{array}{l}p \\ 2\end{array}\right.\right)$, we have

$$
\begin{aligned}
r^{(p-1) \cdot p^{\ell+1}} & \equiv 1+p^{1+(\ell+1)} \cdot m \quad\left(\bmod p^{2+(\ell+1)}\right) \\
& \equiv 1 \quad\left(\bmod p^{2+(\ell+1)}\right) .
\end{aligned}
$$

Therefore we must have

$$
\operatorname{ord}_{p^{2+(\ell+1)}}(r)=(p-1) \cdot p^{1+(\ell+1)}=\phi\left(p^{2+(\ell+1)}\right),
$$

which means r is a primitive root of $p^{2+(\ell+1)}$.
It remains to show that $2 \cdot p^{s}$ also has a primitive root.

18. December 6, 2007 (Thursday)

If $\operatorname{gcd}(r, n)=1$, then the following are equivalent:
(a) r is a primitive root of n;
(b) $\operatorname{ord}_{n}(r)=\phi(n)$;
(c) if $\operatorname{gcd}(a, n)=1$, then $a \equiv r^{b}(\bmod n)$ for some b.

We have shown:
(a) Every prime p has a primitive root, r;
(b) either r or $r+p$ is a primitive root of p^{2};
(c) if p is odd, then every primitive root of p^{2} is a primitive root of p^{2+k}.

For example, 3 has the primitive root 2 , since $2 \not \equiv 1(\bmod 3)$, but $2^{2} \equiv 1(\bmod 3)$. Hence, either 2 or 5 is a primitive root of 9 . In fact, both are. Using $5 \equiv-4(\bmod 9)$, we have:

k	1	2	3	$6=\phi(9)$
$2^{k}(\bmod 9)$	2	4	-1	1
$(-4)^{k}(\bmod 9)$	-4	-2	-1	1

Therefore 2 and -4 must be primitive roots of 27 , and indeed

k	1	2	3	4	5	6	7	8	9	$18=\phi(27)$
$2^{k}(\bmod 27)$	2	4	8	-11	5	10	-7	13	-1	1
$(-4)^{k}(\bmod 27)$	-4	-11	-10	13	2	-8	5	7	-1	1

But does 18 have a primitive root? We have

k	1	2	3	4	5	6	7
$(-4)^{k}$	-4	-2	8	4	2	-8	-4
5^{k}	5	7	-1	-5	-7	1	5

The powers of -4 and 5 cycle through six numbers in each case. Corresponding powers differ by 9 : Since $-4 \equiv 5(\bmod 9)$, we have $(-4)^{k} \equiv 5^{k}(\bmod 9)$. But the powers of -4 are not prime to 18 , so -4 is not a primitive root of 18 . However, 5 is.

Theorem. If p is an odd prime, and r is a primitive root of p^{s}, then either r or $r+p^{s}$ is a primitive root of $2 p^{s}$-whichever one is odd.
Proof. Let r be an odd primitive root of p^{s}, so that $\operatorname{gcd}\left(r, 2 p^{s}\right)=1$. Let $n=\operatorname{ord}_{2 p^{s}}(r)$. We want to show $n=\phi\left(2 p^{s}\right)$. We have

$$
n \mid \phi\left(2 p^{s}\right)
$$

Also $r^{n} \equiv 1\left(\bmod 2 p^{s}\right)$, so $r^{n} \equiv 1\left(\bmod p^{s}\right)$, and therefore

$$
\operatorname{ord}_{p^{s}}(r) \mid n
$$

But ord $p_{p^{s}}(r)=\phi\left(p^{s}\right)=\phi\left(2 p^{s}\right)$. Hence

$$
\phi\left(2 p^{s}\right) \mid n
$$

So $n=\phi\left(2 p^{s}\right)$.

$$
* \quad * \quad * \quad * \quad *
$$

Now we return to high-school-like problems. For example, how can we solve

$$
x^{2}-4 x-1 \equiv 0 \quad(\bmod 11) ?
$$

Modulo 11, we have $x^{2}-4 x-1 \equiv x^{2}-4 x-12 \equiv(x-6)(x+2)$, so the solutions are 6 and -2 , or rather 6 and 9 . Alternatively, $x^{2}-4 x-1 \equiv x^{2}+7 x+10 \equiv(x+5)(x+2)$, so x is -5 or -2 , that is, 6 or 9 again.

To solve

$$
3 x^{2}-4 x-6 \equiv 0 \quad(\bmod 13)
$$

we can search for a factorization as before; but we can also complete the square:

$$
\begin{aligned}
3 x^{2}-4 x-6 \equiv 0 & \Longleftrightarrow x^{2}-\frac{4}{3} x-2 \equiv 0 \\
& \Longleftrightarrow x^{2}-\frac{4}{3} x+\frac{4}{9} \equiv 2+\frac{4}{9} \\
& \Longleftrightarrow\left(x-\frac{2}{3}\right)^{2} \equiv \frac{22}{9} \equiv 1 \\
& \Longleftrightarrow x-\frac{2}{3} \equiv \pm 1 \\
& \Longleftrightarrow x \equiv \frac{2}{3} \pm 1 \\
& \Longleftrightarrow x \equiv \frac{5}{3} \text { or } \frac{-1}{3} \\
& \Longleftrightarrow x \equiv 6 \text { or } 4 .
\end{aligned}
$$

Here we can divide by 3 because it is invertible modulo 13 ; indeed, $3 \cdot 9 \equiv 1(\bmod 13)$, so $1 / 3 \equiv 9(\bmod 13)$.

If we take this approach with the first problem, we have, modulo 11,

$$
\begin{aligned}
x^{2}-4 x-1 \equiv 0 & \Longleftrightarrow x^{2}-4 x+4 \equiv 5 \\
& \Longleftrightarrow(x-2)^{2} \equiv 5 .
\end{aligned}
$$

If 5 is a square modulo 11 , then there is a solution; if not, not. But $5 \equiv 16 \equiv 4^{2}$, so we have

$$
\begin{aligned}
x^{2}-4 x-1 \equiv 0 & \Longleftrightarrow(x-2)^{2} \equiv 4^{2} \\
& \Longleftrightarrow x-2 \equiv \pm 4 \\
& \Longleftrightarrow x \equiv 2 \pm 4 \\
& \Longleftrightarrow x \equiv 6 \text { or } 9,
\end{aligned}
$$

as before. But the congruence

$$
x^{2} \equiv 5 \quad(\bmod 13)
$$

has no solution. How do we know? One way is by trial. As 2 is a primitive root of 13 , and 0 is not a solution of the congruence, every solution would be a power of 2 . But we have, modulo 13 ,

k	1	2	3	4	5	6	7	8	9	10	11	12
2^{k}	2	4	-5	3	6	-1	-2	-4	5	-3	-6	1
$2^{2 k}$	4	3	-1	-4	-3	1	4	3	-1	-4	-3	1

and 5 does not appear on the bottom row.
In general, if $p \nmid a$, we say a is a quadratic residue of p if the congruence

$$
x^{2} \equiv a \quad(\bmod p)
$$

is soluble; otherwise, a is a quadratic non-residue of p. So we have just seen that the quadratic residues of 13 are $\pm 1, \pm 3$, and ± 4, or rather $1,3,4,9,10$, and 12 ; the quadratic non-residues are $2,5,6,7,8$, and 11 . So there are six residues, and six non-residues.

Theorem (Euler's Criterion). Let p be an odd prime, and $\operatorname{gcd}(a, p)=1$. Then a is a quadratic residue of p if and only if

$$
a^{(p-1) / 2} \equiv 1 \quad(\bmod p)
$$

Proof. Let r be a primitive root of p. If $x^{2} \equiv a(\bmod p)$ has a solution, then that solution is r^{k} for some k. Then

$$
a^{(p-1) / 2} \equiv\left(\left(r^{k}\right)^{2}\right)^{(p-1) / 2} \equiv\left(r^{k}\right)^{p-1} \equiv 1 \quad(\bmod p)
$$

by Euler's Theorem.
In any case, $a \equiv r^{\ell}(\bmod p)$ for some ℓ. Suppose $a^{(p-1) / 2} \equiv 1(\bmod p)$. Then

$$
1 \equiv\left(r^{\ell}\right)^{(p-1) / 2} \equiv r^{\ell \cdot(p-1) / 2} \quad(\bmod p)
$$

so $\operatorname{ord}_{p}(r) \mid \ell \cdot(p-1) / 2$, that is,

$$
p-1 \left\lvert\, \ell \cdot \frac{p-1}{2} .\right.
$$

Therefore $\ell / 2$ is an integer, that is, ℓ is even. Say $\ell=2 m$. Then $a \equiv r^{2 m} \equiv\left(r^{m}\right)^{2}$ $(\bmod p)$.

19. December 11, 2007 (TUESDAY)

Henceforth p is an odd prime, and $\operatorname{gcd}(a, p)=1$. We have defined quadratic residues and non-residues of p, and we have established Euler's Criterion: a is a quadratic residue of p if and only if $a^{(p-1) / 2} \equiv 1(\bmod p)$. What other congruence-class can $a^{(p-1) / 2}$ belong to, besides 1 ? Only -1 , since $a^{p-1} \equiv 1(\bmod p)$, by Euler's Theorem. So $a^{(p-1) / 2} \equiv-1$ $(\bmod p)$ if and only if a is a quadratic non-residue of p.

Another way to prove this is the following: Suppose a is a quadratic non-residue of p. If $b \in\{1, \ldots, p-1\}$, then the congruence

$$
b x \equiv a \quad(\bmod p)
$$

has a unique solution in $\{1, \ldots, p-1\}$, and we may denote the solution by a / b. Then $b \neq a / b$, since a is not a quadratic residue of p. Now we define a sequence $\left(b_{1}, \ldots, b_{p-1}\right)$ recursively. If b_{k} has been chosen when $k<\ell<p-1$, then let b_{ℓ} be the least element of $\{1, \ldots, p-1\} \backslash\left\{b_{1}, a / b_{1}, \ldots, b_{\ell-1}, a / b_{\ell-1}\right\}$. We now have

$$
\{1, \ldots, p-1\}=\left\{b_{1}, \frac{a}{b_{1}}, \ldots, b_{p-1}, \frac{a}{b_{p-1}}\right\} .
$$

Now multiply everything together:

$$
(p-1)!\equiv a^{(p-1) / 2} \quad(\bmod p)
$$

But we know $(p-1)!\equiv-1(\bmod p)$ by Wilson's Theorem. Thus

$$
a^{(p-1) / 2} \equiv-1 \quad(\bmod p)
$$

when a is a quadratic non-residue of p.
Now suppose a is a quadratic residue of p. We choose the b_{k} as before, except this time let b_{1} be the least positive solution of $x^{2} \equiv a(\bmod p)$, and replace a / b_{1} with the next least positive solution, which is $p-b_{1}$. Multiplication now gives us

$$
\begin{aligned}
(p-1)! & \equiv b_{1} \cdot\left(p-b_{1}\right) \cdot b_{2} \cdot a / b_{2} \cdots b_{(p-1) / 2} \cdot a / b_{(p-1) / 2} \\
& \equiv-a \cdot a^{(p-1) / 2-1} \\
& \equiv-a^{(p-1) / 2} \quad(\bmod p)
\end{aligned}
$$

By Wilson's Theorem again, we have

$$
a^{(p-1) / 2} \equiv 1 \quad(\bmod p)
$$

when a is a quadratic residue of p.
Recall how division works in congruences (see p. 17: We have

$$
a x \equiv a y \quad(\bmod n) \Longrightarrow x \equiv y \quad\left(\bmod \frac{n}{\operatorname{gcd}(a, n)}\right)
$$

Indeed, let $d=\operatorname{gcd}(a, n)$. Then

$$
\begin{aligned}
a x \equiv a y \quad(\bmod n) & \Longrightarrow n \mid a(x-y) \\
& \left.\Longrightarrow \frac{n}{d} \right\rvert\, \frac{a}{d}(x-y) \\
& \left.\Longrightarrow \frac{n}{d} \right\rvert\, x-y \\
& \Longrightarrow x \equiv y \quad\left(\bmod \frac{n}{d}\right) .
\end{aligned}
$$

Again, p is an odd prime, and $p \nmid a$. We define the Legendre symbol, (a / p), by

$$
\left(\frac{a}{p}\right)= \begin{cases}1, & \text { if } a \text { is a quadratic residue of } p \\ -1, & \text { if } a \text { is a quadratic non-residue of } p\end{cases}
$$

Then by Euler's Criterion we have immediately

$$
\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2} \quad(\bmod p)
$$

We can now list the following properties of the Legendre symbol:
(a) $a \equiv b(\bmod p) \Longrightarrow(a / p)=(b / p)$;
(b) $\left(a^{2} / p\right)=1$;
(c) $(1 / p)=1$;
(d) $(-1 / p)=(-1)^{(p-1) / 2}= \begin{cases}1, & \text { if } p \equiv 1(\bmod 4) ; \\ -1, & \text { if } p \equiv 3(\bmod 4)\end{cases}$
(We proved this equation, in effect, on p. 23.) Finally, we have
(e) $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$,
since $(a b / p) \equiv(a b)^{(p-1) / 2} \equiv a^{(p-1) / 2} b^{(p-1) / 2} \equiv(a / p)(b / p)(\bmod p)$, and equality of $(a b / p)$ and $(a / p)(b / p)$ follows since each is ± 1 and $p>2$. With these properties, we can calculate many Legendre symbols. For example,

$$
\begin{gathered}
\left(\frac{50}{19}\right)=\left(\frac{12}{19}\right)=\left(\frac{2}{19}\right)^{2}\left(\frac{3}{19}\right)=\left(\frac{3}{19}\right) \\
3^{(19-1) / 2} \equiv 3^{9} \equiv 3^{8} \cdot 3 \equiv 9^{4} \cdot 3 \equiv 81^{2} \cdot 3 \equiv 5^{2} \cdot 3 \equiv 6 \cdot 3 \equiv 18 \equiv-1 \quad(\bmod 19)
\end{gathered}
$$

so $(50 / 19)=-1$, which means the congruence $x^{2} \equiv 50(\bmod 19)$ has no solution.

Theorem. There are infinitely many primes p such that $p \equiv 3(\bmod 4)$.
Proof. Suppose $\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ is a list of primes. We shall prove that there is a prime p, not on this list, such that $p \equiv 3(\bmod 4)$. Let

$$
s=4 q_{1} \cdot q_{2} \cdots q_{n}-1
$$

Then $s \equiv 3(\bmod 4)$. Then s must have a prime factor p such that $p \equiv 3(\bmod 4)$. Indeed, if all prime factors of s are congruent to 1 , then so must s be. But p is not any of the q_{k}.

This argument fails when 3 is replaced by 1 , since $3^{2} \equiv 1(\bmod 4)$. Nonetheless, we still have:

Theorem. There are infinitely many primes p such that $p \equiv 1(\bmod 4)$.
Proof. Suppose $\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ is a list of primes. We shall prove that there is a prime p, not on this list, such that $p \equiv 1(\bmod 4)$. Let

$$
s=2 q_{1} \cdot q_{2} \cdots q_{n}
$$

Then $s^{2}+1$ is odd, so it is divisible by some odd prime p. Consequently, s is a solution of the congruence $x^{2} \equiv-1(\bmod p)$. This means $(-1 / p)=1$, so $p \equiv 1(\bmod 4)$, by (d) above.

Theorem. $\sum_{k=1}^{p-1}\left(\frac{k}{p}\right)=0$.
Proof. Let r be a primitive root of p. Then

$$
\sum_{k=1}^{p-1}\left(\frac{k}{p}\right)=\sum_{k=1}^{p-1}\left(\frac{r^{k}}{p}\right)=\sum_{k=1}^{p-1}\left(\frac{r}{p}\right)^{k}=\sum_{k=1}^{p-1}(-1)^{k}=0
$$

since $r^{(p-1) / 2} \equiv-1(\bmod p)$, since r is a primitive root.

Lemma (Gauss). Let p be an odd prime, and $\operatorname{gcd}(a, p)=1$. Then

$$
\left(\frac{a}{p}\right)=(-1)^{n}
$$

where n is the number of elements of the set

$$
\left\{a, 2 a, 3 a, \ldots, \frac{p-1}{2} a\right\}
$$

whose remainders after division by p are greater than $p / 2$.
For example, to find $(3 / 19)$, we can look at

$$
3,6,9,12,15,18,21,24,27
$$

whose remainders on division by 19 are, respectively,

$$
3,6,9,12,15,18,2,5,8
$$

Of those, 12,15 , and 18 exceed $19 / 2$, and these are three; so

$$
\left(\frac{3}{19}\right)=(-1)^{3}=-1
$$

Proof of Gauss's Lemma. If $1 \leqslant k \leqslant p-1$, let b_{k} be such that

$$
\begin{gathered}
1 \leqslant b_{k} \leqslant p-1 \\
k a \equiv b_{k} \quad(\bmod p)
\end{gathered}
$$

Then $\{1,2, \ldots, p-1\}=\left\{b_{1}, b_{2}, \ldots, b_{p-1}\right\}$, because the b_{k} are distinct:

$$
b_{k}=b_{\ell} \Longleftrightarrow k a \equiv \ell a \Longleftrightarrow k \equiv \ell
$$

In the set $\left\{b_{1}, b_{2}, \ldots, b_{(p-1) / 2}\right\}$, let n be the number of elements that are greater than $p / 2$. We want to show

$$
(-1)^{n}=\left(\frac{a}{p}\right)
$$

There is some permutation σ of $\{1,2, \ldots,(p-1) / 2\}$ such that

$$
b_{\sigma(1)}>b_{\sigma(2)}>\cdots>b_{\sigma(n)}>\frac{p}{2}>b_{\sigma(n+1)}>\cdots>b_{\sigma((p-1) / 2)}
$$

Observe now that

$$
b_{p-k}=p-b_{k}
$$

indeed, both numbers are in $\{1,2, \ldots, p-1\}$, and

$$
b_{p-k} \equiv(p-k) a \equiv-k a \equiv-b_{k} \equiv p-b_{k} \quad(\bmod p) .
$$

In particular, if $1 \leqslant k \leqslant(p-1) / 2$, then $p-b_{k} \notin\left\{b_{1}, b_{2}, \ldots, b_{(p-1) / 2}\right\}$. Therefore

$$
\left\{p-b_{\sigma(1)}, p-b_{\sigma(2)}, \ldots, p-b_{\sigma(n)}, b_{\sigma(n+1)}, \ldots b_{\sigma((p-1) / 2)}\right\}=\left\{1,2, \ldots, \frac{p-1}{2}\right\} .
$$

Now take products:

$$
\begin{aligned}
\frac{p-1}{2}! & \equiv\left(p-b_{\sigma(1)}\right)\left(p-b_{\sigma(2)}\right) \cdots\left(p-b_{\sigma(n)}\right) b_{\sigma(n+1)} \cdots b_{\sigma((p-1) / 2)} \\
& \equiv(-1)^{n} \cdot b_{\sigma(1)} \cdots b_{\sigma((p-1) / 2)} \\
& \equiv(-1)^{n} \cdot b_{1} \cdots b_{(p-1) / 2} \\
& \equiv(-1)^{n} \cdot a \cdot 2 a \cdot 3 a \cdots \frac{p-1}{2} a \\
& \equiv(-1)^{n} \cdot \frac{p-1}{2}!\cdot a^{(p-1) / 2} \quad(\bmod p) .
\end{aligned}
$$

Therefore, since $p \nmid((p-1) / 2)$!, we have

$$
1 \equiv(-1)^{n} \cdot a^{(p-1) / 2} \equiv(-1)^{n} \cdot(a / p) \quad(\bmod p)
$$

As both $(-1)^{n}$ and (a / p) are ± 1, the claim follows.
We shall use Gauss's Lemma to prove the Law of Quadratic Reciprocity, by which we shall be able to relate (p / q) and (q / p) when both p and q are odd primes. Meanwhile, besides the direct application of Gauss's Lemma to computing Legendre symbols, we have:

Theorem. If p is an odd prime, then

$$
\left(\frac{2}{p}\right)= \begin{cases}1, & \text { if } p \equiv \pm 1 \quad(\bmod 8) \\ -1, & \text { if } p \equiv \pm 3 \quad(\bmod 8)\end{cases}
$$

Proof. To apply Gauss's Lemma, we look at the numbers

$$
2 \cdot 1,2 \cdot 2, \ldots, 2 \cdot \frac{p-1}{2}
$$

Each is its own remainder on division by p. Hence $(2 / p)=(-1)^{n}$, where n is the number of integers k such that

$$
\frac{p}{2}<2 k \leqslant p-1,
$$

or rather $p / 4<k \leqslant(p-1) / 2$. This means

$$
n=\frac{p-1}{2}-\left[\frac{p}{4}\right],
$$

where $x \mapsto[x]$ is the greatest-integer function. Now consider the possibilities:
(a) $p=8 k+1 \Longrightarrow n=4 k-[2 k+1 / 4]=2 k$, even;
(b) $p=8 k+3 \Longrightarrow n=4 k+1-[2 k+3 / 4]=2 k+1$, odd;
(c) $p=8 k+5 \Longrightarrow n=4 k+2-[2 k+5 / 4]=4 k+1$, odd;
(d) $p=8 k+7 \Longrightarrow n=4 k+3-[2 k+7 / 4]=4 k+2$, even.

In each case then, $(2 / p)$ is as claimed.

20. December 13, 2007 (Thursday)

As usual now, we assume p is an odd prime, and $p \nmid a$. Then the Legendre symbol (a / p) is in $\{1,-1\}$, and $(a / p)=1$ if and only if $\exists x \in \mathbb{Z}: x^{2} \equiv a(\bmod p)$. Rules that we have established include:

$$
\begin{gathered}
a \equiv b \quad(\bmod p) \Longrightarrow\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right) ; \\
\left(\frac{a^{2}}{p}\right)=1 ; \quad\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right) \cdot\left(\frac{b}{p}\right) ; \\
\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}= \begin{cases}1, & \text { if } p \equiv 1 \quad(\bmod 4) \\
-1, & \text { if } p \equiv 3 \quad(\bmod 4)\end{cases}
\end{gathered}
$$

From these, we obtain the following table:

a	1	2	3	4	5	6	7	8	9	10	11	12
$(a / 13)$	1		1	1					1	1		1

Indeed, under the squares 1,4 , and 9 , we put 1 . Also $4^{2}=16 \equiv 3$, so $(3 / 13)=1$. Finally, $(-1)^{(13-1) / 2}=(-1)^{6}=1$, so $(-1 / 13)=1$, hence $(13-a / 13)=(-a / 13)=$ $(-1 / 13) \cdot(a / 13)=(a / 13)$; in particular, $(10 / 13)=1$ and $(12 / 13)=1$. So half of the slots have been filled with 1 ; the other half must get -1 : In general, if r is a primitive root of p, then $(r / p)=-1$, and so $\left(r^{k} / p\right)=-1$ if and only if k is odd. So now we have

a	1	2	3	4	5	6	7	8	9	10	11	12
$(a / 13)$	1	-1	1	1	-1	-1	-1	-1	1	1	$1-$	1

We proved Gauss's Lemma, and used it to show

$$
\left(\frac{2}{p}\right)= \begin{cases}1, & \text { if } p \equiv \pm 1 \\ -1, & \text { if } p \equiv \pm 3 \\ (\bmod 8) \\ (\bmod 8)\end{cases}
$$

As $13 \equiv-3(\bmod 8)$, we have $(2 / 13)=-1$, as we saw. We can also use this result about $(2 / p)$ to find some primitive roots:
Theorem. If p and $2 p+1$ are both odd primes, then $2 p+1$ has the primitive root $(-1)^{(p-1) / 2} \cdot 2$, which is 2 if $p \equiv 1(\bmod 4)$, and is otherwise -2 .

Hence, for example, we have

p	3	5	11	23	29	41	53	83	89	113	131	173	179	191	233
$2 p+1$	7	11	23	47	59	83	107	167	179	227	263	347	359	383	467
p.r. of $2 p+1$	-2	2	-2	-2	2	2	2	-2	2	2	-2	2	-2	-2	2

Proof of theorem. Denote $2 p+1$ by q. Then $\phi(q)=2 p$, whose divisors are $1,2, p$, and $2 p$. Let $r=(-1)^{(p-1) / 2} \cdot 2$. We want to show $\operatorname{ord}_{q}(r) \notin\{1,2, p\}$. But $p \geqslant 3$, so $q \geqslant 7$, and hence $r^{1}, r^{2} \not \equiv 1(\bmod q)$. Hence $\operatorname{ord}_{q}(r) \notin\{1,2\}$. It remains to show $\operatorname{ord}_{q}(r) \neq p$. But we know, from Euler's Criterion,

$$
r^{p} \equiv r^{(q-1) / 2} \equiv\left(\frac{r}{q}\right) \quad(\bmod q)
$$

So it is enough to show $(r / q)=-1$. We consider two cases. If $p \equiv 1(\bmod 4)$, then $r=2$, but also $q \equiv 3(\bmod 8)$, so $(r / q)=(2 / q)=-1$. If $p \equiv 3(\bmod 4)$, then $r=-2$, but also $q \equiv 7(\bmod 8)$, and $(-1 / q)=(-1)^{(q-1) / 2}=(-1)^{p}=-1$, so $(r / q)=(-2 / q)=$ $(-1 / q)(2 / q)=-1$.

We now aim to establish the Law of Quadratic Reciprocity: If p and q are distinct odd primes, then

$$
\left(\frac{p}{q}\right) \cdot\left(\frac{q}{p}\right)=(-1)^{n}, \quad \text { where } \quad n=\frac{p-1}{2} \cdot \frac{q-1}{2} .
$$

Equivalently,

$$
\left(\frac{q}{p}\right)= \begin{cases}(p / q), & \text { if } p \equiv 1 \text { or } q \equiv 1 \quad(\bmod 4) \\ -(p / q), & \text { if } q \equiv 3 \equiv p \quad(\bmod 4)\end{cases}
$$

Then we shall be able to compute as follows:

$$
\left.\begin{array}{rlrl}
\left(\frac{365}{941}\right) & =\left(\frac{5}{941}\right)\left(\frac{73}{941}\right) & & {[\text { factorizing }]} \\
& =\left(\frac{941}{5}\right)\left(\frac{941}{73}\right) & & {[5,73 \equiv 1} \\
& =\left(\frac{1}{5}\right)\left(\frac{65}{73}\right) & & {[\text { dividing }]} \\
& =\left(\frac{5}{73}\right)\left(\frac{13}{73}\right) & & {[\text { factorizing }]} \\
& =\left(\frac{73}{5}\right)\left(\frac{73}{13}\right) & & {[5,13 \equiv 1 \quad(4)]} \tag{4}\\
& =\left(\frac{3}{5}\right)\left(\frac{8}{13}\right) & {[5 \equiv 1 \quad(4) ; \text { factorizing }]} \\
& =\left(\frac{5}{3}\right)\left(\frac{2}{13}\right)^{3} & & {\left[(p / q)^{2}=1\right]}
\end{array}\right]
$$

To prove the Law, we shall use the following consequence of Gauss's Lemma:
Lemma. If p is an odd prime, $p \nmid a$, and a is odd, then

$$
\left(\frac{a}{p}\right)=(-1)^{n}, \quad \text { where } \quad n=\sum_{k=1}^{(p-1) / 2}\left[\frac{k a}{p}\right]
$$

Proof. As in the proof of Gauss's Lemma, if $1 \leqslant k \leqslant p-1$, we define b_{k} by

$$
1 \leqslant b_{k} \leqslant p-1 \quad \& \quad k a \equiv b_{k} \quad(\bmod p)
$$

Then

$$
k a=p \cdot\left[\frac{k a}{p}\right]+b_{k}
$$

so

$$
\begin{equation*}
\sum_{k=1}^{(p-1) / 2} k a=p \cdot \sum_{k=1}^{(p-1) / 2}\left[\frac{k a}{p}\right]+\sum_{k=1}^{(p-1) / 2} b_{k} \tag{*}
\end{equation*}
$$

For Gauss's Lemma, we introduced a permutation σ of $\{1, \ldots,(p-1) / 2\}$ such that, for some n,

$$
b_{\sigma(1)}>\cdots>b_{\sigma(n)}>\frac{p}{2}>b_{\sigma(n+1)}>\cdots b_{\sigma((p-1) / 2)}
$$

and we showed $(a / p)=(-1)^{n}$ after first showing

$$
\left\{1,2, \ldots, \frac{p-1}{2}\right\}=\left\{p-b_{\sigma(1)}, \ldots, p-b_{\sigma(n)}, b_{\sigma(n+1)}, \ldots b_{\sigma((p-1) / 2)}\right\}
$$

Now take sums:

$$
\sum_{k=1}^{(p-1) / 2} k=\sum_{k=1}^{n}\left(p-b_{\sigma(k)}\right)+\sum_{\ell=n+1}^{(p-1) / 2} b_{\sigma(\ell)}
$$

Subtracting this from $(*)$ (and using that $\sum_{k=1}^{(p-1) / 2} b_{\sigma(k)}=\sum_{k=1}^{(p-1) / 2} b_{k}$) gives

$$
(a-1) \cdot \sum_{k=1}^{(p-1) / 2} k=p \cdot\left(\sum_{k=1}^{n}\left[\frac{k a}{p}\right]-n\right)+2 \cdot \sum_{k=1}^{n} b_{\sigma(k)} .
$$

Since $a-1$ is even, but p is odd, we conclude

$$
\sum_{k=1}^{n}\left[\frac{k a}{p}\right] \equiv n \quad(\bmod 2),
$$

which yields the claim.

21. December 18, 2007 (TUESDAY)

A Germain prime (named for Sophie Germain, ${ }^{1776-1831)}$ is an odd prime p such that $2 p+1$ is also prime. We showed that, if p is a Germain prime, then $2 p+1$ has the primitive root $(-1)^{(p-1) / 2} \cdot 2$. (However, it is not known whether there infinitely many Germain primes.) We used that

$$
\left(\frac{2}{p}\right)=\left\{\begin{array}{ll}
1, & \text { if } p \equiv \pm 1 \quad(\bmod 8) \\
-1, & \text { if } p \equiv \pm 3
\end{array} \quad(\bmod 8)\right.
$$

Another consequence of this formula is:
Theorem. There are infinitely many primes congruent to -1 modulo 8 .
Proof. Let q_{1}, \ldots, q_{n} be a finite list of primes. We show that there is p not on the list such that $p \equiv-1(\bmod 8)$. Let

$$
M=\left(4 q_{1} \cdots q_{n}\right)^{2}-2
$$

Then $M \equiv-2(\bmod 16)$, so M is not a power of 2 ; in particular, M has odd prime divisors. Also, for every odd prime divisor p of M, we have

$$
\left(4 q_{1} \cdots q_{n}\right)^{2} \equiv 2 \quad(\bmod p)
$$

so $(2 / p)=1$, and therefore $p \equiv \pm 1(\bmod 8)$. Since $M / 2 \equiv-1(\bmod 8)$, we conclude that not every odd prime divisor of M can be congruent to 1 modulo 8 .

Finally, for the proof of Quadratic Reciprocity, we showed that, if p is an odd prime, $p \nmid a$, and a is odd, then

$$
\left(\frac{a}{p}\right)=(-1)^{n}, \quad \text { where } \quad n=\sum_{k=1}^{(p-1) / 2}\left[\frac{k a}{p}\right] .
$$

Now we can establish:

Theorem (Law of Quadratic Reciprocity). If p and q are distinct odd primes, then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{n}, \quad \text { where } \quad n=\frac{p-1}{2} \cdot \frac{q-1}{2} .
$$

This Law was:

- conjectured by Euler, 1783 ;
- imperfectly proved by Legendre, 1785,1798 ;
- discovered and proved independently by Gauss, 1795, at age 18.

Proof of Quadratic Reciprocity (due to Gauss's student Eisenstein). By the lemma just mentioned,

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{n}, \quad \text { where } \quad n=\sum_{k=1}^{(q-1) / 2}\left[\frac{k p}{q}\right]+\sum_{\ell=1}^{(p-1) / 2}\left[\frac{\ell q}{p}\right] .
$$

So it is enough to show

$$
\frac{p-1}{2} \cdot \frac{q-1}{2}=\sum_{k=1}^{(q-1) / 2}\left[\frac{k p}{q}\right]+\sum_{\ell=1}^{(p-1) / 2}\left[\frac{\ell q}{p}\right] .
$$

First consider the example where $p=5$ and $q=7$. Then

$$
\begin{aligned}
& \frac{p-1}{2} \cdot \frac{q-1}{2}=2 \cdot 3=6 \\
& \sum_{k=1}^{(q-1) / 2}\left[\frac{k p}{q}\right]+\sum_{\ell=1}^{(p-1) / 2}\left[\frac{\ell q}{p}\right]=\left[\frac{5}{7}\right]+\left[\frac{10}{7}\right]+\left[\frac{15}{7}\right]+\left[\frac{7}{5}\right]+\left[\frac{14}{5}\right] \\
&=0+1+2+1+2=6
\end{aligned}
$$

Here 6 is the number of certain points in a lattice:

In general, $((p-1) / 2) \cdot((q-1) / 2)$ is the number of ordered pairs (ℓ, k) of integers such that

$$
1 \leqslant \ell \leqslant \frac{p-1}{2}, \quad \& \quad 1 \leqslant k \leqslant \frac{q-1}{2} .
$$

Then $\ell / k \neq p / q$, since p and q are co-prime. Hence the set of these pairs (ℓ, k) is a disjoint union $A \cup B$, where

$$
\begin{aligned}
& (\ell, k) \in A \Longleftrightarrow \frac{\ell}{k}<\frac{p}{q} \\
& (\ell, k) \in B \Longleftrightarrow \frac{\ell}{k}>\frac{p}{q} \Longleftrightarrow \frac{k}{\ell}<\frac{q}{p} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& A=\left\{(\ell, k) \in \mathbb{Z} \times \mathbb{Z}: 1 \leqslant k \leqslant \frac{q-1}{2} \& 1 \leqslant \ell \leqslant\left[\frac{k p}{q}\right]\right\}, \\
& B=\left\{(\ell, k) \in \mathbb{Z} \times \mathbb{Z}: 1 \leqslant \ell \leqslant \frac{p-1}{2} \& 1 \leqslant k \leqslant\left[\frac{\ell q}{p}\right]\right\},
\end{aligned}
$$

so

$$
\frac{p-1}{2} \cdot \frac{q-1}{2}=|A \cup B|=|A|+|B|=\sum_{k=1}^{(q-1) / 2}\left[\frac{k p}{q}\right]+\sum_{\ell=1}^{(p-1) / 2}\left[\frac{\ell q}{p}\right]
$$

which is what we wanted to show.
Again, the more useful form of the theorem is

$$
\left(\frac{q}{p}\right)= \begin{cases}(p / q), & \text { if } p \equiv 1 \text { or } q \equiv 1 \quad(\bmod 4) \\ -(p / q), & \text { if } q \equiv 3 \equiv p \quad(\bmod 4)\end{cases}
$$

Hence, for example,

$$
\left(\frac{47}{199}\right)=-\left(\frac{199}{47}\right)=-\left(\frac{11}{47}\right)=\left(\frac{47}{11}\right)=\left(\frac{3}{11}\right)=-\left(\frac{11}{3}\right)=-\left(\frac{2}{3}\right)=-(-1)=1
$$

We have used here the formula for $(2 / p)$. What about $(3 / p)$? We can compute:

$$
\left(\frac{3}{p}\right)=\left\{\begin{array}{rr}
\left(\frac{p}{3}\right), \text { if } p \equiv 1 & (\bmod 4) \\
-\left(\frac{p}{3}\right), \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right\}, \quad\left(\frac{p}{3}\right)=\left\{\begin{array}{lll}
1, & \text { if } p \equiv 1 & (\bmod 3) \\
-1, & \text { if } p \equiv 2 & (\bmod 3)
\end{array}\right.
$$

By the Chinese Remainder Theorem, we have

$$
\left.\begin{array}{l}
\left\{\begin{array}{ll}
p \equiv 1 & (4) \\
p \equiv 1 & (3)
\end{array}\right\} \Longleftrightarrow p \equiv 1 \\
\hline
\end{array}(12), \quad\left\{\begin{array}{ll}
p \equiv 1 & (4) \tag{12}\\
p \equiv 2 & (3)
\end{array}\right\} \Longleftrightarrow p \equiv 5\right\}
$$

Therefore

$$
\left(\frac{3}{p}\right)=\left\{\begin{array}{ll}
1, & \text { if } p \equiv \pm 1 \\
-1, & \text { if } p \equiv \pm 5
\end{array}(\bmod p)\right.
$$

Assuming $\operatorname{gcd}(a, n)=1$, we know when the congruence $x^{2} \equiv a(\bmod n)$ has solutions, provided n is an odd prime; but what about the other cases? When $n=2$, then the
congruence always has the solution 1 . If $\operatorname{gcd}(m, n)=1$, and $\operatorname{gcd}(a, m n)=1$, then the congruence $x^{2} \equiv a(\bmod m n)$ is soluble if and only if the system

$$
\begin{cases}x^{2} \equiv a & (\bmod m) \\ x^{2} \equiv a & (\bmod n)\end{cases}
$$

is soluble. By the Chinese Remainder Theorem, the system is soluble if and only if the individual congruences are separately soluble. Indeed, suppose $b^{2} \equiv a(\bmod m)$, and $c^{2} \equiv a(\bmod n)$. By the Chinese Remainder Theorem, there is some d such that $d \equiv b$ $(\bmod m)$ and $d \equiv c(\bmod n)$. Then $d^{2} \equiv b^{2} \equiv a(\bmod m)$, and $d^{2} \equiv c^{2} \equiv a(\bmod n)$, so $d^{2} \equiv a(\bmod m n)$.

For example, suppose we want to solve

$$
x^{2} \equiv 365 \quad(\bmod 667)
$$

Factorize 667 as $23 \cdot 29$. Then we first want to solve

$$
x^{2} \equiv 365 \quad(\bmod 23) \quad \& \quad x^{2} \equiv 365 \quad(\bmod 29)
$$

But we have $(365 / 23)=(20 / 23)=(5 / 23)=(23 / 5)=(3 / 5)=-1$ by the formula for $(3 / p)$, so the first of the two congruences is insoluble, and therefore the original congruence is insoluble. It doesn't matter whether the second of the two congruences is insoluble.

Contrast with the following: $(2 / 11)=-1$, and $(7 / 11)=-(11 / 7)=-(4 / 7)=-1$; so the congruences

$$
x^{2} \equiv 2 \quad(\bmod 11), \quad x^{2} \equiv 7 \quad(\bmod 11)
$$

are insoluble; but $x^{2} \equiv 14(\bmod 11)$ is soluble.
Now consider

$$
x^{2} \equiv 361 \quad(\bmod 667)
$$

One may notice that this has the solutions $x \equiv \pm 19$; but there are others, and we can find them as follows. We first solve

$$
x^{2} \equiv 16 \quad(\bmod 23), \quad x^{2} \equiv 13 \quad(\bmod 29)
$$

The first of these is solved by $x \equiv \pm 4(\bmod 23)$ (and nothing else, since 23 is prime. For the second, note $13 \equiv 42,71,100(\bmod 29)$, so $x \equiv \pm 10(\bmod 29)$. So the solutions of the original congruence are the solutions of one of the following systems:

$$
\begin{aligned}
& \left\{\begin{array}{l}
x \equiv 4 \quad(\bmod 23), \\
x \equiv 10 \quad(\bmod 29)
\end{array}\right\}, \quad\left\{\begin{array}{l}
x \equiv 4 \quad(\bmod 23), \\
x \equiv-10 \quad(\bmod 29)
\end{array}\right\}, \\
& \left\{\begin{array}{ll}
x \equiv-4 & (\bmod 23) \\
x \equiv 10 & (\bmod 29)
\end{array}\right\}, \quad\left\{\begin{array}{ll}
x \equiv-4 & (\bmod 23), \\
x \equiv-10 & (\bmod 29)
\end{array}\right\} .
\end{aligned}
$$

One finds $x \equiv 19,648,280,387(\bmod 667)$.
So now $x^{2} \equiv a(\bmod n)$ is soluble if and only if the congruences

$$
x^{2} \equiv a \quad\left(\bmod p^{k(p)}\right)
$$

are soluble, where $n=\prod_{p \mid n} p^{k(p)}$. Assuming p is odd, and $(a / p)=1$, we can show by induction that $x^{2} \equiv a\left(\bmod p^{k}\right)$ is soluble for all positive k. Indeed, suppose $b^{2} \equiv a$ $\left(\bmod p^{\ell}\right)$, where $\ell \geqslant 1$. This means

$$
b^{2}=a+c \cdot p^{\ell}
$$

for some c. Then

$$
\begin{aligned}
\left(b+p^{\ell} \cdot y\right)^{2} & =b^{2}+2 b p^{\ell} \cdot y+p^{2 \ell} \cdot y^{2} \\
& =a+(c+2 b y) p^{\ell}+p^{2 \ell} \cdot y^{2}
\end{aligned}
$$

Therefore $\left(b+p^{\ell} \cdot y\right)^{2} \equiv a\left(\bmod p^{\ell+1}\right) \Longleftrightarrow c+2 b y \equiv 0(\bmod p)$. But the latter congruence is soluble, since p is odd.

22. December 25, 2007 (TUESDAY)

Assuming $\operatorname{gcd}(a, n)=1$, we have shown that $x^{2} \equiv a(\bmod n)$ is soluble if and only if $x^{2} \equiv a\left(\bmod p^{k(p)}\right)$ is soluble whenever $p \mid n$, where $n=\prod_{p \mid n} p^{k(p)}$. We also have that, if p is an odd prime, and $p \nmid a$, then the following are equivalent:
(a) $(a / p)=1$;
(b) $x^{2} \equiv a(\bmod p)$ is soluble;
(c) $x^{2} \equiv a\left(\bmod p^{k}\right)$ is soluble for some positive k;
(d) $x^{2} \equiv a\left(\bmod p^{k}\right)$ is soluble for all positive k.

We must finally consider powers of 2 .
Theorem. Suppose a is odd. Then:
(a) $x^{2} \equiv a(\bmod 2)$ is soluble;
(b) $x^{2} \equiv a(\bmod 4)$ is soluble if and only if $a \equiv 1(\bmod 4)$;
(c) the following are equivalent:
(i) $x^{2} \equiv a(\bmod 8)$ is soluble;
(ii) $x^{2} \equiv a\left(\bmod 2^{2+k}\right)$ is soluble for some positive k;
(iii) $x^{2} \equiv a\left(\bmod 2^{2+k}\right)$ is soluble for all positive k;
(iv) $a \equiv 1(\bmod 8)$.

Proof. The first two parts are easy. So, are $(\mathrm{ci}) \Leftrightarrow(\mathrm{civ})$ and (ciii) \Rightarrow (cii) \Rightarrow (ci). We shall show $(\mathrm{ci}) \Rightarrow($ ciii $)$ by induction. Suppose $b^{2} \equiv a\left(\bmod 2^{2+\ell}\right)$ for some positive ℓ. Then $b^{2}=a+2^{2+\ell} \cdot c$ for some c. Hence

$$
\begin{aligned}
\left(b+2^{1+\ell} \cdot y\right)^{2} & =b^{2}+2^{2+\ell} \cdot b y+2^{2+2 \ell} \cdot y^{2} \\
& =a+2^{2+\ell} \cdot c+2^{2+\ell} \cdot b y+2^{2+2 \ell} \cdot y^{2} \\
& =a+2^{2+\ell} \cdot(c+b y)+2^{2+2 \ell} \cdot y^{2},
\end{aligned}
$$

and this is congruent to a modulo $p^{3+\ell}$ if and only if $c+b y \equiv 0(\bmod 2)$. But this congruence is soluble, since b is odd (since a is odd).

A Diophantine equation is an equation for which the solutions sought are integers. We have considered such equations, as for example $a x+b y=c$. Now we shall show that, if n is a natural number, then the Diophantine equation

$$
x^{2}+y^{2}+z^{2}+w^{2}=n
$$

is soluble.
If p is an odd prime, we know that the congruence $x^{2} \equiv-1(\bmod p)$ is soluble if and only if $(-1 / p)=1$, that is, $(-1)^{(p-1) / 2}=1$, that is, $p \equiv 1(\bmod 4)$.

Lemma. For every prime p, the congruence

$$
x^{2}+y^{2} \equiv-1 \quad(\bmod p)
$$

is soluble.
Proof. The claim is easy when $p=2$. So assume now p is odd. We define two sets:

$$
\begin{gathered}
A=\left\{x^{2}: 0 \leqslant x \leqslant \frac{p-1}{2}\right\}, \\
B=\left\{-y^{2}-1: 0 \leqslant x \leqslant \frac{p-1}{2}\right\} .
\end{gathered}
$$

We shall show that A and B have elements representing the same congruence-class modulo p; that is, A contains some a, and B contains some b, such that $a \equiv b(\bmod p)$. To prove this, note first that distinct elements of A are incongruent, and likewise of B. Indeed, if a_{0} and a_{1} are between 0 and $(p-1) / 2$ inclusive, and $a_{0}^{2} \equiv{a_{1}}^{2}(\bmod p)$, then $a_{0} \equiv \pm a_{1}$ $(\bmod p)$. If $a_{0} \equiv-a_{1}$, then $a_{0}=p-a_{1}$, which is absurd. Hence $a_{0} \equiv a_{1}(\bmod p)$, so $a_{0}=a_{1}$.

Hence the elements of A represent $(p-1) / 2+1$ distinct congruence-classes modulo p, and so do the elements of B. Since $2((p-1) / 2+1)=p+1$, and there are only p distinct congruence-classes modulo p, there must be a class represented both in A and in B, by the Pigeonhole Principle.

Another way to express the lemma is that, for all primes p, there are a, b, and m such that

$$
a^{2}+b^{2}+1=m p .
$$

Hence there are a, b, c, d, and m such that

$$
a^{2}+b^{2}+c^{2}+d^{2}=m p
$$

We shall show that we can require $m=1$. We can combine this with the following:
Theorem (Euler). The product of two sums of four squares is the sum of four squares.
Proof. One can confirm that

$$
\begin{aligned}
\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(q^{2}+r^{2}+s^{2}+t^{2}\right)= & (a q+b r+c s+d t)^{2}+ \\
& (a r-b q+c t-d s)^{2}+ \\
& (a s-b t-c q+d r)^{2}+ \\
& (a t+b s-c r-d q)^{2}
\end{aligned}
$$

by expanding each side.
Theorem (Lagrange). Every positive integer is the sum of four squares.
Proof. By the lemma Euler's theorem, it is now enough to show the following. Let p be a prime. Suppose m is a positive integer such that

$$
\begin{equation*}
a^{2}+b^{2}+c^{2}+d^{2}=m p \tag{*}
\end{equation*}
$$

for some a, b, c, and d. We shall show that the same is true for some smaller positive m, unless m is already 1 .

First we show that, if m is even, then we can replace it with $m / 2$. Indeed, if $a^{2}+b^{2}=n$, then

$$
\left(\frac{a+b}{2}\right)^{2}+\left(\frac{a-b}{2}\right)^{2}=\frac{n}{2}
$$

and if n is even, then so are $(a \pm b) / 2$. In $(*)$ then, if m is even, then we may assume that $a^{2}+b^{2}$ and $c^{2}+d^{2}$ are both even, so

$$
\left(\frac{a+b}{2}\right)^{2}+\left(\frac{a-b}{2}\right)^{2}+\left(\frac{c+d}{2}\right)^{2}+\left(\frac{c-d}{2}\right)^{2}=\frac{m}{2} \cdot p
$$

Henceforth we may assume m is odd. Then there are q, r, s and t strictly between $-m / 2$ and $m / 2$ such that

$$
q \equiv a, \quad r \equiv b, \quad s \equiv c, \quad t \equiv d \quad(\bmod m) .
$$

Then

$$
q^{2}+r^{2}+s^{2}+t^{2} \equiv 0 \quad(\bmod m)
$$

but also $q^{2}+r^{2}+s^{2}+t^{2}<m^{2}$, so

$$
q^{2}+r^{2}+s^{2}+t^{2}=k m
$$

for some positive k less than m. We now have

$$
\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(q^{2}+r^{2}+s^{2}+t^{2}\right)=k m^{2} p
$$

By Euler's theorem, we know the left-hand side as a sum of four squares. Moreover, each of the squared numbers in that sum is divisible by m. Therefore we obtain $k p$ as a sum of four squares.

References

[1] David M. Burton. Elementary Number Theory. McGraw-Hill, Boston, sixth edition, 2007.
[2] Euclid. The thirteen books of Euclid's Elements translated from the text of Heiberg. Vol. I: Introduction and Books I, II. Vol. II: Books III-IX. Vol. III: Books X-XIII and Appendix. Dover Publications Inc., New York, 1956. Translated with introduction and commentary by Thomas L. Heath, and ed.
[3] Graham Everest and Thomas Ward. An introduction to number theory, volume 232 of Graduate Texts in Mathematics. Springer-Verlag London Ltd., London, 2005.
[4] D. A. Goldston, J. Pintz, and C. Y. Yıldırım. http://arxiv.org, 2005. arXiv:math/0508185vi [math.NT].
[5] Ben Green and Terence Tao. The primes contain arbitrarily long arithmetic progressions. http: //arxiv.org, 2004. arXiv:math/0404188v6 [math.NT].
[6] Nicomachus of Gerasa. Introduction to Arithmetic, volume XVI of University of Michigan Studies, Humanistic Series. University of Michigan Press, Ann Arbor, 1938. First printing, 1926.
[7] David Pierce. Foundations of number-theory. http://www.math.metu.edu.tr/~dpierce/courses/ 365/. 4 pp.
[8] Lucio Russo. The forgotten revolution. Springer-Verlag, Berlin, 2004. How science was born in 300 BC and why it had to be reborn, Translated from the 1996 Italian original by Silvio Levy.

Index

absolute pseudo-prime, 22
Carmichael number, 22
Chinese Remainder Theorem, 19
co-prime, 7
commutative ring, 17
complete the square, 48
composite, 11
congruent modulo, 5
divides, 5
Euclidean algorithm, 9
Euler phi-function, 29
Euler's Theorem, 29
Fermat's Little Theorem, 21
Germain prime, 56
greatest common divisor, 7
group, 40
homomorphism, 40
incommensurable, 12
induction, 3, 4
integers, 5
irreducible, 16
isomorphism, 40
least, 4
least common multiple, 8
Legendre symbol, 51
linear combination, 6
Möbius function, 27
Mersenne number, 20
Mersenne prime, 20
multiplicative, 26
order, 37
ordered domain, 5
perfect, 20, 24
prime, 10
primitive root, 40
principal ideal domain, 7
pseudo-prime, 21
quadratic non-residue, 49
quadratic residue, 49
recursive, 3
relatively prime, 7
ring, 40
successor, 4
triangular number, 3
twin primes, 12
unit, 16
zero, 4

Mathematics Dept, Middle East Technical University, Ankara o6531, Turkey E-mail address: dpierce@metu.edu.tr
URL: http://www.math.metu.edu.tr/~dpierce

[^0]: Date: January 11, 2008.

[^1]: Index

