NUMBER-THEORY EXERCISES, VIII

DAVID PIERCE

Exercise 1. We have $(\pm 3)^2 \equiv 2 \pmod{7}$. Compute the orders of 2, 3, and -3, modulo 7.

Exercise 2. Suppose $\operatorname{ord}_n(a) = k$, and $b^2 \equiv a \pmod{n}$.

- (a) Show that $\operatorname{ord}_n(b) \in \{k, 2k\}$.
- (b) Find an example for each possibility of $\operatorname{ord}_n(b)$.
- (c) Find a condition on k such that $\operatorname{ord}_n(b) = 2k$.

Exercise 3. This is about 23:

- (a) Find a primitive root of least absolute value.
- (b) How many primitive roots are there?
- (c) Find these primitive roots as powers of the root found in (a).
- (d) Find these primitive roots as elements of [-11, 11].

Exercise 4. Assuming $\operatorname{ord}_p(a) = 3$, show:

- (a) $a^2 + a + 1 \equiv 0 \pmod{3};$
- (b) $(a+1)^2 \equiv a \pmod{3};$
- (c) $\operatorname{ord}_p(a+1) = 6.$

Exercise 5. Find all elements of [-30, 30] having order 4 modulo 61.

Exercise 6. $f(x) \equiv 0 \pmod{n}$ may have more than $\deg(f)$ solutions:

- (a) Find four solutions to $x^2 1 \equiv 0 \pmod{35}$.
- (b) Find conditions on a such that the congruence $x^2 a^2 \equiv 0 \pmod{35}$ has four distinct solutions, and find these solutions.
- (c) If p and q are odd primes, find conditions on a such that the congruence $x^2 - a^2 \equiv 0 \pmod{pq}$ has four distinct solutions, and find these solutions.

Exercise 7. If $\operatorname{ord}_n(a) = n - 1$, then n is prime.

Exercise 8. If a > 1, show $n \mid \phi(a^n - 1)$.

Exercise 9. If $2 \nmid p$ and $p \mid n^2 + 1$, show $p \equiv 1 \pmod{4}$.

Exercise 10.

- (a) Find conditions on p such that, if r is a primitive root of p, then so is -r.
- (b) If p does not meet these conditions, then what is $\operatorname{ord}_p(-r)$?

MATHEMATICS DEPT, MIDDLE EAST TECH. UNIV., ANKARA 06531, TURKEY E-mail address: dpierce@metu.edu.tr URL: http://www.math.metu.edu.tr/~dpierce/

Date: November 20, 2007.