NUMBER-THEORY EXERCISES, VII

DAVID PIERCE

Exercise 1. $f(568)=f(638)$ when $f \in\{\tau, \sigma, \phi\}$.
Exercise 2. Solve:
(a) $n=2 \phi(n)$.
(b) $\phi(n)=\phi(2 n)$.
(c) $\phi(n)=12$. (Do this without a table. There are 6 solutions.)

Exercise 3. Find a sequence ($a_{n}: n \in \mathbb{N}$) of positive integers such that

$$
\lim _{n \rightarrow \infty} \frac{\phi\left(a_{n}\right)}{a_{n}}=0
$$

(If you assume that there is an answer to this problem, then it is not hard to see what the answer must be. To actually prove that the answer is correct, recall that, formally,

$$
\sum_{n} \frac{1}{n}=\prod_{p} \frac{1}{1-\frac{1}{p}}
$$

so $\lim _{n \rightarrow \infty} \prod_{k=0}^{n} \frac{1}{1-\frac{1}{p_{k}}}=\infty$ if ($p_{k}: k \in \mathbb{N}$) is the list of primes.)
Exercise 4. (a) Show $a^{100} \equiv 1(\bmod 1000)$ if $\operatorname{gcd}(a, 1000)=1$.
(b) Find n such that $n^{101} \not \equiv n(\bmod 1000)$.

Exercise 5. (a) Show $a^{24} \equiv 1(\bmod 35)$ if $\operatorname{gcd}(a, 35)=1$.
(b) Show $a^{13} \equiv a(\bmod 35)$ for all a.
(c) Is there n such that $n^{25} \not \equiv n(\bmod 35)$?

Exercise 6. If $\operatorname{gcd}(m, n)=1$, show $m^{\phi(n)} \equiv n^{\phi(m)}(\bmod m n)$.
Exercise 7. If n is odd, and is not a prime power, and if $\operatorname{gcd}(a, n)=1$, show $a^{\phi(n) / 2} \equiv 1(\bmod n)$.
Exercise 8. Solve $5^{10000} x \equiv 1(\bmod 153)$.
Exercise 9. Prove $\sum_{d \mid n} \mu(d) \phi(d)=\prod_{p \mid n}(2-p)$.
Exercise 10. If n is squarefree (has no factor p^{2}), and $k \in \mathbb{N}$, show

$$
\sum_{d \mid n} \sigma\left(d^{k}\right) \phi(d)=n^{k+1}
$$

Exercise 11. $\sum_{d \mid n} \sigma(d) \phi\left(\frac{n}{d}\right)=n \tau(n)$.
Exercise 12. $\sum_{d \mid n} \tau(d) \phi\left(\frac{n}{d}\right)=\sigma(n)$.

