NUMBER-THEORY EXERCISES, V

DAVID PIERCE

As usual, p and q are primes.

Exercise 1. The number 32 970 563 is the product of two primes. Find them.

Exercise 2. Factorize 1 003 207 (the product of two primes) knowing $1835^2 \equiv 598^2 \pmod{1003207}$.

Exercise 3. Compute 16200 modulo 19.

Exercise 4. If $p \neq q$, and gcd(a, pq) = 1, and n = lcm(p - 1, q - 1), show

$$a^n \equiv 1 \pmod{pq}.$$

Exercise 5. Show $a^{13} \equiv a \pmod{70}$.

Exercise 6. Assuming gcd(n, p) = 1, and $0 \le n < p$, solve the congruence

$$a^n x \equiv b \pmod{p}.$$

Exercise 7. Solve $2^{14}x \equiv 3 \pmod{23}$.

Exercise 8. Show $\sum_{k=1}^{p-1} k^p \equiv 0 \pmod{p}$.

Exercise 9. We can write the congruence $2^p \equiv 2 \pmod{p}$ as

 $2^p - 1 \equiv 1 \pmod{p}.$

Show that, if $n \mid 2^p - 1$, then $n \equiv 1 \pmod{p}$. (Suggestion: Do this first if n is a prime q. Then $2^{q-1} \equiv 1 \pmod{q}$. If $q \not\equiv 1 \pmod{p}$, then gcd(p, q - 1) = 1, so pa + (q - 1)b = 1 for some a and b. Now look at $2^{pa} \cdot 2^{(q-1)b} \mod{n}$.)

Exercise 10. Let $F_n = 2^{2^n} + 1$. (Then F_0, \ldots, F_4 are primes.) Show $2^{F_n} \equiv 2 \pmod{F_n}$.

MATHEMATICS DEPT, MIDDLE EAST TECH. UNIV., ANKARA 06531, TURKEY E-mail address: dpierce@metu.edu.tr URL: http://www.math.metu.edu.tr/~dpierce

Date: October 16, 2007.